
Beth-like definability results,

proof-theoretically

Cécilia Pradic (Swansea University)

j.w.w. Michael Benedikt (Oxford University)

Christoph Wernhard (Postdam University)

September 13th 2024, Proof society workshop

1 / 37

Beth definability theorem

Beth definability

Let φ(R) be an FO formula over Σ ⊎ {R}

If φ(R) implicitly defines R, that is

φ(R) ∧ φ(R′) =⇒ ∀x⃗. R(x⃗) ⇐⇒ R′(x⃗)

then there is a corresponding explicit FO definition for R.

That is, we have an FO formula ψ(x⃗) over Σ such that

φ(R) =⇒ ∀x⃗. R(x⃗) ⇐⇒ ψ(x⃗)

• Model-theoretic proof using amalgamation

• Proof-theoretic effective proof using interpolation

2 / 37

Beth definability theorem

Beth definability

Let φ(R) be an FO formula over Σ ⊎ {R}

If φ(R) implicitly defines R, that is

φ(R) ∧ φ(R′) =⇒ ∀x⃗. R(x⃗) ⇐⇒ R′(x⃗)

then there is a corresponding explicit FO definition for R.

That is, we have an FO formula ψ(x⃗) over Σ such that

φ(R) =⇒ ∀x⃗. R(x⃗) ⇐⇒ ψ(x⃗)

• Model-theoretic proof using amalgamation

• Proof-theoretic effective proof using interpolation

2 / 37

Craig interpolation

ϕ(c, l) ψ(c, r)

θ(c)

∃

cl r

Craig interpolation

If φ⇒ ψ, there exists θ such that

φ⇒ θ and θ ⇒ ψ

Further, θ mentions only variables/relation

symbols common to φ and ψ.

• Robust result

∆0, intuitionistic/linear logic. . .

• An actual factorization of proofs

[Čubrić 94, Saurin 24]

• computable in O(n) from cut-free proofs

3 / 37

Craig interpolation

ϕ(c, l) ψ(c, r)

θ(c)

∃

cl r

Craig interpolation

If φ⇒ ψ, there exists θ such that

φ⇒ θ and θ ⇒ ψ

Further, θ mentions only variables/relation

symbols common to φ and ψ.

• Robust result

∆0, intuitionistic/linear logic. . .

• An actual factorization of proofs

[Čubrić 94, Saurin 24]

• computable in O(n) from cut-free proofs

3 / 37

Craig interpolation

ϕ(c, l) ψ(c, r)

θ(c)

∃

cl r

Craig interpolation

If φ⇒ ψ, there exists θ such that

φ⇒ θ and θ ⇒ ψ

Further, θ mentions only variables/relation

symbols common to φ and ψ.

• Robust result

∆0, intuitionistic/linear logic. . .

• An actual factorization of proofs

[Čubrić 94, Saurin 24]

• computable in O(n) from cut-free proofs

3 / 37

Beth definability from interpolation

Fix an implicit definition φ(R).

Since φ(R) determines R, we have

φ(R) ∧ φ(R′) =⇒ ∀x⃗. R(x⃗) ⇐⇒ R′(x⃗)

which implies that we have a proof of

φ(R) ∧R(x⃗) ⊢ φ(R′) =⇒ R′(x⃗)

Applying interpolation we get θ(x⃗) that defines R since we have

φ(R) ∧R(x⃗) ⊢ θ(x⃗) and θ(x⃗) ∧ φ(R) ⊢ R(x⃗)

4 / 37

Application to database theory

FO formulas ψ(x⃗) can be regarded as queries

• regard a relation as a table of elements

• ψ(x⃗) returns a new table

Specification Implementation

Implicit definition Explicit definition

Correspondence with (a fragment of) SQL

Restrict that to bounded quantifications.

5 / 37

Plan of the talk

Our work

Extending this to the nested relational model.

• Led us to known definability results. . .

• . . . but what about effectivity (and efficiency)?

Plan

1. The setting of nested set

2. Extraction of nested definition

3. Effective relative rigid categoricity?

6 / 37

The nested relational model, logic

and NRC

The nested relational model

We work with typed objects

Types for nested collections

T,U ::= U | Set(T) | 1 | T × U

Obvious semantics JT K determined inductively by JUK.

Examples

Taking JUK = string, we have

{(“seagull”, “gwylan”), (“goats”, “geifr”), . . .}
∈ JSet(U× U)K

{({“shwmae”, “helo”}, {“hi”}), . . .}
∈ JSet(Set(U)× Set(U))K

((), ∅, “4”, {“1”, “3”})
∈ J1× Set(Set(1))× U× Set(U)K

Usual relational model: only tuples of relations (sets of tuples)

7 / 37

The nested relational model

We work with typed objects

Types for nested collections

T,U ::= U | Set(T) | 1 | T × U

Obvious semantics JT K determined inductively by JUK.

