
Implicit automata in typed λ-calculi

Cécilia PRADIC (University of Oxford)
j.w.w. NGUYỄN Lê Thành Dũng (a.k.a. Tito) (Paris 13)

Structure meets Power Workshop, June 28th 2021

1/100

Simply typed functions on Church numerals

Church encodings of (unary) natural numbers:
• Nat = (o→ o)→ o→ o
• n ∈ N⇝ n = λf. λx. f (. . . (f x) . . .) : Nat with n times f
• all inhabitants of Nat are equal to some n up to =βη

Theorem (Schwichtenberg 1975)
The functions N→ N definable by simply-typed λ-terms of type Nat→ Nat are the extended polynomials.

(generated by 0, 1, +, ×, id and ifzero)

Let's add a bit of (meta-level) polymorphism: t = Nat[A]→ Nat
where Nat[A] = Nat[A/o] = (A→ A)→ A→ A

Open question
Choose some simple type A and some term t : Nat[A]→ Nat.
What functions N→ N can be defined this way?

2/100

Simply typed functions on Church numerals

Church encodings of (unary) natural numbers:
• Nat = (o→ o)→ o→ o
• n ∈ N⇝ n = λf. λx. f (. . . (f x) . . .) : Nat with n times f
• all inhabitants of Nat are equal to some n up to =βη

Theorem (Schwichtenberg 1975)
The functions N→ N definable by simply-typed λ-terms of type Nat→ Nat are the extended polynomials.

(generated by 0, 1, +, ×, id and ifzero)

Let's add a bit of (meta-level) polymorphism: t = Nat[A]→ Nat
where Nat[A] = Nat[A/o] = (A→ A)→ A→ A

Open question
Choose some simple type A and some term t : Nat[A]→ Nat.
What functions N→ N can be defined this way?

2/100

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = Str{1}
Church encodings of strings over alphabet Σ = {a, b}:

• Str{a,b} = (o→ o)→ (o→ o)→ o→ o
• abb ∈ {a, b}∗ ⇝ abb = λfa. λfb. λx. fa (fb (fb x)) : StrΣ

More generally StrΣ = (o→ o)→ . . . |Σ| times . . .→ (o→ o)→ o→ o

Open question
Choose some simple type A and some term t : StrΓ[A]→ StrΣ.
What functions Γ∗ → Σ∗ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

An answer for predicates [Hillebrand & Kanellakis 1996]
A subset of Σ∗ is decidable by some t : StrΣ[A]→ Bool if and only if it is a regular language.

Note: unary regular languages ∼= ultimately periodic subsets of N

3/100

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = Str{1}
Church encodings of strings over alphabet Σ = {a, b}:

• Str{a,b} = (o→ o)→ (o→ o)→ o→ o
• abb ∈ {a, b}∗ ⇝ abb = λfa. λfb. λx. fa (fb (fb x)) : StrΣ

More generally StrΣ = (o→ o)→ . . . |Σ| times . . .→ (o→ o)→ o→ o

Open question
Choose some simple type A and some term t : StrΓ[A]→ StrΣ.
What functions Γ∗ → Σ∗ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

An answer for predicates [Hillebrand & Kanellakis 1996]
A subset of Σ∗ is decidable by some t : StrΣ[A]→ Bool if and only if it is a regular language.

Note: unary regular languages ∼= ultimately periodic subsets of N

3/100

λ-definable functions are regular

Theorem [Hillebrand & Kanellakis, LICS'96]
For any type A and any simply typed λ-term t : StrΣ[A]→ Bool, {w ∈ Σ∗ | t w =β true} is regular.

Proof by semantic evaluation.
Let J−K stand for a denotational semantics in the CCC of finite sets. (determined by JoK)
We build an automaton with finite set of states Q = JStrΣ[A]K

JεK JaK r
ab

z r
abb

z
...a b b

t w =β true ⇐⇒ JtK(JwK) = JtrueK ⇐⇒ w accepted

To conclude: if Card(JoK) ≥ 2 then JtrueK ̸= JfalseK)
Similar ideas in higher-order model checking (see e.g. Grellois & Melliès)

4/100

λ-definable functions are regular

Theorem [Hillebrand & Kanellakis, LICS'96]
For any type A and any simply typed λ-term t : StrΣ[A]→ Bool, {w ∈ Σ∗ | t w =β true} is regular.

