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Beth definability theorem

Beth definability
Let ¢(R) be an FO formula over ¥ W { R}

If p(R) implicitly defines R, that is
©(R)ANp(R) = V& R(Z) < R/(T)

then there is a corresponding explicit FO definition for R.
That is, we have an FO formula (%) over ¥ such that

e(R) = VZ. R(Z) <= ¢(Z)
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Beth definability theorem

Beth definability
Let ¢(R) be an FO formula over ¥ W { R}

If p(R) implicitly defines R, that is
©(R)ANp(R) = V& R(Z) < R/(T)

then there is a corresponding explicit FO definition for R.
That is, we have an FO formula (%) over ¥ such that

o(R) = Vi R(Z) < ¥(7)

e Model-theoretic proof using amalgamation

e Proof-theoretic effective proof using interpolation
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Craig interpolation

If ¢ = 1, there exists 6 such that

@(Cvl) . 'l/)(C,T)

=0 and 0=

Further, 6 mentions only variables/relation
symbols common to ¢ and .
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Craig interpolation

If ¢ = 1, there exists 6 such that

ele,l) ————> dler)

=0 and 0=

Further, 6 mentions only variables/relation
symbols common to ¢ and .

e Robust result
- Ay, intuitionistic/linear logic. . .

e An actual factorization of proofs
[Cubrié¢ 94, Saurin 24]

e computable in O(n) from cut-free proofs
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Beth definability from interpolation

Fix an implicit definition ¢(R).

Since p(R) determines R, we have

o(R)Ap(R) = Vi R(T) = R()

which implies that we have a proof of

P(R) AR(T) F @(R)= R(Z)

Applying interpolation we get 6(Z) that defines R since we have

@(R) AR(Z) - 0(Z) and 0(Z) A p(R) F R(Z)
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Application to database theory

FO formulas (&) can be regarded as queries

e regard a relation as a table of elements

e ¢(Z) returns a new table

Specification

Implementation

Implicit definition

Explicit definition

Correspondence with (a fragment of) SQL

Restrict that to bounded quantifications.
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Extending this to the nested relational model.

e Led us to known definability results. ..

e ...but what about effectivity (and efficiency)?

1. The setting of nested set
2. Extraction of nested definition

3. Effective relative rigid categoricity?
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The nested relational model, logic
and NRC




The nested relational model

We work with typed objects

Types for nested collections

T,U :=580|Set(T) | 1| T x U

Obvious semantics [T] determined inductively by [LU].

Taking [4] = string, we have

”

{(“seagull”, “gwylan”), (“goats”, “geifr”),...}
€ [Set(U x L0)]
{({ “shwmae”, “helo” }, {“hi”}),...}
€ [Set(Set(h) x Set())]
(00,2, {2, "3"})
€ [1 x Set(Set(1)) x L x Set(L0)]

7/37



The nested relational model

We work with typed objects

Types for nested collections

T,U :=580|Set(T) | 1| T x U

Obvious semantics [T] determined inductively by [LU].
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Nested collection transformations

Types for nested collections

T,U :=4|Set(T)|1|T xU

A transformation of nested sets is a function 7' — U
— is not part of the type system

Pre-image of a relation R

fib: Set(8l) x Set(& x &) —  Set(Ll)
(A, R) = R (A)={z|3Iye A(zx,y) € R}
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Nested collection transformations

Types for nested collections

T,U :=580|Set(T) | 1| T x U

Collect all pre-images of individual elements

fibs:  Set({ x &) —  Set(Ll x Set(Ll))
R —  {(a,fib({a},R)) | a € cod(R)}

Collect all sushsets of the input

P: Set(d) — Set(Set(i))
X = {ylycXx}

Note: P is computationally hard on finite instances
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Logical specfications

Queries can be specified in multi-sorted first-order logic:

e variables explicitly typed x : T
e basic predicates x €7 z and © =7 y 2,y : T and z : Set(T)

e terms for tupling and projections
e.g, m(((@,2), (0),2)) : (T x Set(T)) x 1
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Logical specfications

