Beth-like definability results, proof-theoretically

Cécilia Pradic (Swansea University)

j.w.w. Michael Benedikt (Oxford University) Christoph Wernhard (Postdam University)

September 13th 2024, Proof society workshop

Beth definability theorem

Beth definability

Let $\varphi(R)$ be an FO formula over $\Sigma \uplus \{R\}$

If $\varphi(R)$ implicitly defines R, that is

$$\varphi(R) \land \varphi(R') \implies \forall \vec{x}. \ R(\vec{x}) \iff R'(\vec{x})$$

then there is a corresponding explicit FO definition for R. That is, we have an FO formula $\psi(\vec{x})$ over Σ such that

$$\varphi(R) \implies \forall \vec{x}. \ R(\vec{x}) \Longleftrightarrow \psi(\vec{x})$$

Beth definability theorem

Beth definability

Let $\varphi(R)$ be an FO formula over $\Sigma \uplus \{R\}$

If $\varphi(R)$ implicitly defines R, that is

$$\varphi(R) \land \varphi(R') \implies \forall \vec{x}. \ R(\vec{x}) \iff R'(\vec{x})$$

then there is a corresponding explicit FO definition for R. That is, we have an FO formula $\psi(\vec{x})$ over Σ such that

$$\varphi(R) \implies \forall \vec{x}. \ R(\vec{x}) \Longleftrightarrow \psi(\vec{x})$$

- Model-theoretic proof using amalgamation
- Proof-theoretic effective proof using interpolation

Craig interpolation

Craig interpolation

If $\varphi \Rightarrow \psi$, there exists θ such that

$$\varphi \Rightarrow \theta$$
 and $\theta \Rightarrow \psi$

Further, θ mentions *only* variables/relation symbols common to φ and ψ .

Craig interpolation

Craig interpolation

If $\varphi \Rightarrow \psi$, there exists θ such that

$$\varphi \Rightarrow \theta$$
 and $\theta \Rightarrow \psi$

Further, θ mentions *only* variables/relation symbols common to φ and ψ .

• Robust result

 Δ_0 , intuitionistic/linear logic...

Craig interpolation

Craig interpolation

If $\varphi \Rightarrow \psi$, there exists θ such that

$$\varphi \Rightarrow \theta \qquad \text{and} \qquad \theta \Rightarrow \psi$$

Further, θ mentions *only* variables/relation symbols common to φ and ψ .

• Robust result

 Δ_0 , intuitionistic/linear logic...

- An actual *factorization* of proofs [Čubrić 94, Saurin 24]
- computable in $\mathcal{O}(n)$ from cut-free proofs

Beth definability from interpolation

Fix an implicit definition $\varphi(R)$. Since $\varphi(R)$ determines R, we have

$$\varphi(R) \land \varphi(R') \implies \forall \vec{x}. \ R(\vec{x}) \Longleftrightarrow R'(\vec{x})$$

which implies that we have a proof of

$$\varphi(R) \wedge R(\vec{x}) \quad \vdash \quad \varphi(R') \Longrightarrow R'(\vec{x})$$

Applying interpolation we get $\theta(\vec{x})$ that defines R since we have

$$\varphi(R) \wedge R(\vec{x}) \vdash \theta(\vec{x}) \quad \text{and} \quad \theta(\vec{x}) \wedge \varphi(R) \vdash R(\vec{x})$$

FO formulas $\psi(\vec{x})$ can be regarded as *queries*

- regard a relation as a table of elements
- $\psi(\vec{x})$ returns a new table

Specification	Implementation
Implicit definition	Explicit definition

Correspondence with (a fragment of) SQL

Restrict that to bounded quantifications.

Our work

Extending this to the **nested relational model**.

- Led us to known definability results...
- ... but what about effectivity (and efficiency)?

Plan

- 1. The setting of nested set
- 2. Extraction of nested definition
- 3. Effective relative rigid categoricity?

The nested relational model, logic and NRC

The nested relational model

We work with typed objects

Types for nested collections

```
T, U ::= \mathfrak{U} \mid \mathsf{Set}(T) \mid 1 \mid T \times U
```

Obvious semantics $[\![T]\!]$ determined inductively by $[\![\mathfrak{U}]\!].$

Examples

```
Taking \llbracket \mathfrak{U} \rrbracket = \mathtt{string}, we have

\{(\texttt{``seagull", ``gwylan"), (``goats", ``geifr"), ...\} \in \llbracket \mathtt{Set}(\mathfrak{U} \times \mathfrak{U}) \rrbracket

\{(\{\texttt{``shwmae", ``helo"\}, \{``hi"\}), ...\} \in \llbracket \mathtt{Set}(\mathtt{Set}(\mathfrak{U}) \times \mathtt{Set}(\mathfrak{U})) \rrbracket

((), \emptyset, ``4", \{``1", ``3"\}) \in \llbracket 1 \times \mathtt{Set}(\mathtt{Set}(1)) \times \mathfrak{U} \times \mathtt{Set}(\mathfrak{U}) \rrbracket
```

The nested relational model

We work with typed objects

Types for nested collections

```
T, U ::= \mathfrak{U} \mid \mathsf{Set}(T) \mid 1 \mid T \times U
```