Examples

Taking JUK = string, we have

{(“seagull”, “gwylan”), (“goats”, “geifr”), . . .}
∈ JSet(U× U)K

{({“shwmae”, “helo”}, {“hi”}), . . .}
∈ JSet(Set(U)× Set(U))K

((), ∅, “4”, {“1”, “3”})
∈ J1× Set(Set(1))× U× Set(U)K

Usual relational model: only tuples of relations (sets of tuples)
7 / 37

Nested collection transformations

Types for nested collections

T,U ::= U | Set(T) | 1 | T × U

A transformation of nested sets is a function T → U

→ is not part of the type system

A transformation of flat relations

Pre-image of a relation R

fib : Set(U)× Set(U× U) → Set(U)

(A,R) 7→ R−1(A) = {x | ∃y ∈ A.(x, y) ∈ R}

8 / 37

Nested collection transformations

Types for nested collections

T,U ::= U | Set(T) | 1 | T × U

Transformations of nested collections

Collect all pre-images of individual elements

fibs : Set(U× U) → Set(U× Set(U))

R 7→ {(a, fib({a}, R)) | a ∈ cod(R)}

Collect all susbsets of the input

P : Set(U) → Set(Set(U))

X 7→ {y | y ⊆ X}

Note: P is computationally hard on finite instances

9 / 37

Logical specfications

Queries can be specified in multi-sorted first-order logic:

• variables explicitly typed x : T

• basic predicates x ∈T z and x =T y x, y : T and z : Set(T)

• terms for tupling and projections

e.g., π1(((x, z), ()), x)) : (T × Set(T))× 1

Consider formulas with only bounded quantifications

∆0 formulas

φ,ψ ::= t =T u | t ∈T u | ∀x ∈ t φ | φ ∧ ψ | ¬φ

10 / 37

Logical specfications

Queries can be specified in multi-sorted first-order logic:

• variables explicitly typed x : T

• basic predicates x ∈T z and x =T y x, y : T and z : Set(T)

• terms for tupling and projections

e.g., π1(((x, z), ()), x)) : (T × Set(T))× 1

Consider formulas with only bounded quantifications

∆0 formulas

φ,ψ ::= t =T u | t ∈T u | ∀x ∈ t φ | φ ∧ ψ | ¬φ

10 / 37

Examples

∆0 formulas

φ,ψ ::= t =T u | t ∈T u | ∀x ∈ t φ | φ ∧ ψ | ¬φ

φfib(A,R,X) for X = R−1(A)

• Every x ∈ X is related to some a ∈ A

∀x ∈ X.∃a ∈ A. (x, a) ∈ R

• For every (x, y) ∈ R, if y ∈ A, then x ∈ X

∀p ∈ R. π2(p) ∈ A⇒ π1(p) ∈ X

φfibs(R,O) for O = {(a,R−1({a})) | a ∈ cod(R)}

• For every (x, a) ∈ R, there is some (a,X) ∈ O s.t. x ∈ X

∀p ∈ R.∃q ∈ O. π1(p) ∈ π2(O)

• Every element of (a,X) ∈ O satisfies φfib({a}, R,X)

∀q ∈ O.
∀x ∈ π2(q).(x, π1(q)) ∈ R∧
∀p ∈ R. π2(p) = π1(q) ⇒ π1(p) ∈ π2(q)

11 / 37

Examples

∆0 formulas

φ,ψ ::= t =T u | t ∈T u | ∀x ∈ t φ | φ ∧ ψ | ¬φ

φfib(A,R,X) for X = R−1(A)

• Every x ∈ X is related to some a ∈ A

∀x ∈ X.∃a ∈ A. (x, a) ∈ R

• For every (x, y) ∈ R, if y ∈ A, then x ∈ X

∀p ∈ R. π2(p) ∈ A⇒ π1(p) ∈ X

φfibs(R,O) for O = {(a,R−1({a})) | a ∈ cod(R)}

• For every (x, a) ∈ R, there is some (a,X) ∈ O s.t. x ∈ X

∀p ∈ R.∃q ∈ O. π1(p) ∈ π2(O)

• Every element of (a,X) ∈ O satisfies φfib({a}, R,X)

∀q ∈ O.
∀x ∈ π2(q).(x, π1(q)) ∈ R∧
∀p ∈ R. π2(p) = π1(q) ⇒ π1(p) ∈ π2(q)

11 / 37

Examples

∆0 formulas

φ,ψ ::= t =T u | t ∈T u | ∀x ∈ t φ | φ ∧ ψ | ¬φ

φfib(A,R,X) for X = R−1(A)

• Every x ∈ X is related to some a ∈ A

∀x ∈ X.∃a ∈ A. (x, a) ∈ R

• For every (x, y) ∈ R, if y ∈ A, then x ∈ X

∀p ∈ R. π2(p) ∈ A⇒ π1(p) ∈ X

φfibs(R,O) for O = {(a,R−1({a})) | a ∈ cod(R)}

• For every (x, a) ∈ R, there is some (a,X) ∈ O s.t. x ∈ X

∀p ∈ R.∃q ∈ O. π1(p) ∈ π2(O)

• Every element of (a,X) ∈ O satisfies φfib({a}, R,X)

∀q ∈ O.
∀x ∈ π2(q).(x, π1(q)) ∈ R∧
∀p ∈ R. π2(p) = π1(q) ⇒ π1(p) ∈ π2(q)

11 / 37

Explicit definitions: the nested relational calculus (NRC)

+ Get

Usual terms and rules for variables, tupling, projections plus

the following set operators:

Γ ⊢ e : T

Γ ⊢ {e} : Set(T)