Queries can be specified in multi-sorted first-order logic:

e variables explicitly typed x : T
e basic predicates x €7 z and © =7 y 2,y : T and z : Set(T)

e terms for tupling and projections
€.g., 7T1(((£7Z)7 ())7x)) : (T X Set(T)) x1

Consider formulas with only bounded quantifications

Ag formulas

0, u= t=rul|teErul|Vzetp|poAY]|p
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@, u= t=rultErulVretp|pAy|-p
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Examples

0, = t=pul|t€rul|VreEtp|eAY]|p

e Every z € X is related to some a € A

Ve e X.Ja € A. (z,a) €ER

e For every (z,y) € R, if y € A, then x € X

Vp € R. mo(p) € A= mi(p) € X

11/37



Examples

Ay formulas

0, = t=pul|tErul|VreEtp|pAY|p

e For every (x,a) € R, there is some (a,X) € O st. x € X
Vp € R.3q € O. m1(p) € m2(0)
e Every element of (a, X) € O satisfies ¢fp({a}, R, X)

Vo € m2(q).(z,m(q)) € RA

TECH o 2 B i) = () = () & o)
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Explicit definitions: the nested relational calculus (NRC)

Usual terms and rules for variables, tupling, projections plus

the following set operators:

T'kFe:T 'k e :Set(Tl) P, x:Tll—eQ:Set(Tg)
'k {e} : Set(T) FFU{GQ | 2 € er} : Set(T2)

T'F e :Set(T) T'F ey :Set(T)
I'F Qg : Set(T) Tk e Ues: Set(T)

I'F e :Set(T) I'F ey : Set(T)
'k e1 \ €2 . Set(T)
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Explicit definitions: the nested relational calculus (NRC)
+ Get

Usual terms and rules for variables, tupling, projections plus

the following set operators:

T'kFe:T 'k e :Set(Tl) P, x:Tll—eQ:Set(Tg)
'k {e} : Set(T) FFU{GQ | 2 € er} : Set(T2)

T'F e :Set(T) T'F ey :Set(T)

I'F Qg : Set(T) Tk e Ues: Set(T)
I'F e :Set(T) I'F ey : Set(T) 'k e:Set(T)
I'Foe\ ez :Set(T) I'F Get(e) : T
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Expressiveness of NRC

Our running examples
o (A, R) = U{case(ma(p) €y A, {m1(p)},0) | p € R}
o R U{{fib(z, R)} |z € {mi(p) | p € R}}

Derivable constructs:

e maps {ej(z) |z € ex}
e at type-level, Bool := Set(1)
e basic predicates =7: T x T — Bool, €p: T' x Set(T") — Bool

e case analyses
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Expressiveness of NRC

[Gur Funning examples T
* (4,R) ~ Ufcase(ms(p) €y A, {m(»)}.0) | p € B}
e R Ul{fib(a, B)} | = € {ma(p) | p € R}

Derivable constructs:

e maps {ej(z) |z € ex}

e at type-level, Bool := Set(1)

e basic predicates =7: T x T — Bool, €p: T' x Set(T") — Bool
e case analyses

o Ag-separation {z € e| p(z)}

NRC terms e : T — Bool correspond to Ag formulas ¢(z7)
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Limits to the expressiveness of NRC

For practical purposes, NRC is not too expressive

e NRC is conservative over idealized SQL i.e., for flat queries

e queries polytime computable (over finite inputs)

Consequences
e rules out x — P(x)

e cannot represent function spaces with Set(—)

Consider (z,y) — tt
[T — Set(U)] # [T x U — Bool]

[T — Set(U)] — [T x U — Bool]

(For the rest of the talk: no finiteness assumptions)
14/37



Extraction from A, specifications




Effective extraction

Recall that ¢(i,0) is an implicit definition when it is functional:
o(i,0) Np(i, o) = o=0

For every such ¢(i,0), there is a compatible NRC term e(z)

o(i,0) = o=ce(i)
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Extraction from A, implicit definitions

For every such ¢(i,0), there is a compatible NRC term e(4)
v(i,0) = o=ce(i)
e(i) polytime computable from a focused proof

e Extension of Beth definability for flat queries
Set(UF) x ... x Set(U™) — Set(U)

