Beth-like definability results, proof-theoretically

Cécilia Pradic (Swansea University)

j.w.w. Michael Benedikt (Oxford University) Christoph Wernhard (Postdam University)

September $13th$ 2024, Proof society workshop

Beth definability theorem

Beth definability

Let $\varphi(R)$ be an FO formula over $\Sigma \uplus \{R\}$

If $\varphi(R)$ implicitly defines R, that is

$$
\varphi(R) \land \varphi(R') \implies \forall \vec{x}. \ R(\vec{x}) \Longleftrightarrow R'(\vec{x})
$$

then there is a corresponding explicit FO definition for R. That is, we have an FO formula $\psi(\vec{x})$ over Σ such that

$$
\varphi(R) \implies \forall \vec{x}. \ R(\vec{x}) \Longleftrightarrow \psi(\vec{x})
$$

Beth definability theorem

Beth definability

Let $\varphi(R)$ be an FO formula over $\Sigma \cup \{R\}$

If $\varphi(R)$ implicitly defines R, that is

$$
\varphi(R) \land \varphi(R') \implies \forall \vec{x}. \ R(\vec{x}) \Longleftrightarrow R'(\vec{x})
$$

then there is a corresponding explicit FO definition for R. That is, we have an FO formula $\psi(\vec{x})$ over Σ such that

$$
\varphi(R) \implies \forall \vec{x}. \ R(\vec{x}) \Longleftrightarrow \psi(\vec{x})
$$

- Model-theoretic proof using amalgamation
- Proof-theoretic effective proof using interpolation

Craig interpolation

Craig interpolation

If $\varphi \Rightarrow \psi$, there exists θ such that

$$
\varphi \Rightarrow \theta \qquad \text{and} \qquad \theta \Rightarrow \psi
$$

Further, θ mentions *only* variables/relation symbols common to φ and ψ .

Craig interpolation

Craig interpolation

If $\varphi \Rightarrow \psi$, there exists θ such that

$$
\varphi \Rightarrow \theta \qquad \text{and} \qquad \theta \Rightarrow \psi
$$

Further, θ mentions *only* variables/relation symbols common to φ and ψ .

• Robust result

 Δ_0 , intuitionistic/linear logic...

Craig interpolation

Craig interpolation

If $\varphi \Rightarrow \psi$, there exists θ such that

$$
\varphi \Rightarrow \theta \qquad \text{and} \qquad \theta \Rightarrow \psi
$$

Further, θ mentions *only* variables/relation symbols common to φ and ψ .

• Robust result

 Δ_0 , intuitionistic/linear logic...

• An actual *factorization* of proofs $[Cubrić 94, Saurin 24]$

• computable in $\mathcal{O}(n)$ from cut-free proofs

Beth definability from interpolation

Fix an implicit definition $\varphi(R)$. Since $\varphi(R)$ determines R, we have

$$
\varphi(R) \land \varphi(R') \implies \forall \vec{x}. \ R(\vec{x}) \Longleftrightarrow R'(\vec{x})
$$

which implies that we have a proof of

$$
\varphi(R) \land R(\vec{x}) \quad \vdash \quad \varphi(R') \Longrightarrow R'(\vec{x})
$$

Applying interpolation we get $\theta(\vec{x})$ that defines R since we have

$$
\varphi(R) \wedge R(\vec{x}) \vdash \theta(\vec{x}) \text{ and } \theta(\vec{x}) \wedge \varphi(R) \vdash R(\vec{x})
$$

FO formulas $\psi(\vec{x})$ can be regarded as *queries*

- regard a relation as a table of elements
- $\psi(\vec{x})$ returns a new table

Correspondence with (a fragment of) SQL

Restrict that to bounded quantifications.

Our work

Extending this to the nested relational model.

- Led us to known definability results...
- ... but what about effectivity (and efficiency)?

Plan

- 1. The setting of nested set
- 2. Extraction of nested definition
- 3. Effective relative rigid categoricity?

[The nested relational model, logic](#page-9-0) [and NRC](#page-9-0)

The nested relational model

We work with **typed objects**

Types for nested collections

```
T, U ::= \mathfrak{U} \mid \mathsf{Set}(T) \mid 1 \mid T \times U
```
Obvious semantics $\llbracket T \rrbracket$ determined inductively by $\llbracket \mathfrak{U} \rrbracket$.

Examples

```
Taking \|\mathfrak{U}\| = string, we have
         {((\text{``seagull''}, \text{``gwylan''}), (\text{``goats''}, \text{``geifr''}), \ldots)}\in \mathbb{S}\text{et}(\mathfrak{U}\times\mathfrak{U})\{(\{\text{``shwmae''}, \text{``helo''}\}, \{\text{``hi''}\}), \ldots\}\in \mathcal{S}et(Set(\mathfrak{U}) \times Set(\mathfrak{U})]
         ((), \emptyset, "4", \{ "1", "3" \})\epsilon \in [1 \times \mathsf{Set}(\mathsf{Set}(1)) \times \mathfrak{U} \times \mathsf{Set}(\mathfrak{U})]
```
The nested relational model

We work with **typed objects**

Types for nested collections

```
T, U ::= \mathfrak{U} \mid \mathsf{Set}(T) \mid 1 \mid T \times U
```
Obvious semantics $\llbracket T \rrbracket$ determined inductively by $\llbracket \mathfrak{U} \rrbracket$.

