Implicit automata in typed \-calculi

Cécilia Prabic (University of Oxford)
j-w.w. NeuyEn Lé Thanh Diing (a.k.a. Tito) (Paris 13)

Structure meets Power Workshop, June 28th 2021

1/100

Simply typed functions on Church numerals

Church encodings of (unary) natural numbers:
e Nat=(0—0) —0—0

e neN~7n =M A f(... (fx)...): Nat with n times f

e all inhabitants of Nat are equal to some 77 up to =3,

Theorem (Schwichtenberg 1975)
The functions N — N definable by simply-typed A-terms of type Nat — Nat are the extended polynomials.
(generated by 0,1, +, X, id and ifzero)

2/100

Simply typed functions on Church numerals

Church encodings of (unary) natural numbers:
e Nat=(0—0) —0—0

e neN~7n =M A f(... (fx)...): Nat with n times f

e all inhabitants of Nat are equal to some 77 up to =g,

The functions N — N definable by simply-typed \-terms of type Nat — Nat are the extended polynomials.
(generated by 0,1, +, X, id and ifzero)

Let's add a bit of (meta-level) polymorphism: ¢+ = Nat[A] — Nat
where Nat[A] = Nat[A/o] = (A > A) = A= A

Choose some simple type A and some term f : Nat[A] — Nat.
What functions N — N can be defined this way?

2/100

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = Stryy
Church encodings of strings over alphabet ¥ = {a, b}:
® Strippy =(0—0) = (0—0) —0—0
e abb € {a,b}* ~ abb = M,. My. M\x. fu (fy (fy X)) : Strs,
More generally Strs; = (0 — 0) — ... |X| times... — (0 = 0) -0 — 0

Open question
Choose some simple type A and some term f : Strp[A] — Strs.
What functions I'* — ¥~ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

3/100

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = Stryy
Church encodings of strings over alphabet ¥ = {a, b}:
® Strippy =(0—0) = (0—0) —0—0
e abb € {a,b}* ~ abb = M,. My. M\x. fu (fy (fy X)) : Strs,
More generally Strs; = (0 — 0) — ... |X| times... — (0 = 0) -0 — 0

Open question
Choose some simple type A and some term f : Strp[A] — Strs.
What functions I'* — ¥~ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

An answer for predicates [Hillebrand & Kanellakis 1996]
A subset of X" is decidable by some ¢ : Strs:[A] — Bool if and only if it is a reqular language.

Note: unary regular languages = ultimately periodic subsets of N

3/100

A-definable functions are regular

Theorem [Hillebrand & Kanellakis, LICS'96]
For any type A and any simply typed A-term ¢ : Strs[A] — Bool, {w € ¥* | tw =g true} is regular.

Proof by semantic evaluation.

Let [—] stand for a denotational semantics in the CCC of finite sets. (determined by [o])

We build an automaton with finite set of states Q = [Strs[A]]

4/100

A-definable functions are regular

Theorem [Hillebrand & Kanellakis, LICS'96]
For any type A and any simply typed A-term ¢ : Strs[A] — Bool, {w € ¥* | tw =g true} is regular.

Proof by semantic evaluation.

Let [—] stand for a denotational semantics in the CCC of finite sets. (determined by [o])

We build an automaton with finite set of states Q = [Strs[A]]

tw =g true <= [t]([w]) = [true] <= w accepted

4/100

A-definable functions are regular

Theorem [Hillebrand & Kanellakis, LICS'96]
For any type A and any simply typed A-term ¢ : Strs[A] — Bool, {w € ¥* | tw =g true} is regular.

Proof by semantic evaluation.

Let [—] stand for a denotational semantics in the CCC of finite sets. (determined by [o])

We build an automaton with finite set of states Q = [Strs[A]]

tw =g true <= [t]([w]) = [true] <= w accepted

To conclude: if Card([o]) > 2 then [true] # [false]) O

4/100

A-definable functions are regular

Theorem [Hillebrand & Kanellakis, LICS'96]
For any type A and any simply typed A-term ¢ : Strs[A] — Bool, {w € ¥* | tw =g true} is regular.

Proof by semantic evaluation.