Γ ⊢ e1 : Set(T1) Γ, x : T1 ⊢ e2 : Set(T2)

Γ ⊢
⋃

{e2 | x ∈ e1} : Set(T2)

Γ ⊢ ∅T : Set(T)

Γ ⊢ e1 : Set(T) Γ ⊢ e2 : Set(T)

Γ ⊢ e1 ∪ e2 : Set(T)

Γ ⊢ e1 : Set(T) Γ ⊢ e2 : Set(T)

Γ ⊢ e1 \ e2 : Set(T)

Γ ⊢ e : Set(T)

Γ ⊢ Get(e) : T

12 / 37

Explicit definitions: the nested relational calculus (NRC)

+ Get

Usual terms and rules for variables, tupling, projections plus

the following set operators:

Γ ⊢ e : T

Γ ⊢ {e} : Set(T)

Γ ⊢ e1 : Set(T1) Γ, x : T1 ⊢ e2 : Set(T2)

Γ ⊢
⋃

{e2 | x ∈ e1} : Set(T2)

Γ ⊢ ∅T : Set(T)

Γ ⊢ e1 : Set(T) Γ ⊢ e2 : Set(T)

Γ ⊢ e1 ∪ e2 : Set(T)

Γ ⊢ e1 : Set(T) Γ ⊢ e2 : Set(T)

Γ ⊢ e1 \ e2 : Set(T)

Γ ⊢ e : Set(T)

Γ ⊢ Get(e) : T

12 / 37

Expressiveness of NRC

Our running examples

• (A,R) 7→
⋃
{case(π2(p) ∈U A, {π1(p)}, ∅) | p ∈ R}

• R 7→
⋃
{{fib(x,R)} | x ∈ {π1(p) | p ∈ R}}

Derivable constructs:

• maps {e1(x) | x ∈ e2}
• at type-level, Bool := Set(1)

• basic predicates =T : T × T → Bool, ∈T : T × Set(T) → Bool

• case analyses

• ∆0-separation {x ∈ e | φ(x)}

Proposition

NRC terms e : T → Bool correspond to ∆0 formulas φ(xT)

13 / 37

Expressiveness of NRC

Our running examples

• (A,R) 7→
⋃
{case(π2(p) ∈U A, {π1(p)}, ∅) | p ∈ R}

• R 7→
⋃
{{fib(x,R)} | x ∈ {π1(p) | p ∈ R}}

Derivable constructs:

• maps {e1(x) | x ∈ e2}
• at type-level, Bool := Set(1)

• basic predicates =T : T × T → Bool, ∈T : T × Set(T) → Bool

• case analyses

• ∆0-separation {x ∈ e | φ(x)}

Proposition

NRC terms e : T → Bool correspond to ∆0 formulas φ(xT)

13 / 37

Limits to the expressiveness of NRC

For practical purposes, NRC is not too expressive

• NRC is conservative over idealized SQL i.e., for flat queries

• queries polytime computable (over finite inputs)

Consequences

• rules out x 7→ P(x)

• cannot represent function spaces with Set(−)

Consider (x, y) 7→ tt

[T → Set(U)] ̸≃ [T × U → Bool]

[T → Set(U)] ↪→ [T × U → Bool]

(For the rest of the talk: no finiteness assumptions)

14 / 37

Extraction from ∆0 specifications

Effective extraction

Recall that φ(i, o) is an implicit definition when it is functional:

φ(i, o) ∧ φ(i, o′) =⇒ o = o′

Extraction from ∆0 implicit definitions

For every such φ(i, o), there is a compatible NRC term e(i)

φ(i, o) =⇒ o = e(i)

e(i) polytime computable from a focused proof

• Extension of Beth definability for flat queries

Set(Uk)× . . .× Set(Um) → Set(Un)

• Remark: a non-effective proof would still yield an algorithm

• Can be proven elementarily

• Alternatively, this can be reduced to a Π0
2 statement

15 / 37

Effective extraction

Recall that φ(i, o) is an implicit definition when it is functional:

φ(i, o) ∧ φ(i, o′) =⇒ o = o′

Extraction from ∆0 implicit definitions

For every such φ(i, o), there is a compatible NRC term e(i)

φ(i, o) =⇒ o = e(i)

e(i) polytime computable from a focused proof

• Extension of Beth definability for flat queries

Set(Uk)× . . .× Set(Um) → Set(Un)

• Remark: a non-effective proof would still yield an algorithm

• Can be proven elementarily

• Alternatively, this can be reduced to a Π0
2 statement

15 / 37

Effective extraction

Recall that φ(i, o) is an implicit definition when it is functional:

φ(i, o) ∧ φ(i, o′) =⇒ o = o′

Extraction from ∆0 implicit definitions

For every such φ(i, o), there is a compatible NRC term e(i)

φ(i, o) =⇒ o = e(i)

e(i) polytime computable from a focused proof

• Extension of Beth definability for flat queries

Set(Uk)× . . .× Set(Um) → Set(Un)

• Remark: a non-effective proof would still yield an algorithm

• Can be proven elementarily

• Alternatively, this can be reduced to a Π0
2 statement

15 / 37

Effective extraction

Recall that φ(i, o) is an implicit definition when it is functional:

φ(i, o) ∧ φ(i, o′) =⇒ o = o′

Extraction from ∆0 implicit definitions

For every such φ(i, o), there is a compatible NRC term e(i)

φ(i, o) =⇒ o = e(i)

e(i) polytime computable from a focused proof

• Extension of Beth definability for flat queries

Set(Uk)× . . .× Set(Um) → Set(Un)

• Remark: a non-effective proof would still yield an algorithm

• Can be proven elementarily

• Alternatively, this can be reduced to a Π0
2 statement

15 / 37

Brief aside on focusing

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea

Decompose proofs by forcing saturations by certain rules in

positive and negative phases. Roughly:

• Negative: apply invertible rules as much as possible

• Positive: focus on a single formula until it turns negative.