Examples

```
Taking \|\mathfrak{U}\| = string, we have
         {((\text{``seagull''}, \text{``gwylan''}), (\text{``goats''}, \text{``geifr''}), \ldots)}\in \mathbb{S}\text{et}(\mathfrak{U}\times\mathfrak{U})\{(\{\text{``shwmae''}, \text{``helo''}\}, \{\text{``hi''}\}), \ldots\}\in \mathcal{S}et(Set(\mathfrak{U}) \times Set(\mathfrak{U})]
         ((), \emptyset, "4", \{ "1", "3" \})\epsilon \in [1 \times \mathsf{Set}(\mathsf{Set}(1)) \times \mathfrak{U} \times \mathsf{Set}(\mathfrak{U})]
```
Usual relational model: only tuples of relations (sets of tuples)

Types for nested collections

$$
T, U ::= \mathfrak{U} \mid \mathsf{Set}(T) \mid 1 \mid T \times U
$$

A transformation of nested sets is a function $T \to U$ \rightarrow is **not** part of the type system

A transformation of flat relations

Pre-image of a relation R

$$
\begin{array}{rcl}\n\text{fib}: & \mathsf{Set}(\mathfrak{U}) \times \mathsf{Set}(\mathfrak{U} \times \mathfrak{U}) \quad \to \quad \mathsf{Set}(\mathfrak{U}) \\
(A, R) & \mapsto \quad R^{-1}(A) = \{x \mid \exists y \in A.(x, y) \in R\}\n\end{array}
$$

$$
T,U ::= \mathfrak{U} \mid \mathsf{Set}(T) \mid 1 \mid T \times U
$$

Transformations of nested collections

Collect all pre-images of individual elements

$$
\begin{array}{rcl}\n\text{fibs}: & \mathsf{Set}(\mathfrak{U} \times \mathfrak{U}) & \rightarrow & \mathsf{Set}(\mathfrak{U} \times \mathsf{Set}(\mathfrak{U})) \\
R & \mapsto & \{(a, \mathsf{fib}(\{a\}, R)) \mid a \in \mathsf{cod}(R)\}\n\end{array}
$$

Collect all susbsets of the input

$$
\begin{array}{rcl}\n\mathcal{P}: & \mathsf{Set}(\mathfrak{U}) & \to & \mathsf{Set}(\mathsf{Set}(\mathfrak{U})) \\
X & \mapsto & \{y \mid y \subseteq X\} \n\end{array}
$$

Note: P is computationally hard on finite instances

Queries can be specified in multi-sorted first-order logic:

- variables explicitly typed $x : T$
- basic predicates $x \in_T z$ and $x =_T y$ $x, y : T$ and $z : Set(T)$
- terms for tupling and projections

e.g., $\pi_1(((x, z),)))$: $(T \times \text{Set}(T)) \times 1$

Queries can be specified in multi-sorted first-order logic:

- variables explicitly typed $x : T$
- basic predicates $x \in_T z$ and $x =_T y$ $x, y : T$ and $z : Set(T)$
- terms for tupling and projections

e.g., $\pi_1(((x, z),))) : (T \times \text{Set}(T)) \times 1$

Consider formulas with only bounded quantifications

Δ ⁰ formulas

$$
\varphi,\psi \ \ ::= \ \ t =_T u \mid t \in_T u \mid \forall x \in t \ \varphi \mid \varphi \wedge \psi \mid \neg \varphi
$$

Examples

Δ_0 formulas

$$
\varphi,\psi \ \ ::= \ \ t =_T u \mid t \in_T u \mid \forall x \in t \ \varphi \mid \varphi \wedge \psi \mid \neg \varphi
$$

Examples

Δ_0 formulas

$$
\varphi, \psi \ \ ::= \ t =_T u \mid t \in_T u \mid \forall x \in t \ \varphi \mid \varphi \wedge \psi \mid \neg \varphi
$$

$\varphi_{\text{fib}}(A, R, X)$ for $X = R^{-1}(A)$

• Every $x \in X$ is related to some $a \in A$

 $\forall x \in X. \exists a \in A. \ (x, a) \in R$

• For every $(x, y) \in R$, if $y \in A$, then $x \in X$

 $\forall p \in R$. $\pi_2(p) \in A \Rightarrow \pi_1(p) \in X$

Examples

Δ_0 formulas

$$
\varphi, \psi \ \ ::= \ t =_T u \mid t \in_T u \mid \forall x \in t \ \varphi \mid \varphi \wedge \psi \mid \neg \varphi
$$

$\varphi_{\mathsf{fibs}}(R, O) \;\mathbf{for}\; O = \{(a, R^{-1}(\{a\})) \; | \; a \in \mathsf{cod}(R)\}$

• For every $(x, a) \in R$, there is some $(a, X) \in O$ s.t. $x \in X$

$$
\forall p \in R. \exists q \in O. \ \pi_1(p) \in \pi_2(O)
$$

• Every element of $(a, X) \in O$ satisfies $\varphi_{\text{fib}}(\{a\}, R, X)$

$$
\forall q \in O. \quad \forall x \in \pi_2(q). (x, \pi_1(q)) \in R \land \n\forall p \in R. \ \pi_2(p) = \pi_1(q) \Rightarrow \pi_1(p) \in \pi_2(q)
$$