Let [—] stand for a denotational semantics in the CCC of finite sets. (determined by [o])

We build an automaton with finite set of states Q = [Strs[A]]

tw =g true <= [t]([w]) = [true] <= w accepted

To conclude: if Card([o]) > 2 then [true] # [false]) O

Similar ideas in higher-order model checking (see e.g. Grellois & Melliés)

4/100

Regular functions

Assume a A-calculus for linear intuitionistic logic with additives

e \"x.t:A — Bunrestricted function
e \°x.t: A —o Blinear function (exactly one x in t)
e coproducts A @ B and products A & B

Church encoding with linear types [Girard 1987]:
abb = X fo. Xfy. Xx. f (fy (fys X)) : Striapy = (0 —00) = (0 —00) = 0 —00

5/100

Regular functions

Assume a A-calculus for linear intuitionistic logic with additives

e X\ x.t: A — Bunrestricted function
e \°x.t: A —o Blinear function (exactly one x in t)
e coproducts A @ B and products A & B

Church encoding with linear types [Girard 1987]:
abb = X"fo. Xfo. X°x. fo (fy (fs X)) : Strapy = (0 —0) = (0 —0) - 0—0

f: T — X" is a regular function
—
fis defined by some ¢ : Strr[A] —o Strx in the intuitionistic linear A-calculus
with A purely linear, i.e. containing no *—'

5/100

Regular functions

Assume a A-calculus for linear intuitionistic logic with additives

e \'x.t: A — Bunrestricted function
e \°x.t: A —o Blinear function (exactly one x in t)
e coproducts A @ B and products A & B

Church encoding with linear types [Girard 1987]:
abb = X fo. Xfy. Xx. f (fy (fys X)) : Striapy = (0 —00) = (0 —00) = 0 —00

Today's main theorem [Nguyén & P.]

f: " — ¥ is a reqular function
—
fis defined by some f : Strr[A] —o Stry in the intuitionistic linear A-calculus
with A purely linear, i.e. containing no *—'

Regular functions are a classical topic, many equivalent definitions...
One of them: copyless streaming string transducers [Alur & Cerny 2010]
~- sounds suspiciously like affine types!

5/100

Single-state streaming string transducers

o Finite set of X"-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €
. . X := Xa X:=Xb X :=aba
o Register update function e.g. a — b— s
Y :=aY Y :=bY Y := YabaX

e “output function” e.g. out = XY

6/100

Single-state streaming string transducers

o Finite set of X"-valued registers e.g. R = {X, Y}

o Initial values R — X~ e.g. Kaip = Yim't =€

. . X := Xa X:=Xb X :=aba
o Register update function e.g. a — v v b— s
=a

e “output function” e.g. out = XY

Execution over abaa: start with

6/100

Single-state streaming string transducers

o Finite set of X"-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €
. . X := Xa X:=Xb X :=aba
o Register update function e.g. a — b— c
Y :=aY Y :=bY Y := YabaX
e “output function” e.g. out = XY
Execution over abaa:
X=a Y=a

6/100

Single-state streaming string transducers

o Finite set of X"-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €
. . X := Xa X:=Xb X :=aba
o Register update function e.g. a — b— s
Y :=aY Y :=bY Y := YabaX

e “output function” e.g. out = XY

Execution over abaa:

6/100

Single-state streaming string transducers

o Finite set of X"-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €
. . X := Xa X:=Xb X :=aba
o Register update function e.g. a — b— c
Y :=aY Y :=bY Y := YabaX

e “output function” e.g. out = XY

Execution over abaa:

X = aba Y = aba

6/100

Single-state streaming string transducers

o Finite set of X"-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €
. . X := Xa X:=Xb X :=aba
o Register update function e.g. a — b— c
Y :=aY Y :=bY Y := YabaX

e “output function” e.g. out = XY

Execution over abaa:

X = abaa Y = aaba

6/100

Single-state streaming string transducers

o Finite set of X"-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €
. . X := Xa X:=Xb X :=aba
o Register update function e.g. a — b— s
Y :=aY Y :=bY Y := YabaX

e “output function” e.g. out = XY

Execution over abaa: f(abaa) = abaaaaba

X = abaa Y = aaba

6/100

Single-state streaming string transducers

o Finite set of X"-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €

X =X X :=Xb
o Register update function e.g. a — “ e

Y :=aY Y :=bY

e “output function” e.g. out = XY

Execution over abaa: f(abaa) = abaaaaba

X = abaa Y = aaba

frestricted to {a,b}": corresponds to w — w - reverse(w)