Proof by semantic evaluation.
Let J−K stand for a denotational semantics in the CCC of finite sets. (determined by JoK)
We build an automaton with finite set of states Q = JStrΣ[A]K

JεK JaK r
ab

z r
abb

z
...a b b

t w =β true ⇐⇒ JtK(JwK) = JtrueK ⇐⇒ w accepted

To conclude: if Card(JoK) ≥ 2 then JtrueK ̸= JfalseK)
Similar ideas in higher-order model checking (see e.g. Grellois & Melliès)

4/100

λ-definable functions are regular

Theorem [Hillebrand & Kanellakis, LICS'96]
For any type A and any simply typed λ-term t : StrΣ[A]→ Bool, {w ∈ Σ∗ | t w =β true} is regular.

Proof by semantic evaluation.
Let J−K stand for a denotational semantics in the CCC of finite sets. (determined by JoK)
We build an automaton with finite set of states Q = JStrΣ[A]K

JεK JaK r
ab

z r
abb

z
...a b b

t w =β true ⇐⇒ JtK(JwK) = JtrueK ⇐⇒ w accepted

To conclude: if Card(JoK) ≥ 2 then JtrueK ̸= JfalseK)

Similar ideas in higher-order model checking (see e.g. Grellois & Melliès)

4/100

λ-definable functions are regular

Theorem [Hillebrand & Kanellakis, LICS'96]
For any type A and any simply typed λ-term t : StrΣ[A]→ Bool, {w ∈ Σ∗ | t w =β true} is regular.

Proof by semantic evaluation.
Let J−K stand for a denotational semantics in the CCC of finite sets. (determined by JoK)
We build an automaton with finite set of states Q = JStrΣ[A]K

JεK JaK r
ab

z r
abb

z
...a b b

t w =β true ⇐⇒ JtK(JwK) = JtrueK ⇐⇒ w accepted

To conclude: if Card(JoK) ≥ 2 then JtrueK ̸= JfalseK)
Similar ideas in higher-order model checking (see e.g. Grellois & Melliès)

4/100

Regular functions

Assume a λ-calculus for linear intuitionistic logic with additives

• λ�x. t : A→ B unrestricted function
• λ◦x. t : A⊸ B linear function (exactly one x in t)
• coproducts A⊕ B and products A& B

Church encoding with linear types [Girard 1987]:

abb = λ�fa. λ�fb. λ◦x. fa (fb (fb x)) : Str{a,b} = (o⊸ o)→ (o⊸ o)→ o⊸ o

Today's main theorem [Nguyễn & P.]

f : Γ∗ → Σ∗ is a regular function
⇐⇒

f is defined by some t : StrΓ[A]⊸ StrΣ in the intuitionistic linear λ-calculus
with A purely linear, i.e. containing no `→'

Regular functions are a classical topic, many equivalent definitions…
One of them: copyless streaming string transducers [Alur & Černý 2010]
⇝ sounds suspiciously like affine types!

5/100

Regular functions

Assume a λ-calculus for linear intuitionistic logic with additives

• λ�x. t : A→ B unrestricted function
• λ◦x. t : A⊸ B linear function (exactly one x in t)
• coproducts A⊕ B and products A& B

Church encoding with linear types [Girard 1987]:

abb = λ�fa. λ�fb. λ◦x. fa (fb (fb x)) : Str{a,b} = (o⊸ o)→ (o⊸ o)→ o⊸ o

Today's main theorem [Nguyễn & P.]

f : Γ∗ → Σ∗ is a regular function
⇐⇒

f is defined by some t : StrΓ[A]⊸ StrΣ in the intuitionistic linear λ-calculus
with A purely linear, i.e. containing no `→'

Regular functions are a classical topic, many equivalent definitions…
One of them: copyless streaming string transducers [Alur & Černý 2010]
⇝ sounds suspiciously like affine types!

5/100

Regular functions

Assume a λ-calculus for linear intuitionistic logic with additives

• λ�x. t : A→ B unrestricted function
• λ◦x. t : A⊸ B linear function (exactly one x in t)
• coproducts A⊕ B and products A& B

Church encoding with linear types [Girard 1987]:

abb = λ�fa. λ�fb. λ◦x. fa (fb (fb x)) : Str{a,b} = (o⊸ o)→ (o⊸ o)→ o⊸ o

Today's main theorem [Nguyễn & P.]

f : Γ∗ → Σ∗ is a regular function
⇐⇒

f is defined by some t : StrΓ[A]⊸ StrΣ in the intuitionistic linear λ-calculus
with A purely linear, i.e. containing no `→'

Regular functions are a classical topic, many equivalent definitions…
One of them: copyless streaming string transducers [Alur & Černý 2010]
⇝ sounds suspiciously like affine types!