Usual terms and rules for variables, tupling, projections plus the following set operators:

$$
\begin{array}{ll}\n\Gamma \vdash e : T \\
\hline\n\Gamma \vdash \{e\} : \mathsf{Set}(T) & \Gamma \vdash e_1 : \mathsf{Set}(T_1) & \Gamma, \ x : T_1 \vdash e_2 : \mathsf{Set}(T_2) \\
\hline\n\Gamma \vdash \{e\} : \mathsf{Set}(T) & \Gamma \vdash e_1 : \mathsf{Set}(T) & \Gamma \vdash e_2 : \mathsf{Set}(T) \\
\hline\n\Gamma \vdash \emptyset_T : \mathsf{Set}(T) & \Gamma \vdash e_2 : \mathsf{Set}(T) & \Gamma \vdash e_1 \cup e_2 : \mathsf{Set}(T) \\
\hline\n\Gamma \vdash e_1 : \mathsf{Set}(T) & \Gamma \vdash e_2 : \mathsf{Set}(T) & \Gamma \vdash e_1 \setminus e_2 : \mathsf{Set}(T)\n\end{array}
$$

Explicit definitions: the nested relational calculus (NRC) + Get

Usual terms and rules for variables, tupling, projections plus the following set operators:

$$
\cfrac{\Gamma \vdash e : T}{\Gamma \vdash \{e\} : \mathsf{Set}(T)} \qquad \cfrac{\Gamma \vdash e_1 : \mathsf{Set}(T_1) \qquad \Gamma, \ x : T_1 \vdash e_2 : \mathsf{Set}(T_2)}{\Gamma \vdash \bigcup \{e_2 \mid x \in e_1\} : \mathsf{Set}(T_2)}
$$
\n
$$
\cfrac{\Gamma \vdash e_1 : \mathsf{Set}(T)}{\Gamma \vdash \emptyset_T : \mathsf{Set}(T)} \qquad \cfrac{\Gamma \vdash e_1 : \mathsf{Set}(T)}{\Gamma \vdash e_1 \cup e_2 : \mathsf{Set}(T)}
$$
\n
$$
\cfrac{\Gamma \vdash e_1 : \mathsf{Set}(T)}{\Gamma \vdash e_1 \setminus e_2 : \mathsf{Set}(T)} \qquad \cfrac{\Gamma \vdash e : \mathsf{Set}(T)}{\Gamma \vdash \mathsf{Get}(e) : T}
$$

Expressiveness of NRC

Our running examples

- \bullet $(A, R) \mapsto \bigcup \{\textsf{case}(\pi_2(p) \in \mathfrak{U} A, \{\pi_1(p)\}, \emptyset) \mid p \in R\}$
- $R \mapsto \bigcup \{ \{\text{fib}(x, R)\} \mid x \in \{\pi_1(p) \mid p \in R \} \}$

Derivable constructs:

- maps $\{e_1(x) | x \in e_2\}$
- at type-level, $Bool := Set(1)$
- basic predicates $=\tau: T \times T \to$ Bool, $\in_T: T \times$ Set $(T) \to$ Bool
- case analyses

Expressiveness of NRC

Our running examples

- \bullet $(A, R) \mapsto \bigcup \{\textsf{case}(\pi_2(p) \in \mathfrak{U} A, \{\pi_1(p)\}, \emptyset) \mid p \in R\}$
- $R \mapsto \bigcup \{ \{\text{fib}(x, R)\} \mid x \in \{\pi_1(p) \mid p \in R \} \}$

Derivable constructs:

- maps $\{e_1(x) \mid x \in e_2\}$
- at type-level, $Bool := Set(1)$
- basic predicates $=_T : T \times T \to \text{Bool}$, $\in_T : T \times \text{Set}(T) \to \text{Bool}$
- case analyses
- Δ_0 -separation $\{x \in e \mid \varphi(x)\}\$

Proposition

NRC terms $e: T \to \mathsf{Bool}$ correspond to Δ_0 formulas $\varphi(x^T)$

Limits to the expressiveness of NRC

For practical purposes, NRC is not too expressive

- NRC is *conservative* over idealized SQL i.e., for flat queries
- queries *polytime* computable (over finite inputs)

Consequences

- rules out $x \mapsto \mathcal{P}(x)$
- cannot represent function spaces with Set(−)

```
Consider (x, y) \mapsto \mathtt{tt}
```

$$
[T \to \mathsf{Set}(U)] \not\simeq [T \times U \to \mathsf{Bool}]
$$

 $[T \to \mathsf{Set}(U)] \hookrightarrow [T \times U \to \mathsf{Bool}]$

(For the rest of the talk: no finiteness assumptions)

[Extraction from](#page-24-0) Δ_0 specifications

Recall that $\varphi(i, o)$ is an implicit definition when it is functional: $\varphi(i, o) \land \varphi(i, o') \implies o = o'$

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term $e(i)$

$$
\varphi(i, o) \implies o = e(i)
$$

Recall that $\varphi(i, o)$ is an implicit definition when it is functional: $\varphi(i, o) \land \varphi(i, o') \implies o = o'$

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term $e(i)$

$$
\varphi(i,o) \implies o = e(i)
$$

 $e(i)$ polytime computable from a **focused** proof

Recall that $\varphi(i, o)$ is an implicit definition when it is functional: $\varphi(i, o) \land \varphi(i, o') \implies o = o'$

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term $e(i)$

$$
\varphi(i, o) \implies o = e(i)
$$

 $e(i)$ polytime computable from a **focused** proof

• Extension of Beth definability for flat queries $\mathsf{Set}(\mathfrak{U}^k) \times \ldots \times \mathsf{Set}(\mathfrak{U}^m) \to \mathsf{Set}(\mathfrak{U}^n)$