6/100

Stateful streaming string transducers

SSTs can also have states: their memory is Q x (X*)® (with |Q| < o0)

X < xa
y<y

aeXx

out «—y

X< €
Y€

X< €

I -

out < ¢

X 4—ax
y<y

7/100

Stateful streaming string transducers

SSTs can also have states: their memory is Q x (£*)* (with |Q| < o)

” X< €
out <~y yeux out
sey| X X < ax
y<y y<y
X+ ¢
Yy<e¢€

Each register appears at most once on RHS of <

(for each fixed input letter, at most once among all the associated <)

Intuition: memory M = Q@ X* ® ... ® X, transitions M — M
(Q1¢...41concat : T* ® X" —o X7)

7/100

Categorical automata

A framework for “single-pass” automata [Colcombet & Petrisan 2017]
e internal memory = object of a category C

e transitions = morphisms (and [letter — transition]| = functor 7 — C)

agx

e DFA = automata over the category of finite sets

Copyless SSTs ~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)q

8/100

Categorical automata

A framework for “single-pass” automata [Colcombet & Petrisan 2017]
internal memory = object of a category C

transitions = morphisms (and [letter — transition] = functor 7= — C)

agx

e DFA = automata over the category of finite sets
e Copyless SSTs ~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)q

Formally

A streaming setting ¢ with output X is a tuple (C, T, AL, out) with
e (C a category
e T and L objects of C
e out : Home (T, 1L) — X a set-theoretic-map

Notion of €-automaton (abusively called C-automata in the sequel)

8/100

SSTs as categorical automata

Obijects: finite sets R, S think register variables

Morphisms: Homz (R, S) = maps S — (R +)" corresponding to copyless register affectations
Yies o)l <1

e Monoidal with ® = +

o Free affine monoidal category over an object ¥* = {e}, morphisms e,a : I — X* fora € ¥ and
cat : ¥ @ ¥ - X*

For the streaming setting, take T =TI =0and IL = X" = {e}

9/100

SSTs as categorical automata

The register category with output alphabet ¥
Objects: finite sets R, S think register variables

Morphisms: Homz (R, S) = maps S — (R + X)* corresponding to copyless register affectations
Xes) <1

e Monoidal with ® = +

e Free affine monoidal category over an object ¥* = {e}, morphisms ¢,a : I — X" fora € ¥ and
cat : ¥ @ ¥ - X*

e For the streaming setting, take T =I=0and 1. = X" = {e}

Definition of the free finite coproduct completion Cq

e Objects: formal finite sums P, c; Cu of objects of C
formally pairs (U, (Cy)ueu), U a finite set, C, € Co

e Morphisms: Home,, (B, Cu, B, Dv) =[], >_, Home (Cu, Dy)
= 3711, Home (Cu, Dywy)

e Morphisms R — &b yeo R correspond to transitions in a SST
e Canonical embedding C — Cg allows to lift streaming settings

9/100

Transductions definable in linear A-calculus can be turned into automata over a category L of purely
linear A-terms (w/ constf. : 0 — o for ¢ € ¥)

L-automata compute the same string functions as A-terms.

Proof: syntactic analysis of normal forms

10/100

Transductions definable in linear A-calculus can be turned into automata over a category L of purely
linear A-terms (w/ constf. : 0 — o for ¢ € ¥)

L-automata compute the same string functions as A-terms.

Proof: syntactic analysis of normal forms

10/100

Compiling into higher-order transducers

Transductions definable in linear A-calculus can be turned into automata over a category £ of purely
linear A\-terms (w/ constf, : 0 — o forc € ¥)

Claim

L-automata compute the same string functions as A-terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear \-definable — regular function

Define a functor £ — Rg preserving enough structure

Useful fact: there is a canonical functor from £ to any symmetric monoidal closed category with
(co)products

Unfortunately R is not monoidal closed...