Complexity-wise (to the best of my knowledge)

A cut-free proof can be turned into a focused cut-free proof in

exponential time.

16 / 37

Brief aside on focusing

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea

Decompose proofs by forcing saturations by certain rules in

positive and negative phases. Roughly:

• Negative: apply invertible rules as much as possible

• Positive: focus on a single formula until it turns negative.

Complexity-wise (to the best of my knowledge)

A cut-free proof can be turned into a focused cut-free proof in

exponential time.

16 / 37

Toward a proof system for nested sets

Wlog, we restrict to the following syntax

t, u ::= x | (t, u) | π1(t) | π2(t) | ()
φ,ψ ::= t =U u | t ̸=U u | ∃x ∈T t φ | ∀x ∈T t φ | φ ∧ ψ | φ ∨ ψ

Macros

t ∈T u := ∃x ∈ u. t =T u

t ⊆T u := ∀x ∈ t. x ∈T u

t =Set(T) u := t ⊆T u ∧ u ⊆T t

t =T×U u := π1(t) =T π1(u) ∧ π2(t) =U π2(u)

t =1 u := ⊤

• Bakes the axiom of extensionality in the definition of =T

• No further non-equational axioms

• For the rest of the talk: we use sequent calculus

17 / 37

Toward a proof system for nested sets

Wlog, we restrict to the following syntax

t, u ::= x | (t, u) | π1(t) | π2(t) | ()
φ,ψ ::= t =U u | t ̸=U u | ∃x ∈T t φ | ∀x ∈T t φ | φ ∧ ψ | φ ∨ ψ

Macros

t ∈T u := ∃x ∈ u. t =T u

t ⊆T u := ∀x ∈ t. x ∈T u

t =Set(T) u := t ⊆T u ∧ u ⊆T t

t =T×U u := π1(t) =T π1(u) ∧ π2(t) =U π2(u)

t =1 u := ⊤

• Bakes the axiom of extensionality in the definition of =T

• No further non-equational axioms

• For the rest of the talk: we use sequent calculus

17 / 37

Toward a proof system for nested sets

Wlog, we restrict to the following syntax

t, u ::= x | (t, u) | π1(t) | π2(t) | ()
φ,ψ ::= t =U u | t ̸=U u | ∃x ∈T t φ | ∀x ∈T t φ | φ ∧ ψ | φ ∨ ψ

Macros

t ∈T u := ∃x ∈ u. t =T u

t ⊆T u := ∀x ∈ t. x ∈T u

t =Set(T) u := t ⊆T u ∧ u ⊆T t

t =T×U u := π1(t) =T π1(u) ∧ π2(t) =U π2(u)

t =1 u := ⊤

• Bakes the axiom of extensionality in the definition of =T

• No further non-equational axioms

• For the rest of the talk: we use sequent calculus
17 / 37

Formal proofs of functionality

Certificate that φ(i, o) is an implicit definition: a derivation

·; φ(i, o), φ(i, o′) ⊢ o = o′

Problem: what inductive invariant?
18 / 37

The intuitionistic case

l ⊆ e(c) ⊆ r

cl r

Γ(c, l), ∆(c, r) ` l ⊆ r

∃ e.

Input: Γ(c, l),∆(c, r) ⊢ ψ, cut-free
Output: a NRC term e(c) s.t.

Key lemma

• if ψ is l = r, then

Γ,∆ |= l = e ∧ r = e

• if ψ is l ⊆ r, then

Γ,∆ |= l ⊆ e ∧ e ⊆ r

• if ψ is l ∈ r, then

Γ,∆ |= l ∈ e

Why this is easy: single RHS formula, subformula of =T .

19 / 37

The intuitionistic case

l ⊆ e(c) ⊆ r

cl r

Γ(c, l), ∆(c, r) ` l ⊆ r

∃ e.

Input: Γ(c, l),∆(c, r) ⊢ ψ, cut-free
Output: a NRC term e(c) s.t.

Key lemma

• if ψ is l = r, then

Γ,∆ |= l = e ∧ r = e

• if ψ is l ⊆ r, then

Γ,∆ |= l ⊆ e ∧ e ⊆ r

• if ψ is l ∈ r, then

Γ,∆ |= l ∈ e

Why this is easy: single RHS formula, subformula of =T .

19 / 37

Proof idea

Let us look at the key step that involves interpolation.