Recall that $\varphi(i, o)$ is an implicit definition when it is functional: $\varphi(i, o) \land \varphi(i, o') \implies o = o'$

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term $e(i)$

$$
\varphi(i, o) \implies o = e(i)
$$

 $e(i)$ polytime computable from a **focused** proof

- Extension of Beth definability for flat queries $\mathsf{Set}(\mathfrak{U}^k) \times \ldots \times \mathsf{Set}(\mathfrak{U}^m) \to \mathsf{Set}(\mathfrak{U}^n)$
- Remark: a non-effective proof would still yield an algorithm
	- Can be proven elementarily
	- Alternatively, this can be reduced to a Π_2^0 statement

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea

Decompose proofs by forcing saturations by certain rules in positive and negative phases. Roughly:

- Negative: apply invertible rules as much as possible
- Positive: focus on a single formula until it turns negative.

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea

Decompose proofs by forcing saturations by certain rules in positive and negative phases. Roughly:

- Negative: apply invertible rules as much as possible
- Positive: focus on a single formula until it turns negative.

Complexity-wise (to the best of my knowledge)

A cut-free proof can be turned into a focused cut-free proof in exponential time.

Toward a proof system for nested sets

Wlog, we restrict to the following syntax

t, u ::= $x | (t, u) | \pi_1(t) | \pi_2(t) | ()$

 $\varphi, \psi \ ::= \ t = \mathfrak{U} \ u \mid t \neq \mathfrak{U} \ u \mid \exists x \in \mathcal{T} \ t \ \varphi \mid \forall x \in \mathcal{T} \ t \ \varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi$

Toward a proof system for nested sets

Wlog, we restrict to the following syntax t, u ::= $x | (t, u) | \pi_1(t) | \pi_2(t) | ()$ $\varphi, \psi \ ::= \ t = \mu \ u \mid t \neq_{\mathfrak{U}} u \mid \exists x \in_T t \ \varphi \mid \forall x \in_T t \ \varphi \mid \varphi \land \psi \mid \varphi \lor \psi$

Toward a proof system for nested sets

Wlog, we restrict to the following syntax t, u ::= $x | (t, u) | \pi_1(t) | \pi_2(t) | ()$ $\varphi, \psi \ ::= \ t = \sup u \mid t \neq_{\Omega} u \mid \exists x \in_T t \varphi \mid \forall x \in_T t \varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi$

- Bakes the axiom of extensionality in the definition of $=\tau$
- No further non-equational axioms
- For the rest of the talk: we use sequent calculus

Formal proofs of functionality

Certificate that $\varphi(i, o)$ is an implicit definition: a derivation

$$
\cdot; \; \varphi(i, o), \; \varphi(i, o') \vdash o = o'
$$

$$
\frac{ax - z = 0, x \in X, z \in x; z \in o' + z \in o' \quad (7)}{z \in o, x \in X, z \in x; \chi(X, x, z), \chi(X, x, z) \Rightarrow z \in o' + z \in o' \quad (6)}
$$
\n
$$
= \text{snsm}
$$
\n
$$
\frac{v \cdot L \quad z \in o, x \in X, z \in x; \chi(X, x, z), \chi(X, x, z) \Rightarrow z \in o' + z \in o' \quad (5)}
$$
\n
$$
\frac{z \in o, x \in X, z \in x; \chi(X, x, z), \chi(a \in x (\chi(X, x, a)) \Rightarrow a \in o') + z \in o' \quad (6)}
$$
\n
$$
\frac{z \in o, x \in X, z' \in x; z = qz', \chi(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') + z \in o'}{v \cdot L \quad z \in o, x \in X; \psi(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') + z \in o' \quad (4)}
$$
\n
$$
\frac{z \in o, x \in X; \psi(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') + z \in o'}{v \cdot L \quad z \in o, x \in X; \psi(X, x, z), \forall y \in X \forall a \in y (\chi(X, y, a) \Rightarrow a \in o') + z \in o' \quad (9)}
$$
\n
$$
\frac{z \cdot b \cdot x \in X; \psi(X, x, z), \Sigma(X, o') + z \in o'}{z \in o; \exists x \in X \psi(X, x, z), \Sigma(X, o') + z \in o' \quad (9)}
$$
\n
$$
\frac{z \cdot b \cdot x \in X; \psi(X, x, z), \Sigma(X, o') + z \in o'}{z \cdot L \quad z \in o; \Sigma(X, o), \Sigma(X, o') + z \in o' \quad (9)}
$$
\n
$$
\frac{z \cdot z \cdot \Sigma(X, o), \Sigma(X, o') + z \in o'}{z \cdot K \quad (2 \times 0, \Sigma(X, o') + o \subseteq o' \quad (0)}
$$
\n
$$
\frac{z \cdot z \cdot \Sigma(X, o), \Sigma(X, o') + z \in o'}{z \cdot K \quad (2 \times 0, \Sigma(X, o') + o' \in o
$$

Problem: what inductive invariant?

The intuitionistic case

Input: $\Gamma(c, l), \Delta(c, r) \vdash \psi$, cut-free Output: a NRC term $e(c)$ s.t.

Key lemma • if ψ is $l = r$, then $\Gamma, \Delta \models l = e \wedge r = e$

• if ψ is $l \subset r$, then $\Gamma, \Delta \models l \subseteq e \wedge e \subseteq r$

• if
$$
\psi
$$
 is $l \in r$, then
\n $\Gamma, \Delta \models l \in e$
The intuitionistic case

Input: $\Gamma(c, l), \Delta(c, r) \vdash \psi$, cut-free Output: a NRC term $e(c)$ s.t.