15/37



Effective extraction

Recall that (i, 0) is an implicit definition when it is functional:
o(i,0) Np(i, o) = o=0

Extraction from A, implicit definitions

For every such ¢(i,0), there is a compatible NRC term e(4)
v(i,0) = o=ce(i)
e(i) polytime computable from a focused proof

e Extension of Beth definability for flat queries
Set(UF) x ... x Set(U™) — Set(U)

e Remark: a non-effective proof would still yield an algorithm

e Can be proven elementarily
e Alternatively, this can be reduced to a I13 statement
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Brief aside on focusing

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea
Decompose proofs by forcing saturations by certain rules in
positive and negative phases. Roughly:

e Negative: apply invertible rules as much as possible

e Positive: focus on a single formula until it turns negative.
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Brief aside on focusing

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea
Decompose proofs by forcing saturations by certain rules in
positive and negative phases. Roughly:

e Negative: apply invertible rules as much as possible

e Positive: focus on a single formula until it turns negative.

Complexity-wise (to the best of my knowledge)
A cut-free proof can be turned into a focused cut-free proof in

exponential time.
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Toward a proof system for nested sets

Wlog, we restrict to the following syntax

tbu = x| (tu) | m(t) | m2(t)] ()
0, = t=gul|t#yu|Izertp|Vrerto|pAY|pVy
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Toward a proof system for nested sets

Wlog, we restrict to the following syntax

tu s= ol (bw) | mt) | m() |
= t=gultFyu|Irertp|Vrert oA |oVy
Macros

teru = drewu. t=pu

tCru = Ve et.xeru

U =set(1) U = tCru AN uCrt

t=prxvu = m(t) =r m(u) Am(t) =y m2(u)

t=1u = T
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Toward a proof system for nested sets

Wlog, we restrict to the following syntax

tu s= ol (bw) | mt) | m() |
= t=gultFyu|Irertp|Vrert oA |oVy
Macros

teru = drewu. t=pu

tCru = Ve et.xeru

U =set(1) U = tCru AN uCrt

t=prxvu = m(t) =r m(u) Am(t) =y m2(u)

t=1u = T

e Bakes the axiom of extensionality in the definition of =
e No further non-equational axioms

e For the rest of the talk: we use sequent calculus e



Formal proofs of functionality
Certificate that ¢(i,0) is an implicit definition: a derivation

) 99(i70)7 99(7:70/) Fo=0

z€o, x€X, zex; y(X,x,2), y(X,x,2) >z€0' Fz€0
z€eo, x€X, zex; y(X,x,2), Vaex (y(X,x,a) > aco)rzeo

V-L

®)

zeo, xe€X, 2 ex; z=q 2/, y(X,x,2), Vaex (y(X,x,a) =2 aco)rzeo

z€o0, x€X;z€ex, y(X,x,2), Vaex (y(X,x,a) > a€o)rzeo
. z€o, xe€X; Y(X,x,z), Vaex (y(X,x,a) > aco)rzeo ®
L z€o, xe€X; y(X,x,z), VyeXVacy (y(X,y,a) > aco’)rzeo
z€o0, x€X; Y(X,x,2), 2(X,0')rz€o
. t z€o; Ixe X Y(X,x,2), 2(X,0)rzeo
L z€o0;VacoIx e X ¢Y(X,x,a), 2(X,0)rz€o

cx z€0; 2(X,0), Z(X,0)Fz€o0 (2)

A-L

Problem: what inductive invariant?
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The intuitionistic case

Input: T'(e,1), A(e,r) F 1, cut-free
Output: a NRC term e(c) s.t.

T Keylemma
o if ¢ is [ = r, then
- A E l=eAr=e
e if ¢y is [ C r, then
A E [CeneCr
e if ¢y is [ € r, then
A E le€e

AN Je. 1Celc)Cr
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The intuitionistic case

Input: T'(e,1), A(e,r) F 1, cut-free
Output: a NRC term e(c) s.t.