5/100

Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R→ Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→

X := Xa
Y := aY

b 7→

X := Xb
Y := bY

c 7→

X := aba
Y := YabaX

• “output function” e.g. out = XY

Execution over : start with

X = ε Y = ε

f restricted to {a, b}∗: corresponds to w 7→ w · reverse(w)

6/100

Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R→ Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→

X := Xa
Y := aY

b 7→

X := Xb
Y := bY

c 7→

X := aba
Y := YabaX

• “output function” e.g. out = XY

Execution over abaa: start with

X = ε Y = ε

f restricted to {a, b}∗: corresponds to w 7→ w · reverse(w)

6/100

Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R→ Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→

X := Xa
Y := aY

b 7→

X := Xb
Y := bY

c 7→

X := aba
Y := YabaX

• “output function” e.g. out = XY

Execution over abaa:

X = a Y = a

f restricted to {a, b}∗: corresponds to w 7→ w · reverse(w)

6/100

Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R→ Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→

X := Xa
Y := aY

b 7→

X := Xb
Y := bY

c 7→

X := aba
Y := YabaX

• “output function” e.g. out = XY

Execution over abaa:

X = ab Y = ba

f restricted to {a, b}∗: corresponds to w 7→ w · reverse(w)

6/100

Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R→ Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→

X := Xa
Y := aY

b 7→

X := Xb
Y := bY

c 7→

X := aba
Y := YabaX

• “output function” e.g. out = XY

Execution over abaa:

X = aba Y = aba

f restricted to {a, b}∗: corresponds to w 7→ w · reverse(w)

6/100

Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R→ Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→

X := Xa
Y := aY

b 7→

X := Xb
Y := bY

c 7→

X := aba
Y := YabaX

• “output function” e.g. out = XY

Execution over abaa:

X = abaa Y = aaba

f restricted to {a, b}∗: corresponds to w 7→ w · reverse(w)

6/100

Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R→ Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→

X := Xa
Y := aY

b 7→

X := Xb
Y := bY

c 7→

X := aba
Y := YabaX

• “output function” e.g. out = XY

Execution over abaa: f(abaa) = abaaaaba

X = abaa Y = aaba

f restricted to {a, b}∗: corresponds to w 7→ w · reverse(w)

6/100

Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R→ Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→

X := Xa
Y := aY

b 7→

X := Xb
Y := bY

c 7→

X := aba
Y := YabaX

• “output function” e.g. out = XY

Execution over abaa: f(abaa) = abaaaaba

X = abaa Y = aaba

f restricted to {a, b}∗: corresponds to w 7→ w · reverse(w)

6/100

Stateful streaming string transducers

SSTs can also have states: their memory is Q× (Σ∗)R (with |Q| <∞)

x← ε

y← ε

out← y out← ε
∥
∣∣∣∣ x← ε

y← yx

a ∈ Σ

∣∣∣∣ x← ax
y← y

∥
∣∣∣∣ x← ε

y← xy

a ∈ Σ

∣∣∣∣ x← xa
y← y

Copylessness restriction
Each register appears at most once on RHS of←

(for each fixed input letter, at most once among all the associated←)

Intuition: memory M = Q⊗ Σ∗ ⊗ . . .⊗ Σ∗, transitions M⊸ M
(Q ∼= 1⊕ . . .⊕ 1, concat : Σ∗ ⊗ Σ∗ ⊸ Σ∗)

7/100

Stateful streaming string transducers

SSTs can also have states: their memory is Q× (Σ∗)R (with |Q| <∞)

x← ε

y← ε

out← y out← ε
∥
∣∣∣∣ x← ε

y← yx

a ∈ Σ

∣∣∣∣ x← ax
y← y

∥
∣∣∣∣ x← ε

y← xy

a ∈ Σ

∣∣∣∣ x← xa
y← y

Copylessness restriction
Each register appears at most once on RHS of←

(for each fixed input letter, at most once among all the associated←)

Intuition: memory M = Q⊗ Σ∗ ⊗ . . .⊗ Σ∗, transitions M⊸ M
(Q ∼= 1⊕ . . .⊕ 1, concat : Σ∗ ⊗ Σ∗ ⊸ Σ∗)

7/100

Categorical automata

A framework for “single-pass” automata [Colcombet & Petrişan 2017]

• internal memory = object of a category C
• transitions = morphisms (and [letter 7→ transition] = functor TΣ → C)

TΣ = • // •

a∈Σ

�� // • −→ C

• DFA = automata over the category of finite sets
• Copyless SSTs ≈ start from a categoryR of copyless register updates