Γ, z ∈T l,∆ ⊢ z ∈T r

Γ,∆ ⊢ l ⊆T r
7−→ Γ, z ∈T l,∆ |= z ∈T e

IH

Γ,∆ |= l ⊆T e ∧ e ⊆T r

Assuming a ∆0 interpolant θ(z) such that

Γ ∧ z ∈T l |= θ(z) and θ(z) |= ∆ ⇒ z ∈T r

we can set e := {x ∈ eIH | θ(z)}

Other key cases in a hurry

∪ for ∨-L,
⋃

for ∀-L, {−} for ∃-R

20 / 37

Proof idea

Let us look at the key step that involves interpolation.

Γ, z ∈T l,∆ ⊢ z ∈T r

Γ,∆ ⊢ l ⊆T r
7−→ Γ, z ∈T l,∆ |= z ∈T e

IH

Γ,∆ |= l ⊆T e ∧ e ⊆T r

Assuming a ∆0 interpolant θ(z) such that

Γ ∧ z ∈T l |= θ(z) and θ(z) |= ∆ ⇒ z ∈T r

we can set e := {x ∈ eIH | θ(z)}

Other key cases in a hurry

∪ for ∨-L,
⋃

for ∀-L, {−} for ∃-R

20 / 37

Proof idea

Let us look at the key step that involves interpolation.

Γ, z ∈T l,∆ ⊢ z ∈T r

Γ,∆ ⊢ l ⊆T r
7−→ Γ, z ∈T l,∆ |= z ∈T e

IH

Γ,∆ |= l ⊆T e ∧ e ⊆T r

Assuming a ∆0 interpolant θ(z) such that

Γ ∧ z ∈T l |= θ(z) and θ(z) |= ∆ ⇒ z ∈T r

we can set e := {x ∈ eIH | θ(z)}

Other key cases in a hurry

∪ for ∨-L,
⋃

for ∀-L, {−} for ∃-R

20 / 37

The classical case

Difficulty: with classical logic, we can contract the goal formula

Reduction to the ∈ case

From a proof Γ,∆ ⊢ ∃x ∈+ r. l = x, compute a NRC term e

such that l ∈ e

• Weaker than definability: set of possible solutions

• Proven by outer induction on the type structure

• Set-case by modifying the input proof to

∃x ∈Set(T) .∀c ∈ a. c ∈ l ⇔ c ∈ x (fresh a)

and then applying interpolation

21 / 37

The classical case

Difficulty: with classical logic, we can contract the goal formula

Reduction to the ∈ case

From a proof Γ,∆ ⊢ ∃x ∈+ r. l = x, compute a NRC term e

such that l ∈ e

• Weaker than definability: set of possible solutions

• Proven by outer induction on the type structure

• Set-case by modifying the input proof to

∃x ∈Set(T) .∀c ∈ a. c ∈ l ⇔ c ∈ x (fresh a)

and then applying interpolation

21 / 37

The classical case

Difficulty: with classical logic, we can contract the goal formula

Reduction to the ∈ case

From a proof Γ,∆ ⊢ ∃x ∈+ r. l = x, compute a NRC term e

such that l ∈ e

• Weaker than definability: set of possible solutions

• Proven by outer induction on the type structure

• Set-case by modifying the input proof to

∃x ∈Set(T) .∀c ∈ a. c ∈ l ⇔ c ∈ x (fresh a)

and then applying interpolation

21 / 37

Parameterized definability, FO(=) version

Working with multisorted FO, no function symbols, signatures

L, R and C ⊆ L ∩R. (and C “has a sort with ≥ 2 elements”)

Theorem

If we have a focused derivation of

Γ,∆ ⊢ ∃r.∀c. λ(c) ⇐⇒ ρ(r, c)

then we can compute in linear time a ψ(p⃗, c) over C such that

Γ,∆ |= ∃p⃗.∀c. λ(c) ⇐⇒ ψ(p⃗, c)

Call ψ a parameterized definition for λ.

22 / 37

Relation to Beth definability/vague examples (1/2)

Reminder of what is the theorem

Γ,∆ ⊢ ∃r.∀c. λ(c) ⇐⇒ ρ(r, c)

ψ such that Γ,∆ |= ∃p⃗.∀c. λ(c) ⇐⇒ ψ(p⃗, c)

(Not useful) ways to instantiate the hypotheses:

• Trivial ∃r.: same premise as in Beth definability

• One generalization φ(R) defines finitely many Rs, then we

have a parameterized definition of R

• Throw in a finite sort n to index finitely many distinct Ri

with φ(Ri) for all i and φ(R)

• (Kueker already gave a proof-theoretic method)

23 / 37

Relation to Beth definability/vague examples (2/2)

Reminder of what is the theorem

Γ,∆ ⊢ ∃r.∀c. λ(c) ⇐⇒ ρ(r, c)

ψ such that Γ,∆ |= ∃p⃗.∀c. λ(c) ⇐⇒ ψ(p⃗, c)

An instantiation (of questionable utility?):

• Fix a FO formula φ(P) over a signature Σ ⊎ {P}
• Call CA the theory of comprehension over Σ

• If we have

φ(P),CA ⊢ ∃X. ∀x. P (x) ⇔ x ∈ X

then P is parametrically FO-definable over Σ.