10/100

Toward a monoidal closed category

So far, we encountered:

e [: category of purely linear A-terms (w/ constf. : 0 — o forc € %)
e R: category of finite sets of registers and copyless assignments

® Rg: free finite coproduct completion of the latter (add states)

Now consider:
e the free finite product completion: C — C¢. = ((C?)g)®F
Objects: formal products &7, Cx
o the composite completion C — Cg¢ — (Cg) g
Objects: formal sums of products @, &, Cu.x

similar to de Paiva's Dialectica categories DC, think Ju. Vx. ¢ (u, x)

Goals toward our main theorem
o Structure: (Rg)e has finite products and is monoidal closed

o Conservativity: (Rg)g-automata and Rg-automata are equivalent

11/100

Structure (1): generic remarks (Cg,)

Tensorial products can be lifted to the completions
e The new tensorial products satisfy the additional laws
ARB&C)=(A®B)&(A®C) A®BaeC)=AB)@®(Ax®C)
e In particular, (Cg)g has distributive cartesian products
A& (BaC)=(A&B)® (A&C)

When embedded in (co)presheafs 22 Day convolution

12/100

Structure (1): generic remarks (Cg,)

Tensorial products can be lifted to the completions
e The new tensorial products satisfy the additional laws
ARB&C)=(A®B)&(A®C) A®BaeC)=AB)@®(Ax®C)
e In particular, (Cg)g has distributive cartesian products
A& (BaC)=(A&B)® (A&C)
When embedded in (co)presheafs 2 Day convolution

Lemma (folklore observation about dependent Dialectica categories?)

If C is symmetric monoidal and (Cg.)gq has the internal homs A — B
forall A,B € C, then (Cg)g is symmetric monoidal closed.

(EB&AX)—o(EB&By) - 8D & Pa—B,

ucl x€Xy veEV YEYy uel veV yeYy xeXy,

12/100

Structure (2): combinatorics on strings

Lemma
R has the internal homs A — B for all A,B € R.

The construction appears in the original SST paper [Alur & Cerny 2010]
without the categorical vocabulary.

X 1= abXcY X =1 XZY
N ~» shape + parameters Z; = ab, ...
=ba

=273

copyless SST = finitely many shapes: use as states; registers for parameters

13/100

R has the internal homs A — B for all A,B € R.

The construction appears in the original SST paper [Alur & Cerny 2010]
without the categorical vocabulary.

X :=abXcY X =1 XZY
~+ shape + parameters Z; =ab, ...
Y :=ba Y :=7Z;

copyless SST = finitely many shapes: use as states; registers for parameters

(Re)e is symmetric monoidal closed (and almost affine).

13/100

(Cs.) @ automata are equivalent to non-deterministic Cq automata.

A uniformization (~ determinization) theorem is enough to conclude

(Rg)@-automata are equivalent to standard SSTs.

e Uniformization already known [Alur & Deshmuk 2011]
e Argument implicitly based on monoidal closure!

oO— o a D
a G Dy
s v v (=1 (=1 Dy

o

a

For any monoidal category C, if Cq, has all the internal homsets A —o B for A, B € C, then (Cg.) -automata

and Cg-automata are equivalent.
equivalently: ND Cg-automata can be uniformized

14/100

I have just discussed

definable by some ¢ : Strp[A] —o Strg

lar string functi
regular string function <= in ILL with A purely linear

15/100

Main results

I have just discussed

definable by some f : Strp[A] —o Strs

lar string function <=
regiiar string tnction in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

definable by some ¢ : Treep[A] — Trees

lar tree function <
reguiar tree function in ILL with A purely linear

15/100

Main results

I have just discussed

definable by some f : Strp[A] —o Strs

lar string function <=
regiiar string tnction in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

. definable by some ¢ : Treep[A] — Trees
regular tree function <= | . .
in ILL with A purely linear

Specific ingredients:

e Bottom-up categorical tree automata over SMCs

o A reasonably elegant multicategory of tree registers transition R
o Generated from the correponding PROP in a principled way (reminiscent from the notion of clone)
e Argument for R-monoidal closure argument generalizes to trees

e Regular functions already known to correspond to R ¢ -automata!

15/100

Dropping the additives

o Allows Gol-style interpretation in categories of diagrams (2 Int(FinPartInj))

~ Interpretation as two-way automata [Hines 2003]

Define regular languages

o
00090
0SS0
00 S00O
00090

I

o

Every linear term ¢ : Strs[A] — Bool with A —-free defines a regular language.