Key lemma • if ψ is $l = r$, then $\Gamma, \Delta \models l = e \wedge r = e$ • if ψ is $l \subset r$, then $\Gamma, \Delta \models l \subseteq e \land e \subseteq r$ • if ψ is $l \in r$, then $\Gamma, \Delta \models l \in e$

Why this is easy: single RHS formula, subformula of $=\tau$.

Let us look at the key step that involves interpolation.

$$
\frac{\Gamma, z \in_T l, \Delta \vdash z \in_T r}{\Gamma, \Delta \vdash l \subseteq_T r} \qquad \longrightarrow \qquad \frac{\Gamma, z \in_T l, \Delta \models z \in_T e^{\text{IH}}}{\Gamma, \Delta \models l \subseteq_T e \land e \subseteq_T r}
$$

Assuming a Δ_0 interpolant $\theta(z)$ such that

 $\Gamma \wedge z \in_T l \models \theta(z)$ and $\theta(z) \models \Delta \Rightarrow z \in_T r$

Let us look at the key step that involves interpolation.

$$
\frac{\Gamma, z \in_T l, \Delta \vdash z \in_T r}{\Gamma, \Delta \vdash l \subseteq_T r} \qquad \longrightarrow \qquad \frac{\Gamma, z \in_T l, \Delta \models z \in_T e^{\text{IH}}}{\Gamma, \Delta \models l \subseteq_T e \land e \subseteq_T r}
$$

Assuming a Δ_0 interpolant $\theta(z)$ such that

 $\Gamma \wedge z \in_T l \models \theta(z)$ and $\theta(z) \models \Delta \Rightarrow z \in_T r$

we can set $e := \{x \in e^{\text{IH}} \mid \theta(z)\}\$

Let us look at the key step that involves interpolation.

$$
\frac{\Gamma, z \in_T l, \Delta \vdash z \in_T r}{\Gamma, \Delta \vdash l \subseteq_T r} \qquad \longrightarrow \qquad \frac{\Gamma, z \in_T l, \Delta \models z \in_T e^{\text{IH}}}{\Gamma, \Delta \models l \subseteq_T e \land e \subseteq_T r}
$$

Assuming a Δ_0 interpolant $\theta(z)$ such that

 $\Gamma \wedge z \in \negthinspace r \, l \models \theta(z)$ and $\theta(z) \models \Delta \Rightarrow z \in \negthinspace r \, r$

we can set $e := \{x \in e^{\text{IH}} \mid \theta(z)\}\$

Other key cases in a hurry ∪ for \vee -L, \bigcup for \forall -L, $\{-\}$ for \exists -R Difficulty: with classical logic, we can contract the goal formula

Reduction to the \in case From a proof $\Gamma, \Delta \vdash \exists x \in^+ r. l = x$, compute a NRC term e such that $l \in e$

• Weaker than definability: **set** of possible solutions

Difficulty: with classical logic, we can contract the goal formula

Reduction to the \in case From a proof $\Gamma, \Delta \vdash \exists x \in^+ r. l = x$, compute a NRC term e such that $l \in e$

- Weaker than definability: **set** of possible solutions
- Proven by outer induction on the type structure

Difficulty: with classical logic, we can contract the goal formula

Reduction to the \in case From a proof $\Gamma, \Delta \vdash \exists x \in^+ r. l = x$, compute a NRC term e such that $l \in e$

- Weaker than definability: **set** of possible solutions
- Proven by outer induction on the type structure
- Set-case by modifying the input proof to

$$
\exists x \in_{\mathsf{Set}(T)} \exists c \in a. \ c \in l \Leftrightarrow c \in x \qquad (\text{fresh } a)
$$

and then applying interpolation

Working with multisorted FO, no function symbols, signatures L, R and $C \subseteq L \cap R$. (and C "has a sort with ≥ 2 elements")

Theorem

If we have a focused derivation of

$$
\Gamma, \Delta \vdash \exists r. \forall c. \ \lambda(c) \Longleftrightarrow \rho(r, c)
$$

then we can compute in linear time a $\psi(\vec{p}, c)$ over C such that

$$
\Gamma, \Delta \models \exists \vec{p}.\forall c. \ \lambda(c) \Longleftrightarrow \psi(\vec{p}, c)
$$

Call ψ a **parameterized definition** for λ .

Reminder of what is the theorem

 $\Gamma, \Delta \vdash \exists r. \forall c. \ \lambda(c) \Longleftrightarrow \rho(r, c)$ ψ such that $\Gamma, \Delta \models \exists \vec{p}.\forall c. \lambda(c) \Longleftrightarrow \psi(\vec{p}, c)$

(Not useful) ways to instantiate the hypotheses:

- Trivial $\exists r$.: same premise as in Beth definability
- One generalization $\varphi(R)$ defines finitely many Rs, then we have a parameterized definition of R
	- Throw in a finite sort *n* to index finitely many distinct R_i with $\varphi(R_i)$ for all i and $\varphi(R)$
	- (Kueker already gave a proof-theoretic method)

Relation to Beth definability/vague examples (2/2)

Reminder of what is the theorem $\Gamma, \Delta \vdash \exists r. \forall c. \ \lambda(c) \Longleftrightarrow \rho(r, c)$ ψ such that $\Gamma, \Delta \models \exists \vec{p}.\forall c. \lambda(c) \Longleftrightarrow \psi(\vec{p}, c)$

An instantiation (of questionable utility?):

- Fix a FO formula $\varphi(P)$ over a signature $\Sigma \uplus \{P\}$
- Call CA the theory of comprehension over Σ
- If we have

$$
\varphi(P), \mathsf{CA} \vdash \exists X. \ \forall x. \ P(x) \Leftrightarrow x \in X
$$

then P is parametrically FO-definable over Σ .