TR Keylemma
o if ¢ is [ = r, then
- A E l=eAr=e
o if ¢ is [ C r, then
A E [CeneCr
e if ¢y is [ € r, then
A E lee

AN Je. 1Celc)Cr

Why this is easy: single RHS formula, subformula of =7.
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Proof idea

Let us look at the key step that involves interpolation.

Izerl,Abzepr - F,ZGTZ,A):zeTeIH
AFICyr LAEICreneCrr

Assuming a A interpolant 6(z) such that

FhnzerlE=6(2) and 0z) EA=zerr
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Proof idea

Let us look at the key step that involves interpolation.

Izerl,Abzepr - F,ZGTZ,A):zeTeIH
AFICyr LAEICreneCrr

Assuming a A interpolant 6(z) such that
FhnzerlE=6(2) and 0z) EA=zerr

we can set e := {x € 'l | §(2)}

Other key cases in a hurry
U for V-L,  for V-L, {—} for 3-R
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Difficulty: with classical logic, we can contract the goal formula

From a proof I' A 3z €T r. | = x, compute a NRC term e
such that [ € e

e Weaker than definability: set of possible solutions
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e Proven by outer induction on the type structure

21/37



The classical case

Difficulty: with classical logic, we can contract the goal formula
Reduction to the € case

From a proof I', A -3z € r. [ = x, compute a NRC term e
such that [ € e

e Weaker than definability: set of possible solutions
e Proven by outer induction on the type structure

e Set-case by modifying the input proof to
3T Eser(ry Ve € a.cEl & cex (fresh a)

and then applying interpolation
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Parameterized definability, FO(=) version

Working with multisorted FO, no function symbols, signatures
L, Rand CC LNR. (and C “has a sort with > 2 elements”)

Theorem

If we have a focused derivation of
A FE JrVe Mc) <= p(r,c)
then we can compute in linear time a ¢ (p, ¢) over C' such that

LA |E JpVe. Mc) <= ¥(p, c)

Call ¢ a parameterized definition for .
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Relation to Beth definability /vague examples (1/2)

Reminder of what is the theorem
AR 3IrVe. Ae) < p(r,c)
¥ such that I'; A = Fp.Ve. A(c) <= ¥(p, c)

(Not useful) ways to instantiate the hypotheses:

e Trivial dr.: same premise as in Beth definability

e One generalization ¢(R) defines finitely many Rs, then we
have a parameterized definition of R

e Throw in a finite sort n to index finitely many distinct R;
with ¢(R;) for all ¢ and ¢(R)
e (Kueker already gave a proof-theoretic method)
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Relation to Beth definability /vague examples (2/2)

Reminder of what is the theorem
I'AF 3rVe. Mc) <= p(r,c)
¥ such that I', A |= 3p.Ve. A(c) <= ¥(p, ¢)

An instantiation (of questionable utility?):

e Fix a FO formula ¢(P) over a signature ¥ & { P}
e (Call CA the theory of comprehension over

o If we have
¢(P),CAF3X.Vz. P(z) &z € X

then P is parametrically FO-definable over 3.
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Relation to Beth definability /vague examples (2/2)

Reminder of what is the theorem
I'AF 3rVe. Mc) <= p(r,c)
¥ such that I', A |= 3p.Ve. A(c) <= ¥(p, ¢)

An instantiation (of questionable utility?):

e Fix a FO formula ¢(P) over a signature ¥ & { P}
e (Call CA the theory of comprehension over

e If we have
o(P),CAF3X.Vx. P(z) &z e X

then P is parametrically FO-definable over 3.
e Can be derived from a theorem of Chang & Makkai
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Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)
Let T be a theory over ¥ & {P}. TFAE:

P is parametrically FO-definable over ¥ (in 7)
for every model (M, ..., P) of T there are at most |M |

many valid alternatives for P
(i.e. P' C M such that (M, ..., P’) is also a model of T)
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Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Let T be a theory over ¥ & {P}. TFAE:

e P is parametrically FO-definable over ¥ (in 7T)
o for every model (M, ..., P) of T there are at most | M|

many valid alternatives for P
(i.e. P' C M such that (M, ..., P’) is also a model of T)