+ add states by free finite coproduct completion (−)⊕

Formally
A streaming setting C with output X is a tuple (C,‚,‚, out) with
• C a category
• ‚ and ‚ objects of C
• out : HomC (

‚
,‚)→ X a set-theoretic-map

Notion of C-automaton (abusively called C-automata in the sequel)

8/100

Categorical automata

A framework for “single-pass” automata [Colcombet & Petrişan 2017]

• internal memory = object of a category C
• transitions = morphisms (and [letter 7→ transition] = functor TΣ → C)

TΣ = • // •

a∈Σ

�� // • −→ C

• DFA = automata over the category of finite sets
• Copyless SSTs ≈ start from a categoryR of copyless register updates

+ add states by free finite coproduct completion (−)⊕

Formally
A streaming setting C with output X is a tuple (C,‚,‚, out) with
• C a category
• ‚ and ‚ objects of C
• out : HomC (

‚
,‚)→ X a set-theoretic-map

Notion of C-automaton (abusively called C-automata in the sequel)

8/100

SSTs as categorical automata

The register category with output alphabet Σ

• Objects: finite sets R, S think register variables

• Morphisms: HomR (R, S) = maps S→ (R+Σ)∗ corresponding to copyless register affectations∑
s∈S |f(s)|r ≤ 1

• Monoidal with ⊗ = +

• Free affine monoidal category over an object Σ∗ = {•}, morphisms ε, a : I→ Σ∗ for a ∈ Σ and
cat : Σ∗ ⊗ Σ∗ → Σ∗

• For the streaming setting, take ‚ = I = 0 and ‚ = Σ∗ = {•}

Definition of the free finite coproduct completion C⊕
• Objects: formal finite sums

⊕
u∈U Cu of objects of C

formally pairs (U, (Cu)u∈U), U a finite set, Cu ∈ C0

• Morphisms: HomC⊕

(⊕
u Cu,

⊕
v Dv

)
=

∏
u
∑

v HomC (Cu,Dv)
∼=

∑
f
∏

u HomC
(
Cu,Df(u)

)

• Morphisms
⊕

q∈Q R →
⊕

q∈Q R correspond to transitions in a SST
• Canonical embedding C → C⊕ allows to lift streaming settings

9/100

SSTs as categorical automata

The register category with output alphabet Σ

• Objects: finite sets R, S think register variables

• Morphisms: HomR (R, S) = maps S→ (R+Σ)∗ corresponding to copyless register affectations∑
s∈S |f(s)|r ≤ 1

• Monoidal with ⊗ = +

• Free affine monoidal category over an object Σ∗ = {•}, morphisms ε, a : I→ Σ∗ for a ∈ Σ and
cat : Σ∗ ⊗ Σ∗ → Σ∗

• For the streaming setting, take ‚ = I = 0 and ‚ = Σ∗ = {•}

Definition of the free finite coproduct completion C⊕
• Objects: formal finite sums

⊕
u∈U Cu of objects of C

formally pairs (U, (Cu)u∈U), U a finite set, Cu ∈ C0

• Morphisms: HomC⊕

(⊕
u Cu,

⊕
v Dv

)
=

∏
u
∑

v HomC (Cu,Dv)
∼=

∑
f
∏

u HomC
(
Cu,Df(u)

)

• Morphisms
⊕

q∈Q R →
⊕

q∈Q R correspond to transitions in a SST
• Canonical embedding C → C⊕ allows to lift streaming settings

9/100

Compiling into higher-order transducers

Transductions definable in linear λ-calculus can be turned into automata over a category L of purely
linear λ-terms (w/ const fc : o⊸ o for c ∈ Σ)

Claim
L-automata compute the same string functions as λ-terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear λ-definable =⇒ regular function
Define a functor L → R⊕ preserving enough structure

Useful fact: there is a canonical functor from L to any symmetric monoidal closed category with
(co)products

UnfortunatelyR⊕ is not monoidal closed…

10/100

Compiling into higher-order transducers

Transductions definable in linear λ-calculus can be turned into automata over a category L of purely
linear λ-terms (w/ const fc : o⊸ o for c ∈ Σ)

Claim
L-automata compute the same string functions as λ-terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear λ-definable =⇒ regular function
Define a functor L → R⊕ preserving enough structure

Useful fact: there is a canonical functor from L to any symmetric monoidal closed category with
(co)products