Relation to Beth definability/vague examples (2/2)

Reminder of what is the theorem $Γ, Δ ⊢ ∃r. ∀c. λ(c) \Longleftrightarrow ρ(r, c)$ ψ such that $\Gamma, \Delta \models \exists \vec{p}.\forall c. \lambda(c) \Longleftrightarrow \psi(\vec{p}, c)$

An instantiation (of questionable utility?):

- Fix a FO formula $\varphi(P)$ over a signature $\Sigma \uplus \{P\}$
- Call CA the theory of comprehension over Σ
- If we have

$$
\varphi(P), \mathsf{CA} \vdash \exists X. \ \forall x. \ P(x) \Leftrightarrow x \in X
$$

then P is parametrically FO-definable over Σ .

• Can be derived from a theorem of Chang & Makkai

Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)

Let $\mathcal T$ be a theory over $\Sigma \cup \{P\}$. TFAE:

- P is parametrically FO-definable over Σ (in \mathcal{T})
- for every model (M, \ldots, P) of $\mathcal T$ there are at most $|M|$ many valid alternatives for P (i.e. $P' \subseteq M$ such that (M, \ldots, P') is also a model of \mathcal{T})

Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)

Let T be a theory over $\Sigma \uplus \{P\}$. TFAE:

- P is parametrically FO-definable over Σ (in \mathcal{T})
- for every model (M, \ldots, P) of $\mathcal T$ there are at most $|M|$ many valid alternatives for P (i.e. $P' \subseteq M$ such that (M, \ldots, P') is also a model of \mathcal{T})

Proof: via saturated models

(equivalent condition: there exists a saturated model. . .)

Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)

Let $\mathcal T$ be a theory over $\Sigma \uplus \{P\}$. TFAE:

- P is parametrically FO-definable over Σ (in \mathcal{T})
- for every model (M, \ldots, P) of $\mathcal T$ there are at most $|M|$ many valid alternatives for P (i.e. $P' \subseteq M$ such that (M, \ldots, P') is also a model of \mathcal{T})

Proof: via saturated models

(equivalent condition: there exists a saturated model. . .)

Question

Can we give a satisfactory effective counterpart to this?

Back to our nested relations business

Adaptation in our setting with Δ_0 set-theoretic formulas

(sadly not derived as a corollary)

Theorem

If we have a focused derivation

$$
\Gamma(\vec{i},...),\Delta(\vec{i},r,...)\vdash \exists r'\in r.\forall x\in a.\ \lambda(x,...)\Longleftrightarrow \rho(r',...,x)
$$

then we have in linear time a NRC term $E(\vec{i})$ such that

$$
\Gamma(\vec{i},...), \Delta(\vec{i},r,...) \models a \cap \lambda \in E(\vec{i})
$$

Proof: induction; we need also to compute a $\theta(\vec{i})$ such that

$$
\Delta(\vec{i},r,\ldots) \models \theta(\vec{i}) \quad \text{and} \quad \Gamma(\vec{i},\ldots),\theta(\vec{i}) \models a \cap \lambda \in E(\vec{i})
$$

Key step: existential rule introducing the "main" formula

With
$$
\mathcal{G} = \exists r' \in^+ r.\forall z \in c. \quad \lambda(z) \iff \rho(z, r')
$$

$$
\vee \frac{\Theta_L, \Theta_R, x \in c \vdash \Delta_L, \Delta_R, \neg \rho(x, w), \lambda(x), \mathcal{G}}{\wedge \frac{\Theta_L, \Theta_R, x \in c \vdash \Delta_L, \Delta_R, \rho(x, w) \Rightarrow \lambda(x), \mathcal{G}}{\forall \frac{\Theta_L, \Theta_R, x \in c \vdash \Delta_L, \Delta_R, \lambda(x) \Leftrightarrow \rho(x, w), \mathcal{G}}{\exists^+ \frac{\Theta_L, \Theta_R \vdash \Delta_L, \Delta_R, \forall z \in c. (\lambda(z) \Leftrightarrow \rho(z, w)), \mathcal{G}}{\Theta_L, \Theta_R \vdash \Delta_L, \Delta_R, \mathcal{G}}}
$$

- Shape around the root of the tree guaranteed by focusing
- Applying the induction hypothesis we have

$$
\Theta_L, x \in c \models \lambda(x), \Delta_L, \theta_1^{\mathsf{IH}} \lor \Lambda \in E_1^{\mathsf{IH}}
$$

$$
\Theta_R \models \neg \rho(x, w), \Delta_R, \neg \theta_1^{\mathsf{IH}}
$$

• Take
$$
\theta := \exists x \in c. \ \theta_1^{\text{IH}} \wedge \theta_2^{\text{IH}}
$$
 and

$$
E := \left\{ \left\{ x \in c \mid \theta_2^{\text{IH}} \right\} \right\} \ \cup \ \bigcup \left\{ E_1^{\text{IH}} \cup E_2^{\text{IH}} \mid x \in c \right\}
$$

27 / 37

. . .