Proof: via saturated models

(equivalent condition: there exists a saturated model.. . )

Can we give a satisfactory effective counterpart to this?
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Back to our nested relations business

Adaptation in our setting with Aq set-theoretic formulas

(sadly not derived as a corollary)

Theorem

If we have a focused derivation

-

r@,...),AGr,..)F3I ervVzca ANz,...) < p(r,...,x)

—

then we have in linear time a NRC term E(i) such that

- — -

LG,...),A(,r,...) FanXe E(i)

Proof: induction; we need also to compute a 6(i) such that

— — — —

A(i,r,...)E0@G) and  T(,...),00) EanXe E(@)
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Key step: existential rule introducing the “main” formula

With G =3’ €T rVz € c. A(2) < p(z,7)
Or,0r,x €ck AL, AR, —p(z,w),\(z),G
O1,0Rr,z € ct AL, AR, p(z,w) = \(z),G
Or,0r,x €ck AL, AR, \(z) < p(z,w),G
JY O1,0r AL, AR, Vz €c. (A\(z) & p(z,w)),G
©L,Or AL, AR, G

e Shape around the root of the tree guaranteed by focusing
e Applying the induction hypothesis we have

Op,zcck Ax),ApL6HvAeE!
Or |: _'p(x7w)aARa_'9I1H

e Take 0 := 3z € c. O A O and

E = {{xGC\HIQH}} U U{E{HUE£H|JJ€C}
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For every such ¢(i,0), there is a compatible NRC term e(z)

p(i,0) = o=ce(i)

28 /37



What have we not learned?

Extraction from A, implicit definitions

For every such ¢(i,0), there is a compatible NRC term e(3)
p(i0) = o=e(i)

e(i) polytime computable from a focused proof

e The intuitionistic case is much easier
Conservativity for implicit definitions
If ¢(i, 0) is functional, then there is a formula x(Z) such that
the conjoined formula ¢~ 7(i,0) A VZ. x(Z) V —x (&) can be

proved to be functional in intuitionistic logic.

e (but finding x has no reason being easy!)
e W/o the complexity bound: easier proof via model theory
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Model-theory route

Nested collections can be regarded as multi-sorted structures

Sorts: 4l Set(4h), 4 x Set(Ll)
Function symbols: m,m, (—, —)
Relation symbol: €
Semantics: subobjects of X
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Model-theory route

Nested collections can be regarded as multi-sorted structures
Sorts: 4l Set(4h), 4 x Set(Ll)

Function symbols: m,m, (—, —)

Relation symbol: €

Semantics: subobjects of X

Interpretations: maps Models — Models via FO formulas

Can express

e product, disjoint union of structures 9,9 — M x N, M + N
e definable substructures and quotients
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Model-theory route

Nested collections can be regarded as multi-sorted structures

Sorts: 4l Set(4h), 4 x Set(Ll)
Function symbols: m,m, (—, —)
Relation symbol: €
Semantics: subobjects of X

Interpretations: maps Models — Models via FO formulas

Can express

e product, disjoint union of structures 9,9 — M x N, M + N
e definable substructures and quotients

For structures corresponding to nested collections,

NRC and Ag-interpretations coincide
29/37



The key model-theoretic lemma

Consider models of a theory T over two sorts 7 and o
Multi-sorted implicit definability

o is implicitly definable from 7 when every f : ?JJ?‘T =R)/¢ ‘T
has a unique extension f : 9t = N

m om’
~Y

o |- T o
~Y

7 — 7
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The key model-theoretic lemma

Consider models of a theory T over two sorts 7 and o
Multi-sorted implicit definability

o is implicitly definable from 7 when every f : ?JJI‘T =5))/¢ ‘T
has a unique extension f : 9t = N

Mm om’

o | T o

Lemma (~ relative rigid categoricity, dcl)

o implicitly definable from 7 = 3 interpretation of 7 into T‘T.
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The key model-theoretic lemma : example

Multi-sorted implicit definability

o is implicitly definable from 7 when every f : DJI‘T =5/¢ ‘T
has a unique extension f : 9t = M

M oo Example: 7T says that 7 is a
o~ real closed field and that o is a
o . s Y dimension two field extension

with a distinguished 7 with

T | T 2 1

Lemma (~ relative rigid categoricity, dcl)

o implicitly definable from 7 = 3 interpretation of 7 into ’T‘T.