• Can be derived from a theorem of Chang & Makkai

24 / 37

Relation to Beth definability/vague examples (2/2)

Reminder of what is the theorem

Γ,∆ ⊢ ∃r.∀c. λ(c) ⇐⇒ ρ(r, c)

ψ such that Γ,∆ |= ∃p⃗.∀c. λ(c) ⇐⇒ ψ(p⃗, c)

An instantiation (of questionable utility?):

• Fix a FO formula φ(P) over a signature Σ ⊎ {P}
• Call CA the theory of comprehension over Σ

• If we have

φ(P),CA ⊢ ∃X. ∀x. P (x) ⇔ x ∈ X

then P is parametrically FO-definable over Σ.

• Can be derived from a theorem of Chang & Makkai

24 / 37

Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)

Let T be a theory over Σ ⊎ {P}. TFAE:

• P is parametrically FO-definable over Σ (in T)

• for every model (M, . . . , P) of T there are at most |M |
many valid alternatives for P

(i.e. P ′ ⊆ M such that (M, . . . , P ′) is also a model of T)

Proof: via saturated models

(equivalent condition: there exists a saturated model. . .)

Question

Can we give a satisfactory effective counterpart to this?

25 / 37

Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)

Let T be a theory over Σ ⊎ {P}. TFAE:

• P is parametrically FO-definable over Σ (in T)

• for every model (M, . . . , P) of T there are at most |M |
many valid alternatives for P

(i.e. P ′ ⊆ M such that (M, . . . , P ′) is also a model of T)

Proof: via saturated models

(equivalent condition: there exists a saturated model. . .)

Question

Can we give a satisfactory effective counterpart to this?

25 / 37

Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)

Let T be a theory over Σ ⊎ {P}. TFAE:

• P is parametrically FO-definable over Σ (in T)

• for every model (M, . . . , P) of T there are at most |M |
many valid alternatives for P

(i.e. P ′ ⊆ M such that (M, . . . , P ′) is also a model of T)

Proof: via saturated models

(equivalent condition: there exists a saturated model. . .)

Question

Can we give a satisfactory effective counterpart to this?

25 / 37

Back to our nested relations business

Adaptation in our setting with ∆0 set-theoretic formulas

(sadly not derived as a corollary)

Theorem

If we have a focused derivation

Γ(⃗i, . . .),∆(⃗i, r, . . .) ⊢ ∃r′ ∈ r.∀x ∈ a. λ(x, . . .) ⇐⇒ ρ(r′, . . ., x)

then we have in linear time a NRC term E(⃗i) such that

Γ(⃗i, . . .),∆(⃗i, r, . . .) |= a ∩ λ ∈ E(⃗i)

Proof: induction; we need also to compute a θ(⃗i) such that

∆(⃗i, r, . . .) |= θ(⃗i) and Γ(⃗i, . . .), θ(⃗i) |= a ∩ λ ∈ E(⃗i)

26 / 37

Key step: existential rule introducing the “main” formula

With G = ∃r′ ∈+ r.∀z ∈ c. λ(z) ⇐⇒ ρ(z, r′)

ΘL,ΘR, x ∈ c ⊢ ∆L,∆R,¬ρ(x,w), λ(x),G
∨

ΘL,ΘR, x ∈ c ⊢ ∆L,∆R, ρ(x,w) ⇒ λ(x),G
...

∧
ΘL,ΘR, x ∈ c ⊢ ∆L,∆R, λ(x) ⇔ ρ(x,w),G

∀
ΘL,ΘR ⊢ ∆L,∆R,∀z ∈ c. (λ(z) ⇔ ρ(z, w)),G

∃+
ΘL,ΘR ⊢ ∆L,∆R,G

• Shape around the root of the tree guaranteed by focusing

• Applying the induction hypothesis we have

ΘL, x ∈ c |= λ(x),∆L, θ
IH
1 ∨ Λ ∈ EIH

1

ΘR |= ¬ρ(x,w),∆R,¬θIH1
. . .

• Take θ := ∃x ∈ c. θIH1 ∧ θIH2 and

E :=
{{

x ∈ c | θIH2
}}

∪
⋃{

EIH
1 ∪ EIH

2 | x ∈ c
}

27 / 37

What have we not learned?

Extraction from ∆0 implicit definitions

For every such φ(i, o), there is a compatible NRC term e(i)

φ(i, o) =⇒ o = e(i)

e(i) polytime computable from a focused proof

• The intuitionistic case is much easier

Conservativity for implicit definitions

If ϕ(i, o) is functional, then there is a formula χ(x⃗) such that

the conjoined formula ϕ¬¬(i, o) ∧ ∀x⃗. χ(x⃗) ∨ ¬χ(x⃗) can be

proved to be functional in intuitionistic logic.

• (but finding χ has no reason being easy!)

• W/o the complexity bound: easier proof via model theory

28 / 37

What have we not learned?

Extraction from ∆0 implicit definitions

For every such φ(i, o), there is a compatible NRC term e(i)

φ(i, o) =⇒ o = e(i)

e(i) polytime computable from a focused proof

• The intuitionistic case is much easier

Conservativity for implicit definitions

If ϕ(i, o) is functional, then there is a formula χ(x⃗) such that

the conjoined formula ϕ¬¬(i, o) ∧ ∀x⃗. χ(x⃗) ∨ ¬χ(x⃗) can be

proved to be functional in intuitionistic logic.