What have we not learned?

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term $e(i)$

$$
\varphi(i, o) \implies o = e(i)
$$

What have we not learned?

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term $e(i)$

$$
\varphi(i, o) \implies o = e(i)
$$

 $e(i)$ polytime computable from a **focused** proof

• The intuitionistic case is much easier

Conservativity for implicit definitions

If $\phi(i, o)$ is functional, then there is a formula $\chi(\vec{x})$ such that the conjoined formula $\phi^{-1}(i, o) \wedge \forall \vec{x}$. $\chi(\vec{x}) \vee \neg \chi(\vec{x})$ can be proved to be functional in intuitionistic logic.

- (but finding χ has no reason being easy!)
- W/o the complexity bound: easier proof via model theory

Nested collections can be regarded as multi-sorted structures

An object X of sort $Set(\mathfrak{U} \times Set(\mathfrak{U}))$

Sorts: $\mathfrak{U}, \mathsf{Set}(\mathfrak{U}), \mathfrak{U} \times \mathsf{Set}(\mathfrak{U})$

Function symbols: $\pi_1, \pi_2, \langle -, - \rangle$

Relation symbol: ϵ

Semantics: subobjects of X

Nested collections can be regarded as multi-sorted structures

An object X of sort $Set(\mathfrak{U} \times Set(\mathfrak{U}))$

Sorts: $\mathfrak{U}, \mathsf{Set}(\mathfrak{U}), \mathfrak{U} \times \mathsf{Set}(\mathfrak{U})$

Function symbols: $\pi_1, \pi_2, \langle -, - \rangle$

Relation symbol: ϵ

Semantics: subobjects of X

Interpretations: maps Models \rightarrow Models via FO formulas

Nested collections can be regarded as multi-sorted structures

An object X of sort $Set(\mathfrak{U} \times Set(\mathfrak{U}))$ Sorts: $\mathfrak{U}, \mathsf{Set}(\mathfrak{U}), \mathfrak{U} \times \mathsf{Set}(\mathfrak{U})$ Function symbols: $\pi_1, \pi_2, \langle -, - \rangle$ Relation symbol: ϵ **Semantics:** subobjects of X

Interpretations: maps Models \rightarrow Models via FO formulas Can express

- product, disjoint union of structures $\mathfrak{M}, \mathfrak{N} \mapsto \mathfrak{M} \times \mathfrak{N}, \mathfrak{M} + \mathfrak{N}$
- definable substructures and quotients

Nested collections can be regarded as multi-sorted structures

An object X of sort $Set(\mathfrak{U} \times Set(\mathfrak{U}))$ Sorts: $\mathfrak{U}, \mathsf{Set}(\mathfrak{U}), \mathfrak{U} \times \mathsf{Set}(\mathfrak{U})$ Function symbols: $\pi_1, \pi_2, \langle -, - \rangle$ Relation symbol: ϵ

Semantics: subobjects of X

Interpretations: maps Models \rightarrow Models via FO formulas Can express

- product, disjoint union of structures $\mathfrak{M}, \mathfrak{N} \mapsto \mathfrak{M} \times \mathfrak{N}, \mathfrak{M} + \mathfrak{N}$
- definable substructures and quotients

NRC and interpretations

For structures corresponding to nested collections, NRC and Δ_0 -interpretations coincide

The key model-theoretic lemma

Consider models of a theory $\mathcal T$ over two sorts τ and σ Multi-sorted implicit definability

σ is **implicitly definable from** τ when every $f : \mathfrak{M}|_{\tau} \cong \mathfrak{M}'|_{\tau}$ has a unique extension $\hat{f}: \mathfrak{M} \cong \mathfrak{M}'$

The key model-theoretic lemma

Consider models of a theory $\mathcal T$ over two sorts τ and σ Multi-sorted implicit definability

σ is **implicitly definable from** τ when every $f : \mathfrak{M}|_{\tau} \cong \mathfrak{M}'|_{\tau}$ has a unique extension $\hat{f}: \mathfrak{M} \cong \mathfrak{M}'$

Lemma (\sim relative rigid categoricity, dcl)

 σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of $\mathcal T$ into $\mathcal T|_{\tau}$.

Multi-sorted implicit definability

σ is **implicitly definable from** τ when every $f : \mathfrak{M}|_{\tau} \cong \mathfrak{M}'|_{\tau}$ has a unique extension $\hat{f}: \mathfrak{M} \cong \mathfrak{M}'$

Example: \mathcal{T} says that τ is a real closed field and that σ is a dimension two field extension with a distinguished i with $i^2 = -1.$

Lemma (\sim relative rigid categoricity, dcl) σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of $\mathcal T$ into $\mathcal T|_{\tau}$.

Example (cont): exercise :)

Coordinizability

Lemma (\sim relative rigid categoricity, dcl)

 σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of $\mathcal T$ into $\mathcal T|_{\tau}$.

Proof idea: use Beth definability after computing coordinates.

Coordinizability (∼ Gaifman's coordinizability)

 \exists a FO-definable partial surjection $\tau^n \to \sigma$. That is, there exists $\chi(p^{\vec{\tau}}, x^{\sigma})$ such that $\forall x.\exists \vec{p}.\ \chi(\vec{p},x)$ $\forall \vec{p} \ x \ y. \ \chi(\vec{p}, x) \wedge \chi(\vec{p}, y) \Longrightarrow x = y$

Coordinizability

Lemma (\sim relative rigid categoricity, dcl)

 σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of $\mathcal T$ into $\mathcal T|_{\tau}$.