UnfortunatelyR⊕ is not monoidal closed…

10/100

Compiling into higher-order transducers

Transductions definable in linear λ-calculus can be turned into automata over a category L of purely
linear λ-terms (w/ const fc : o⊸ o for c ∈ Σ)

Claim
L-automata compute the same string functions as λ-terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear λ-definable =⇒ regular function
Define a functor L → R⊕ preserving enough structure

Useful fact: there is a canonical functor from L to any symmetric monoidal closed category with
(co)products

UnfortunatelyR⊕ is not monoidal closed…

10/100

Toward a monoidal closed category

So far, we encountered:

• L: category of purely linear λ-terms (w/ const fc : o⊸ o for c ∈ Σ)

• R: category of finite sets of registers and copyless assignments
• R⊕: free finite coproduct completion of the latter (add states)

Now consider:

• the free finite product completion: C 7→ C& = ((Cop)⊕)op

Objects: formal products
˘

x Cx

• the composite completion C 7→ C& 7→ (C&)⊕
Objects: formal sums of products

⊕
u
˘

x Cu,x

similar to de Paiva's Dialectica categories DC, think ∃u. ∀x. φ(u, x)

Goals toward our main theorem

• Structure: (R&)⊕ has finite products and is monoidal closed
• Conservativity: (R&)⊕-automata andR⊕-automata are equivalent

11/100

Structure (1): generic remarks (C&)⊕

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

A⊗ (B& C) ≡ (A⊗ B) & (A⊗ C) A⊗ (B⊕ C) ≡ (A⊗ B)⊕ (A⊗ C)

• In particular, (C&)⊕ has distributive cartesian products

A& (B⊕ C) ≡ (A& B)⊕ (A& C)

When embedded in (co)presheafs∼= Day convolution

Lemma (folklore observation about dependent Dialectica categories?)
If C is symmetric monoidal and (C&)⊕ has the internal homs A⊸ B
for all A,B ∈ C, then (C&)⊕ is symmetric monoidal closed.

(⊕
u∈U

¯
x∈Xu

Ax

)
⊸
(⊕

v∈V

¯
y∈Yv

By

)
=

¯
u∈U

⊕
v∈V

¯
y∈Yv

⊕
x∈Xu

Ax ⊸ By

12/100

Structure (1): generic remarks (C&)⊕

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

A⊗ (B& C) ≡ (A⊗ B) & (A⊗ C) A⊗ (B⊕ C) ≡ (A⊗ B)⊕ (A⊗ C)

• In particular, (C&)⊕ has distributive cartesian products

A& (B⊕ C) ≡ (A& B)⊕ (A& C)

When embedded in (co)presheafs∼= Day convolution

Lemma (folklore observation about dependent Dialectica categories?)
If C is symmetric monoidal and (C&)⊕ has the internal homs A⊸ B
for all A,B ∈ C, then (C&)⊕ is symmetric monoidal closed.

(⊕
u∈U

¯
x∈Xu

Ax

)
⊸
(⊕

v∈V

¯
y∈Yv

By

)
=

¯
u∈U

⊕
v∈V

¯
y∈Yv

⊕
x∈Xu

Ax ⊸ By

12/100

Structure (2): combinatorics on strings

Lemma
R⊕ has the internal homs A⊸ B for all A,B ∈ R.

The construction appears in the original SST paper [Alur & Černý 2010]
without the categorical vocabulary.X := abXcY

Y := ba
⇝ shape

X := Z1XZ2Y
Y := Z3

+ parameters Z1 = ab, . . .

copyless SST =⇒ finitely many shapes: use as states; registers for parameters

Conclusion
(R&)⊕ is symmetric monoidal closed (and almost affine).

13/100

Structure (2): combinatorics on strings

Lemma
R⊕ has the internal homs A⊸ B for all A,B ∈ R.

The construction appears in the original SST paper [Alur & Černý 2010]
without the categorical vocabulary.X := abXcY

Y := ba
⇝ shape

X := Z1XZ2Y
Y := Z3

+ parameters Z1 = ab, . . .

copyless SST =⇒ finitely many shapes: use as states; registers for parameters

Conclusion
(R&)⊕ is symmetric monoidal closed (and almost affine).

13/100

Conservativity

Lemma
(C&)⊕ automata are equivalent to non-deterministic C⊕ automata.

A uniformization (∼ determinization) theorem is enough to conclude

Conservativity
(R&)⊕-automata are equivalent to standard SSTs.

• Uniformization already known [Alur & Deshmuk 2011]
• Argument implicitly based on monoidal closure!