16/100

Dropping the additives and commutativity

o Allows Gol-style interpretation in categories of planar diagrams

~> Interpretation as two-way planar automata [Hines 2003,2006]

Define star-free languages

)
0SS0
0SS0
00600
00000

I
©

Every planar linear term ¢ : Strs[A] —o Str with A —-free defines a star-free language.

16/100

Dropping the additives and commutativity

o Allows Gol-style interpretation in categories of planar labelled diagrams

~ Interpretation as two-way planar transducers (2DFTs; w/o registers)

ba

ab

]

[Hines 2003,2006]

Define first-order regular functions

= “
e abbaaabbaaaba e

Every planar linear term ¢ : Strs[A] —o Str with A —-free defines a FO-transduction.

16/100

Dropping the additives and commutativity

o Allows Gol-style interpretation in categories of planar labelled diagrams

~ Interpretation as two-way planar transducers (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions

ba a e

®© o o o o *
b a b
ab () (—] () L
a
® © .0 06 o. e
. e e e bbbaa e e abbaaabbaaaba e
a baa
® o o o

Every planar linear term ¢ : Strs[A] —o Str with A —-free defines a FO-transduction.

Alas, planar linear terms are much weaker than FO-transductions (preserve Parikh images)

16/100

Dropping the additives and commutativity

o Allows Gol-style interpretation in categories of planar labelled diagrams

~+ Interpretation as two-way planar transducers (2DFTs; w/o registers)

ba

ab

s

[Hines 2003,2006]

Define first-order regular functions

= “
e abbaaabbaaaba e

Every planar affine term ¢ : Strs;[A] —o Str with A —-free defines a FO-transduction.

The converse holds (main ingredient for the proof: the Krohn-Rhodes theorem)

16/100

Conclusion

What happened here:

e Connections between Church encodings and automata
e Application of categorical semantics (Dialectica, geometry of interaction (Gol))

e A generic uniformization-like construction (Cg.)e — Cg for monoidal C with certain homsets

Some take-aways:

e Important ingredient in uniformization: monoidal closure

e Additive connectives are important for trees
o Links between planar Gol, two-way transducers and first-order fragments

17/100

Conclusion

What happened here:

e Connections between Church encodings and automata
e Application of categorical semantics (Dialectica, geometry of interaction (Gol))

e A generic uniformization-like construction (Cg.)e — Cg for monoidal C with certain homsets

Some take-aways:

e Important ingredient in uniformization: monoidal closure

e Slick formalization w/o categories (using e.g. transition monoids)?

e Additive connectives are important for trees
o Links between planar Gol, two-way transducers and first-order fragments

17/100

Conclusion

What happened here:

e Connections between Church encodings and automata
e Application of categorical semantics (Dialectica, geometry of interaction (Gol))

e A generic uniformization-like construction (Cg.)e — Cg for monoidal C with certain homsets

Some take-aways:
e Important ingredient in uniformization: monoidal closure
e Slick formalization w/o categories (using e.g. transition monoids)?

e Additive connectives are important for trees
o Links between planar Gol, two-way transducers and first-order fragments

o Further links with tree-walking automata?

17/100

Conclusion

Strs;[A] — Bool with A linear (adapted as needed):

A-calculus | languages || status

simply typed regular v [Hillebrand & Kanellakis 1996]
linear or affine regular v

non-commutative linear or affine | star-free v

Strp[A] —o Strs; with A affine (adapted as needed):

A-calculus | transducers || status
linear (without additives) weird (?) v (?)
affine regular functions v
non-commutative affine first-order regular fn. v?
linear/affine with additives | regular functions v
parsimonious polyregular W
simply typed variant of CPDA??? ??

18/100

Conclusion

Strs;[A] — Bool with A linear (adapted as needed):

A-calculus languages || status
simply typed regular v/ [Hillebrand & Kanellakis 1996]
linear or affine regular v
non-commutative linear or affine | star-free v

Strp[A] —o Strs; with A affine (adapted as needed):
A-calculus | transducers || status
linear (without additives) weird (?) v (?)
affine regular functions v
non-commutative affine first-order regular fn. v?
linear/affine with additives | regular functions v
parsimonious polyregular W
simply typed variant of CPDA??? ??