• (but finding χ has no reason being easy!)

• W/o the complexity bound: easier proof via model theory

28 / 37

Model-theory route

Nested collections can be regarded as multi-sorted structures

An object X of sort Set(U× Set(U))

Sorts: U, Set(U),U× Set(U)

Function symbols: π1, π2, ⟨−,−⟩
Relation symbol: ∈U

Semantics: subobjects of X

Interpretations: maps Models → Models via FO formulas

Can express

• product, disjoint union of structures M,N 7→ M×N,M+N

• definable substructures and quotients

NRC and interpretations

For structures corresponding to nested collections,

NRC and ∆0-interpretations coincide

29 / 37

Model-theory route

Nested collections can be regarded as multi-sorted structures

An object X of sort Set(U× Set(U))

Sorts: U, Set(U),U× Set(U)

Function symbols: π1, π2, ⟨−,−⟩
Relation symbol: ∈U

Semantics: subobjects of X

Interpretations: maps Models → Models via FO formulas

Can express

• product, disjoint union of structures M,N 7→ M×N,M+N

• definable substructures and quotients

NRC and interpretations

For structures corresponding to nested collections,

NRC and ∆0-interpretations coincide

29 / 37

Model-theory route

Nested collections can be regarded as multi-sorted structures

An object X of sort Set(U× Set(U))

Sorts: U, Set(U),U× Set(U)

Function symbols: π1, π2, ⟨−,−⟩
Relation symbol: ∈U

Semantics: subobjects of X

Interpretations: maps Models → Models via FO formulas

Can express

• product, disjoint union of structures M,N 7→ M×N,M+N

• definable substructures and quotients

NRC and interpretations

For structures corresponding to nested collections,

NRC and ∆0-interpretations coincide

29 / 37

Model-theory route

Nested collections can be regarded as multi-sorted structures

An object X of sort Set(U× Set(U))

Sorts: U, Set(U),U× Set(U)

Function symbols: π1, π2, ⟨−,−⟩
Relation symbol: ∈U

Semantics: subobjects of X

Interpretations: maps Models → Models via FO formulas

Can express

• product, disjoint union of structures M,N 7→ M×N,M+N

• definable substructures and quotients

NRC and interpretations

For structures corresponding to nested collections,

NRC and ∆0-interpretations coincide
29 / 37

The key model-theoretic lemma

Consider models of a theory T over two sorts τ and σ

Multi-sorted implicit definability

σ is implicitly definable from τ when every f : M
∣∣
τ
∼= M′∣∣

τ

has a unique extension f̂ : M ∼= M′

τ τ

σ σ

∼

∼
M M′

Lemma (∼ relative rigid categoricity, dcl)

σ implicitly definable from τ ⇒ ∃ interpretation of T into T
∣∣
τ
.

30 / 37

The key model-theoretic lemma

Consider models of a theory T over two sorts τ and σ

Multi-sorted implicit definability

σ is implicitly definable from τ when every f : M
∣∣
τ
∼= M′∣∣

τ

has a unique extension f̂ : M ∼= M′

τ τ

σ σ

∼

∼
M M′

Lemma (∼ relative rigid categoricity, dcl)

σ implicitly definable from τ ⇒ ∃ interpretation of T into T
∣∣
τ
.

30 / 37

The key model-theoretic lemma : example

Multi-sorted implicit definability

σ is implicitly definable from τ when every f : M
∣∣
τ
∼= M′∣∣

τ

has a unique extension f̂ : M ∼= M′

τ τ

σ σ

∼

∼
M M′ Example: T says that τ is a

real closed field and that σ is a

dimension two field extension

with a distinguished i with

i2 = −1.

Lemma (∼ relative rigid categoricity, dcl)

σ implicitly definable from τ ⇒ ∃ interpretation of T into T
∣∣
τ
.

Example (cont): exercise :)

31 / 37

Coordinizability

Lemma (∼ relative rigid categoricity, dcl)

σ implicitly definable from τ ⇒ ∃ interpretation of T into T
∣∣
τ
.

Proof idea: use Beth definability after computing coordinates.

Coordinizability (∼ Gaifman’s coordinizability)

∃ a FO-definable partial surjection τn ⇀ σ.

That is, there exists χ(p⃗τ , xσ) such that

∀x.∃p⃗. χ(p⃗, x)
∀p⃗ x y. χ(p⃗, x) ∧ χ(p⃗, y) =⇒ x = y

From implicit definability: via the omitting type theorem

Question

Can we make coordinizability effective/efficient?

32 / 37

Coordinizability

Lemma (∼ relative rigid categoricity, dcl)

σ implicitly definable from τ ⇒ ∃ interpretation of T into T
∣∣
τ
.

Proof idea: use Beth definability after computing coordinates.

Coordinizability (∼ Gaifman’s coordinizability)

∃ a FO-definable partial surjection τn ⇀ σ.

That is, there exists χ(p⃗τ , xσ) such that

∀x.∃p⃗. χ(p⃗, x)
∀p⃗ x y. χ(p⃗, x) ∧ χ(p⃗, y) =⇒ x = y

From implicit definability: via the omitting type theorem

Question

Can we make coordinizability effective/efficient?