C0

U C2

C3

C1

V

C4

T

S

C0

C2

C3

C1

C4

D0

D2

D1

D3

D4

Theorem
For any monoidal category C, if C⊕ has all the internal homsets A⊸ B for A,B ∈ C, then (C&)⊕-automata
and C⊕-automata are equivalent.

equivalently: ND C⊕-automata can be uniformized

14/100

Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function ⇐⇒ definable by some t : StrΓ[A]⊸ StrΣ
in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn & P.]

regular tree function ⇐⇒ definable by some t : TreeΓ[A]⊸ TreeΣ
in ILL with A purely linear

Specific ingredients:

• Bottom-up categorical tree automata over SMCs
• A reasonably elegant multicategory of tree registers transitionR

• Generated from the correponding PROP in a principled way (reminiscent from the notion of clone)
• Argument for R-monoidal closure argument generalizes to trees

• Regular functions already known to correspond toR⊕&-automata!

15/100

Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function ⇐⇒ definable by some t : StrΓ[A]⊸ StrΣ
in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn & P.]

regular tree function ⇐⇒ definable by some t : TreeΓ[A]⊸ TreeΣ
in ILL with A purely linear

Specific ingredients:

• Bottom-up categorical tree automata over SMCs
• A reasonably elegant multicategory of tree registers transitionR

• Generated from the correponding PROP in a principled way (reminiscent from the notion of clone)
• Argument for R-monoidal closure argument generalizes to trees

• Regular functions already known to correspond toR⊕&-automata!

15/100

Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function ⇐⇒ definable by some t : StrΓ[A]⊸ StrΣ
in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn & P.]

regular tree function ⇐⇒ definable by some t : TreeΓ[A]⊸ TreeΣ
in ILL with A purely linear

Specific ingredients:

• Bottom-up categorical tree automata over SMCs
• A reasonably elegant multicategory of tree registers transitionR

• Generated from the correponding PROP in a principled way (reminiscent from the notion of clone)
• Argument for R-monoidal closure argument generalizes to trees

• Regular functions already known to correspond toR⊕&-automata!
15/100

Dropping the additives

and commutativity

• Allows GoI-style interpretation in categories of diagrams (∼= Int(FinPartInj))

⇝ Interpretation as two-way automata [Hines 2003]
Define regular languages

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

++ +

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

++

++

++

++

++

++++

++++

++++

++++ 7→
++++++++++++

++++

++++
a

Consequence (not interesting)
Every linear term t : StrΣ[A]⊸ Bool with A→-free defines a regular language.

16/100

Dropping the additives and commutativity

• Allows GoI-style interpretation in categories of planar diagrams
⇝ Interpretation as two-way planar automata [Hines 2003,2006]

Define star-free languages

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

++ +

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

++

++

++

++

++

++++

++++

++++

++++ 7→
++++++++++++

++++

++++
a

Consequence [Nguyễn, P. 2020]
Every planar linear term t : StrΣ[A]⊸ Str with A→-free defines a star-free language.

16/100

Dropping the additives and commutativity

• Allows GoI-style interpretation in categories of planar labelled diagrams
⇝ Interpretation as two-way planar transducers (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

++ +

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

++

++

++

++

++

++++

++++

++++

++++ 7→
++++++++++++

++++

++++

ab

ba a ε

a

a

bbbaa

baa

a

a

aba

bb

ε

a

abbaaabbaaaba

Consequence
Every planar linear term t : StrΣ[A]⊸ Str with A→-free defines a FO-transduction.

16/100

Dropping the additives and commutativity

• Allows GoI-style interpretation in categories of planar labelled diagrams
⇝ Interpretation as two-way planar transducers (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

++ +

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

++

++

++

++

++

++++

++++

++++

++++ 7→
++++++++++++

++++

++++

ab

ba a ε

a

a

bbbaa

baa

a

a

aba

bb

ε

a

abbaaabbaaaba

Consequence
Every planar linear term t : StrΣ[A]⊸ Str with A→-free defines a FO-transduction.

Alas, planar linear terms are much weaker than FO-transductions (preserve Parikh images)

16/100

Dropping the additives and commutativity

• Allows GoI-style interpretation in categories of planar labelled diagrams
⇝ Interpretation as two-way planar transducers (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

++ +

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

++

++

++

++

++

++++

++++

++++

++++ 7→
++++++++++++

++++

++++

ab

ba a ε

a

a

bbbaa

baa

a

a

aba

bb

ε

a

abbaaabbaaaba

Conjecture
Every planar affine term t : StrΣ[A]⊸ Str with A→-free defines a FO-transduction.