Example (cont): exercise :)
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Coordinizability

o implicitly definable from 7 = 3 interpretation of 7 into T|T.

Proof idea: use Beth definability after computing coordinates.

3 a FO-definable partial surjection 7" — o.
That is, there exists x(p’, %) such that

V. 3p. x (P, x)
Yoz y x(0,z) AN\x(Py) =z =y

32/37
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Coordinizability

o implicitly definable from 7 = 3 interpretation of 7 into T}T.

Proof idea: use Beth definability after computing coordinates.

3 a FO-definable partial surjection 7" — o.
That is, there exists x(p’, %) such that

V. 3p. x (P, x)
Yoz y x(0,z) AN\x(Py) =z =y

From implicit definability: via the omitting type theorem

Can we make coordinizability effective/efficient?
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Effective implicit definabilty for sorts (1/2)

Problem #1: witness of implicit definability?
Multi-sorted implicit definability (mild alteration)
o is implicitly definable from 7 if whenever sm]T = sm’}

T?

there is a unique isomorphism f : 9t = M’ with f‘T =id.

m m’
~Y

o | - T o

T = T
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Effective implicit definabilty for sorts (1/2)

Problem #1: witness of implicit definability?
Multi-sorted implicit definability (mild alteration)
o is implicitly definable from 7 if whenever sm]T = EDT’}T,

there is a unique isomorphism f : 9t = M’ with f‘T =id.

M om’
Y

g | | O

T = T

Idea to reduce to provability

Consider the theory 7 U T’ over 7, 0,0’ talking about the join
of a pair of models 9t U M
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Effective implicit definabilty for sorts (2/2)

Lemma
Implicit definability is equivalent to the existence of a FO
formula ¢ (z7,y™ ) such that

T UT' 1 is an embedding extending the identity

(=) use Beth definability to compute !
(<) FO definable embedding = isomorphism (crucial thing 7 # 7'!)

(requires comprehension for the trivial part (ACAg))

We have a nice I1J statement

Effective implicit definable = coordinizable, effectively

Question: how efficient can we make that?
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Some very tentative results

From a cut-free proof of totality of ¢(z7,y™ ) in LJ
FvaT3y" o(z,y)
we can compute in polynomial time coordinates for 7.

Proof idea: induction until we hit the 3-R rule

From a cut-free proof of totality of ¢(z7,y™ ), if ¢ is ¥ and
functional, we can compute coordinates for 7.

Proof: via Herbrand’s theorem

(and some fiddly steps to get rid of function symbols)
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Why these results are no good

For intuitionistic logic

From a cut-free proof of totality of p(x7, yT/) in LJ we can

compute in polynomial time coordinates for 7.

While all ¢ can be “made intuitistically total”, I don’t have a
proof of this that does not presuppose classical coordinizability.

Restricted to X; formulas

From a cut-free proof of totality of o(z7,y" ), if ¢ is ¥1 and

functional, we can compute coordinates for 7.

For NRC, ¢ exhausts the quantifier hierarchy.
Why that won’t generalize too well
There exists a silly Iy ¢ functional and total (but which is not

an embedding) such that 7 is not coordinizable.
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Takeaways/further work that could be done

Nice theorem about NRC and implicit definitions but:

e Proof-theoretic take on definability results?
(one excuse: complexity)
e Chang-Makkai (~ countably many predicates)
e Definable closures (what I just discussed)
e Algebraic closures
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Nice theorem about NRC and implicit definitions but:

e Proof-theoretic take on definability results?

(one excuse: complexity)

e Chang-Makkai (~ countably many predicates)
e Definable closures (what I just discussed)
e Algebraic closures

e NRC with multisets/list operators

e Basic unanswered question: specification logic?
e Rough idea for the model-theoretic route: theory of families
indexed by FinSet/FinOrd, and look at coarser equivalences

e Implementation.

Thanks for listening! :)
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