Proof idea: use Beth definability after computing coordinates.

Coordinizability (∼ Gaifman's coordinizability) \exists a FO-definable partial surjection $\tau^n \to \sigma$. That is, there exists $\chi(p^{\vec{\tau}}, x^{\sigma})$ such that $\forall x.\exists \vec{p}.\ \chi(\vec{p},x)$ $\forall \vec{p} \ x \ y. \ \chi(\vec{p}, x) \wedge \chi(\vec{p}, y) \Longrightarrow x = y$

From implicit definability: via the omitting type theorem

Coordinizability

Lemma (\sim relative rigid categoricity, dcl)

 σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of $\mathcal T$ into $\mathcal T|_{\tau}$.

Proof idea: use Beth definability after computing coordinates.

Coordinizability (∼ Gaifman's coordinizability)

 \exists a FO-definable partial surjection $\tau^n \to \sigma$. That is, there exists $\chi(p^{\vec{\tau}}, x^{\sigma})$ such that $\forall x.\exists \vec{p}.\ \chi(\vec{p},x)$ $\forall \vec{p} \ x \ y. \ \chi(\vec{p}, x) \wedge \chi(\vec{p}, y) \Longrightarrow x = y$

From implicit definability: via the omitting type theorem

Question

Can we make coordinizability effective/efficient?

Effective implicit definabilty for sorts $(1/2)$

Problem #1: witness of implicit definability? Multi-sorted implicit definability (mild alteration) *σ* is **implicitly definable from** *τ* if whenever $\mathfrak{M}|_{\tau} = \mathfrak{M}'|_{\tau}$, there is a unique isomorphism $f : \mathfrak{M} \cong \mathfrak{M}'$ with $f|_{\tau} = id$.

Effective implicit definabilty for sorts $(1/2)$

Problem #1: witness of implicit definability? Multi-sorted implicit definability (mild alteration) *σ* is **implicitly definable from** *τ* if whenever $\mathfrak{M}|_{\tau} = \mathfrak{M}'|_{\tau}$, there is a unique isomorphism $f : \mathfrak{M} \cong \mathfrak{M}'$ with $f|_{\tau} = id$.

Idea to reduce to provability

Consider the theory $\mathcal{T} \cup \mathcal{T}'$ over τ, σ, σ' talking about the join of a pair of models $\mathfrak{M} \cup \mathfrak{M}'$

Effective implicit definabilty for sorts $(2/2)$

Lemma

Implicit definability is equivalent to the existence of a FO formula $\psi(x^{\tau}, y^{\tau'})$ such that

 $\mathcal{T} \cup \mathcal{T}' \vdash \psi$ is an embedding extending the identity

 (\Rightarrow) use Beth definability to compute ψ !

 (\Leftarrow) FO definable embedding = isomorphism (crucial thing $\tau \neq \tau'$!) (requires comprehension for the trivial part (ACA'_0))

We have a nice Π^0_2 statement

Effective implicit definable \Rightarrow coordinizable, effectively

Question: how efficient can we make that?

For intuitionistic logic

From a cut-free proof of totality of $\varphi(x^{\tau}, y^{\tau'})$ in LJ

$$
\vdash \forall x^{\tau} \exists y^{\tau'}.\ \varphi(x,y)
$$

we can compute in polynomial time coordinates for τ .

Proof idea: induction until we hit the ∃-R rule

Restricted to Σ_1 formulas

From a cut-free proof of totality of $\varphi(x^{\tau}, y^{\tau'})$, if φ is Σ_1 and functional, we can compute coordinates for τ .

Proof: via Herbrand's theorem

(and some fiddly steps to get rid of function symbols)

For intuitionistic logic

From a cut-free proof of totality of $\varphi(x^{\tau}, y^{\tau'})$ in LJ we can compute in polynomial time coordinates for τ .

While all φ can be "made intuitistically total", I don't have a proof of this that does not presuppose classical coordinizability.

Restricted to Σ_1 formulas

From a cut-free proof of totality of $\varphi(x^{\tau}, y^{\tau'})$, if φ is Σ_1 and functional, we can compute coordinates for τ .

For NRC, φ exhausts the quantifier hierarchy.

Why that won't generalize too well

There exists a silly Π_2 φ functional and total (but which is not an embedding) such that τ is not coordinizable.

Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

-
-
- Algebraic closures

• Chang-Makkai (∼ countably many predicates) • Definable closures (what I just discussed) Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

- Chang-Makkai (∼ countably many predicates)
-
- Algebraic closures
- NRC with multisets/list operators
	- Basic unanswered question: specification logic?
	- Rough idea for the model-theoretic route: theory of families indexed by FinSet/FinOrd, and look at coarser equivalences

• Definable closures (what I just discussed)

Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

- Chang-Makkai (∼ countably many predicates)
-
- Algebraic closures
- NRC with multisets/list operators
	- Basic unanswered question: specification logic?
	- Rough idea for the model-theoretic route: theory of families indexed by FinSet/FinOrd, and look at coarser equivalences
- Implementation.

• Definable closures (what I just discussed)
Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

- Chang-Makkai (∼ countably many predicates)
-
- Algebraic closures
- NRC with multisets/list operators
	- Basic unanswered question: specification logic?
	- Rough idea for the model-theoretic route: theory of families indexed by FinSet/FinOrd, and look at coarser equivalences
- Implementation.

Thanks for listening! :)

• Definable closures (what I just discussed)