The converse holds (main ingredient for the proof: the Krohn-Rhodes theorem)

16/100

Conclusion

What happened here:

• Connections between Church encodings and automata
• Application of categorical semantics (Dialectica, geometry of interaction (GoI))
• A generic uniformization-like construction (C&)⊕ → C⊕ for monoidal C with certain homsets

Some take-aways:

• Important ingredient in uniformization: monoidal closure

• Slick formalization w/o categories (using e.g. transition monoids)?

• Additive connectives are important for trees
• Links between planar GoI, two-way transducers and first-order fragments

• Further links with tree-walking automata?

17/100

Conclusion

What happened here:

• Connections between Church encodings and automata
• Application of categorical semantics (Dialectica, geometry of interaction (GoI))
• A generic uniformization-like construction (C&)⊕ → C⊕ for monoidal C with certain homsets

Some take-aways:

• Important ingredient in uniformization: monoidal closure
• Slick formalization w/o categories (using e.g. transition monoids)?

• Additive connectives are important for trees
• Links between planar GoI, two-way transducers and first-order fragments

• Further links with tree-walking automata?

17/100

Conclusion

What happened here:

• Connections between Church encodings and automata
• Application of categorical semantics (Dialectica, geometry of interaction (GoI))
• A generic uniformization-like construction (C&)⊕ → C⊕ for monoidal C with certain homsets

Some take-aways:

• Important ingredient in uniformization: monoidal closure
• Slick formalization w/o categories (using e.g. transition monoids)?

• Additive connectives are important for trees
• Links between planar GoI, two-way transducers and first-order fragments

• Further links with tree-walking automata?

17/100

Conclusion

Broader picture
StrΣ[A]⊸ Bool with A linear (adapted as needed):

λ-calculus languages status
simply typed regular ✓[Hillebrand & Kanellakis 1996]
linear or affine regular ✓
non-commutative linear or affine star-free ✓

StrΓ[A]⊸ StrΣ with A affine (adapted as needed):
λ-calculus transducers status
linear (without additives) weird (?) ✓(?)
affine regular functions ✓
non-commutative affine first-order regular fn. ✓?
linear/affine with additives regular functions ✓
parsimonious polyregular ??
simply typed variant of CPDA??? ???

+ a characterization of Str[A] → Str as comparison-free polyregular functions
Thanks for listening! Questions?

18/100

Conclusion

Broader picture
StrΣ[A]⊸ Bool with A linear (adapted as needed):

λ-calculus languages status
simply typed regular ✓[Hillebrand & Kanellakis 1996]
linear or affine regular ✓
non-commutative linear or affine star-free ✓

StrΓ[A]⊸ StrΣ with A affine (adapted as needed):
λ-calculus transducers status
linear (without additives) weird (?) ✓(?)
affine regular functions ✓
non-commutative affine first-order regular fn. ✓?
linear/affine with additives regular functions ✓
parsimonious polyregular ??
simply typed variant of CPDA??? ???

+ a characterization of Str[A] → Str as comparison-free polyregular functions

Thanks for listening! Questions?

18/100

Conclusion

Broader picture
StrΣ[A]⊸ Bool with A linear (adapted as needed):

λ-calculus languages status
simply typed regular ✓[Hillebrand & Kanellakis 1996]
linear or affine regular ✓
non-commutative linear or affine star-free ✓

StrΓ[A]⊸ StrΣ with A affine (adapted as needed):
λ-calculus transducers status
linear (without additives) weird (?) ✓(?)
affine regular functions ✓
non-commutative affine first-order regular fn. ✓?
linear/affine with additives regular functions ✓
parsimonious polyregular ??
simply typed variant of CPDA??? ???

+ a characterization of Str[A] → Str as comparison-free polyregular functions
Thanks for listening! Questions?