+ a characterization of Str[A] — Str as comparison-free polyregular functions

18/100

Conclusion

Strs;[A] — Bool with A linear (adapted as needed):

A-calculus languages || status
simply typed regular v/ [Hillebrand & Kanellakis 1996]
linear or affine regular v
non-commutative linear or affine | star-free v

Strp[A] —o Strs; with A affine (adapted as needed):
A-calculus | transducers || status
linear (without additives) weird (?) v (?)
affine regular functions v
non-commutative affine first-order regular fn. v?
linear/affine with additives | regular functions v
parsimonious polyregular W
simply typed variant of CPDA??? ??

+ a characterization of Str[A] — Str as comparison-free polyregular functions

Thanks for listening! Questions?

18/100

A category of planar diagrams

e Interpret purely linear non-commutative A-terms in a monoidal closed category

e We consider a non-commutative refinement of Geometry of Interaction

(well-known model of linear logic)

A compact closed category of planar diagrams

e Objects: words in {+, —}" S e

o Morphisms 1 — v : graphs over |u| + || with L L
o degree < 1 for every node e L
o polarity restrictions e

o planarity restriction

To compute the composition of two morphisms, follow the paths (and forget the middle component)

N e e

Compact-closure and interpretation of the \-calculus

Structure to interpret the linear A\-calculus @
e Monoidal product A ® B given by concatenation ()
e Duals A™: reverse and flip polarities
e Monoidal closure by setting A — B = A" ® B *

e Interpretation of types [A] by induction with [o]] = +
(injective interpretation of booleans) e =

Examples
[((0—0) —0—0) — ((0—00) = 0) 0] = —++———++

Vg fOx. 2) (5 (Ar.)] =
e © © ©¢ © © © ©

Aperiodicity

To conclude, we need to show that every (Hom(A, A), o) is finite and aperiodic for every A

R-class determined by:

the internal wiring on the left

R-class determined by:
+

the internal wiring on the left positions of the input nodes
+

positions of the input nodes

VA

Therefore: planar = H-trivial

e More elementary proofs w/o Green relations possible (e.g. order+Kleene's theorem)

Aperiodicity

To conclude, we need to show that every (Hom(A, A), o) is finite and aperiodic for every A

R-class determined by:

the internal wiring on the left

R-class determined by:
+

the internal wiring on the left positions of the input nodes
+

positions of the input nodes

VA

Therefore: planar = H-trivial

e More elementary proofs w/o Green relations possible (e.g. order+Kleene's theorem)

o Planarity restriction is essential (consider :><:)

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

o © o o] ©
L e L L
© L] o o @
o © o o © ©
L e e L
e Transition functions ¢ : ¥ — Hom(Q, Q) for some object Q Q = set of directed states

e (actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

o © o o] ©
L e L L
© L] o o @
o © o o © ©
L e e L
e Transition functions ¢ : ¥ — Hom(Q, Q) for some object Q Q = set of directed states

(actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))

Planarity restriction = the transition flow monoid is aperiodic

(links between Gol and planar 2DFAs already considered by (Hines 2003))

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

o © o o] ©
L e L L
© L] o o @
o © o o © ©
L e e L
e Transition functions ¢ : ¥ — Hom(Q, Q) for some object Q Q = set of directed states

(actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))

Planarity restriction = the transition flow monoid is aperiodic

(links between Gol and planar 2DFAs already considered by (Hines 2003))

Theorem
Star-free languages are exactly those recognized by planar 2DFAs.

More generally: first-order transductions

Consider a richer category of diagrams where edges are labelled by output words

(labels of compositions given by concatenation)

e a €

e " e e o o °
b a B
ab g e Q g
a
3 e a a € e e ol —> e
a () (] o e) () abbacabbacabi @)
“ baa
e e e

Much like before, corresponding notion of (planar) 2DFTs.

Theorem
First-order transduction (FO regular functions) are those computed by reversible planar 2DFTs.

e 2DFTs with aperiodic transition monoid = FO regular functions [Carton&Dartois 2015]
(hence reversible planar 2DFTs C FO-transductions)

e FO transduction C reversible planar 2DFTs: closure by composition and Krohn--Rhodes
(see http://nguyentito.eu/2021-01-1inks.pdf)

http://nguyentito.eu/2021-01-links.pdf