32 / 37

Coordinizability

Lemma (∼ relative rigid categoricity, dcl)

σ implicitly definable from τ ⇒ ∃ interpretation of T into T
∣∣
τ
.

Proof idea: use Beth definability after computing coordinates.

Coordinizability (∼ Gaifman’s coordinizability)

∃ a FO-definable partial surjection τn ⇀ σ.

That is, there exists χ(p⃗τ , xσ) such that

∀x.∃p⃗. χ(p⃗, x)
∀p⃗ x y. χ(p⃗, x) ∧ χ(p⃗, y) =⇒ x = y

From implicit definability: via the omitting type theorem

Question

Can we make coordinizability effective/efficient?

32 / 37

Effective implicit definabilty for sorts (1/2)

Problem #1: witness of implicit definability?

Multi-sorted implicit definability (mild alteration)

σ is implicitly definable from τ if whenever M
∣∣
τ
= M′∣∣

τ
,

there is a unique isomorphism f : M ∼= M′ with f
∣∣
τ
= id.

τ τ

σ σ
∼

M M′

=

Idea to reduce to provability

Consider the theory T ∪ T ′ over τ, σ, σ′ talking about the join

of a pair of models M ∪M′

33 / 37

Effective implicit definabilty for sorts (1/2)

Problem #1: witness of implicit definability?

Multi-sorted implicit definability (mild alteration)

σ is implicitly definable from τ if whenever M
∣∣
τ
= M′∣∣

τ
,

there is a unique isomorphism f : M ∼= M′ with f
∣∣
τ
= id.

τ τ

σ σ
∼

M M′

=

Idea to reduce to provability

Consider the theory T ∪ T ′ over τ, σ, σ′ talking about the join

of a pair of models M ∪M′

33 / 37

Effective implicit definabilty for sorts (2/2)

Lemma

Implicit definability is equivalent to the existence of a FO

formula ψ(xτ , yτ
′
) such that

T ∪ T ′ ⊢ ψ is an embedding extending the identity

(⇒) use Beth definability to compute ψ!

(⇐) FO definable embedding = isomorphism (crucial thing τ ̸= τ ′!)

(requires comprehension for the trivial part (ACA′
0))

We have a nice Π0
2 statement

Effective implicit definable ⇒ coordinizable, effectively

Question: how efficient can we make that?

34 / 37

Some very tentative results

For intuitionistic logic

From a cut-free proof of totality of φ(xτ , yτ
′
) in LJ

⊢ ∀xτ∃yτ ′ . φ(x, y)

we can compute in polynomial time coordinates for τ .

Proof idea: induction until we hit the ∃-R rule

Restricted to Σ1 formulas

From a cut-free proof of totality of φ(xτ , yτ
′
), if φ is Σ1 and

functional, we can compute coordinates for τ .

Proof: via Herbrand’s theorem

(and some fiddly steps to get rid of function symbols)

35 / 37

Why these results are no good

For intuitionistic logic

From a cut-free proof of totality of φ(xτ , yτ
′
) in LJ we can

compute in polynomial time coordinates for τ .

While all φ can be “made intuitistically total”, I don’t have a

proof of this that does not presuppose classical coordinizability.

Restricted to Σ1 formulas

From a cut-free proof of totality of φ(xτ , yτ
′
), if φ is Σ1 and

functional, we can compute coordinates for τ .

For NRC, φ exhausts the quantifier hierarchy.

Why that won’t generalize too well

There exists a silly Π2 φ functional and total (but which is not

an embedding) such that τ is not coordinizable.

36 / 37

Takeaways/further work that could be done

Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

• Chang-Makkai (∼ countably many predicates)

• Definable closures (what I just discussed)

• Algebraic closures

• NRC with multisets/list operators

• Basic unanswered question: specification logic?

• Rough idea for the model-theoretic route: theory of families

indexed by FinSet/FinOrd, and look at coarser equivalences

• Implementation.

Thanks for listening! :)

37 / 37

Takeaways/further work that could be done

Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

• Chang-Makkai (∼ countably many predicates)

• Definable closures (what I just discussed)

• Algebraic closures

• NRC with multisets/list operators

• Basic unanswered question: specification logic?

• Rough idea for the model-theoretic route: theory of families

indexed by FinSet/FinOrd, and look at coarser equivalences

• Implementation.

Thanks for listening! :)

37 / 37

Takeaways/further work that could be done

Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

• Chang-Makkai (∼ countably many predicates)

• Definable closures (what I just discussed)

• Algebraic closures

• NRC with multisets/list operators

• Basic unanswered question: specification logic?

• Rough idea for the model-theoretic route: theory of families

indexed by FinSet/FinOrd, and look at coarser equivalences

• Implementation.

Thanks for listening! :)

37 / 37

Takeaways/further work that could be done

Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

• Chang-Makkai (∼ countably many predicates)

• Definable closures (what I just discussed)

• Algebraic closures

• NRC with multisets/list operators

• Basic unanswered question: specification logic?

• Rough idea for the model-theoretic route: theory of families

indexed by FinSet/FinOrd, and look at coarser equivalences

• Implementation.

Thanks for listening! :)

37 / 37

	The nested relational model, logic and NRC
	Extraction from 0 specifications