18/100

A category of planar diagrams

• Interpret purely linear non-commutative λ-terms in a monoidal closed category
• We consider a non-commutative refinement of Geometry of Interaction

(well-known model of linear logic)

A compact closed category of planar diagrams

• Objects: words in {+,−}∗

• Morphisms u→ v : graphs over |u|+ |v| with
• degree ≤ 1 for every node
• polarity restrictions
• planarity restriction

+

−
+

+

+

−
−

+

+

−
−

+

−
+

To compute the composition of two morphisms, follow the paths (and forget the middle component)

+

+

−

−

+

+

+

+

+

−

+

+

+

−−

+

+

−

+

+

+

−

+

++

++7→

Compact-closure and interpretation of the λ-calculus

Structure to interpret the linear λ-calculus
• Monoidal product A⊗ B given by concatenation
• Duals A∗: reverse and flip polarities
• Monoidal closure by setting A⊸ B = A∗ ⊗ B
• Interpretation of types JAK by induction with JoK = +

(injective interpretation of booleans)

+

+

−

+

+

+
+

−−

−− ++⊗ =

−

++

−−

++

  = −−−

−−−

*

++

−−

ExamplesJ((o⊸ o)⊸ o⊸ o)⊸ ((o⊸ o)⊸ o)⊸ oK = −++−−−++

Jλf.λg. f (λx. x) (g (λx. x))K =

−− ++ ++ −− −− −− ++ ++

Aperiodicity

To conclude, we need to show that every (Hom(A,A), ◦) is finite and aperiodic for every A

−

−

++

++

−

−

++

++

−++

++

++

−++

++

−

−

++

++

−++

−−

−

++

++

Therefore: planar =⇒ H-trivial

R-class determined by:

the internal wiring on the left

+

positions of the input nodes

R-class determined by:

the internal wiring on the left

+

positions of the input nodes

• More elementary proofs w/o Green relations possible (e.g. order+Kleene's theorem)

• Planarity restriction is essential (consider
+

−

+

−

+

−

+

−++ ++)

Aperiodicity

To conclude, we need to show that every (Hom(A,A), ◦) is finite and aperiodic for every A

−

−

++

++

−

−

++

++

−++

++

++

−++

++

−

−

++

++

−++

−−

−

++

++

Therefore: planar =⇒ H-trivial

R-class determined by:

the internal wiring on the left

+

positions of the input nodes

R-class determined by:

the internal wiring on the left

+

positions of the input nodes

• More elementary proofs w/o Green relations possible (e.g. order+Kleene's theorem)

• Planarity restriction is essential (consider
+

−

+

−

+

−

+

−++ ++)

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

++ +

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

++

++

++

++

++

++++

++++

++++

++++ 7→
++++++++++++

++++

++++

• Transition functions δ : Σ→ Hom(Q,Q) for some object Q Q ≈ set of directed states

• (actually, should also incorporate boundary morphisms Hom(+,Q) and Hom(Q, F))

• Planarity restriction⇒ the transition flow monoid is aperiodic
• (links between GoI and planar 2DFAs already considered by (Hines 2003))

Theorem
Star-free languages are exactly those recognized by planar 2DFAs.

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

++ +

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

++

++

++

++

++

++++

++++

++++

++++ 7→
++++++++++++

++++

++++

• Transition functions δ : Σ→ Hom(Q,Q) for some object Q Q ≈ set of directed states

• (actually, should also incorporate boundary morphisms Hom(+,Q) and Hom(Q, F))
• Planarity restriction⇒ the transition flow monoid is aperiodic
• (links between GoI and planar 2DFAs already considered by (Hines 2003))

Theorem
Star-free languages are exactly those recognized by planar 2DFAs.

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

++ +

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

++

++

++

++

++

++++

++++

++++

++++ 7→
++++++++++++

++++

++++

• Transition functions δ : Σ→ Hom(Q,Q) for some object Q Q ≈ set of directed states

• (actually, should also incorporate boundary morphisms Hom(+,Q) and Hom(Q, F))
• Planarity restriction⇒ the transition flow monoid is aperiodic
• (links between GoI and planar 2DFAs already considered by (Hines 2003))

Theorem
Star-free languages are exactly those recognized by planar 2DFAs.

More generally: first-order transductions

Consider a richer category of diagrams where edges are labelled by output words
(labels of compositions given by concatenation)

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

++ +

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

+

+

−

+

+

−

+

−

+

−

++

++

++

++

++

++++

++++

++++

++++ 7→
++++++++++++

++++

++++

ab

ba a ε

a

a

bbbaa

baa

a

a

aba

bb

ε

a

abbaaabbaaaba

Much like before, corresponding notion of (planar) 2DFTs.

Theorem
First-order transduction (FO regular functions) are those computed by reversible planar 2DFTs.

• 2DFTs with aperiodic transition monoid = FO regular functions [Carton&Dartois 2015]
(hence reversible planar 2DFTs⊆ FO-transductions)

• FO transduction ⊆ reversible planar 2DFTs: closure by composition and Krohn--Rhodes
(see http://nguyentito.eu/2021-01-links.pdf)

http://nguyentito.eu/2021-01-links.pdf