Obvious semantics $[\![T]\!]$ determined inductively by $[\![\mathfrak{U}]\!].$

Examples

```
Taking \llbracket \mathfrak{U} \rrbracket = \mathtt{string}, we have

\{(\texttt{``seagull", ``gwylan"), (``goats", ``geifr"), ...\} \in \llbracket \mathtt{Set}(\mathfrak{U} \times \mathfrak{U}) \rrbracket

\{(\{\texttt{``shwmae", ``helo"\}, \{``hi"\}), ...\} \in \llbracket \mathtt{Set}(\mathtt{Set}(\mathfrak{U}) \times \mathtt{Set}(\mathfrak{U})) \rrbracket

((), \emptyset, ``4", \{``1", ``3"\}) \in \llbracket 1 \times \mathtt{Set}(\mathtt{Set}(1)) \times \mathfrak{U} \times \mathtt{Set}(\mathfrak{U}) \rrbracket
```

Types for nested collections

$$T,U ::= \mathfrak{U} \mid \mathsf{Set}(T) \mid 1 \mid T \times U$$

A transformation of nested sets is a function $T \to U$ \rightarrow is **not** part of the type system

A transformation of **flat** relations

Pre-image of a relation R

$$\begin{array}{rcl} \mathsf{fib}: & \mathsf{Set}(\mathfrak{U})\times\mathsf{Set}(\mathfrak{U}\times\mathfrak{U}) & \to & \mathsf{Set}(\mathfrak{U}) \\ & & (A,R) & \mapsto & R^{-1}(A) = \{x \mid \exists y \in A.(x,y) \in R\} \end{array}$$

$$T, U ::= \mathfrak{U} \mid \mathsf{Set}(T) \mid 1 \mid T \times U$$

Transformations of nested collections

Collect all pre-images of individual elements

$$\begin{array}{rcl} \mathsf{fibs}: & \mathsf{Set}(\mathfrak{U} \times \mathfrak{U}) & \to & \mathsf{Set}(\mathfrak{U} \times \mathsf{Set}(\mathfrak{U})) \\ & R & \mapsto & \{(a,\mathsf{fib}(\{a\},R)) \mid a \in \mathsf{cod}(R)\} \end{array}$$

Collect all susbsets of the input

$$\mathcal{P}: \quad \mathsf{Set}(\mathfrak{U}) \quad \to \quad \mathsf{Set}(\mathsf{Set}(\mathfrak{U})) \\ X \quad \mapsto \quad \{y \mid y \subseteq X\}$$

Note: $\mathcal P$ is computationally hard on finite instances

Queries can be specified in *multi-sorted* first-order logic:

- variables explicitly typed x:T
- basic predicates $x \in_T z$ and $x =_T y$ x, y: T and z: Set(T)
- terms for tupling and projections

e.g., $\pi_1(((x,z),()),x)): (T \times \mathsf{Set}(T)) \times 1$

Queries can be specified in *multi-sorted* first-order logic:

- variables explicitly typed x:T
- basic predicates $x \in_T z$ and $x =_T y$ x, y: T and z: Set(T)
- terms for tupling and projections

e.g., $\pi_1(((x,z),()),x)): (T \times \mathsf{Set}(T)) \times 1$

Consider formulas with only **bounded quantifications**

Δ_0 formulas

$$\varphi, \psi \quad ::= \quad t =_T u \mid t \in_T u \mid \forall x \in t \ \varphi \mid \varphi \land \psi \mid \neg \varphi$$

Examples

Δ_0 formulas

$$\varphi, \psi \quad ::= \quad t =_T u \mid t \in_T u \mid \forall x \in t \ \varphi \mid \varphi \land \psi \mid \neg \varphi$$

Examples

Δ_0 formulas

$$\varphi, \psi \quad ::= \quad t =_T u \mid t \in_T u \mid \forall x \in t \ \varphi \mid \varphi \land \psi \mid \neg \varphi$$

$\varphi_{\mathsf{fib}}(A, R, X)$ for $X = R^{-1}(A)$

• Every $x \in X$ is related to some $a \in A$

 $\forall x \in X . \exists a \in A. \ (x, a) \in R$

• For every $(x, y) \in R$, if $y \in A$, then $x \in X$

 $\forall p \in R. \ \pi_2(p) \in A \Rightarrow \pi_1(p) \in X$

Examples

Δ_0 formulas

$$\varphi, \psi \quad ::= \quad t =_T u \mid t \in_T u \mid \forall x \in t \; \varphi \mid \varphi \land \psi \mid \neg \varphi$$

$\varphi_{\mathsf{fibs}}(R, O) \text{ for } O = \{(a, R^{-1}(\{a\})) \mid a \in \mathsf{cod}(R)\}$

• For every $(x, a) \in R$, there is some $(a, X) \in O$ s.t. $x \in X$

$$\forall p \in R. \exists q \in O. \ \pi_1(p) \in \pi_2(O)$$

• Every element of $(a, X) \in O$ satisfies $\varphi_{\mathsf{fib}}(\{a\}, R, X)$

$$\forall q \in O. \quad \begin{array}{l} \forall x \in \pi_2(q).(x,\pi_1(q)) \in R \land \\ \forall p \in R. \ \pi_2(p) = \pi_1(q) \Rightarrow \pi_1(p) \in \pi_2(q) \end{array}$$

Usual terms and rules for variables, tupling, projections plus the following set operators:

$$\frac{\Gamma \vdash e: T}{\Gamma \vdash \{e\}: \mathsf{Set}(T)} \qquad \frac{\Gamma \vdash e_1: \mathsf{Set}(T_1) \qquad \Gamma, \ x: T_1 \vdash e_2: \mathsf{Set}(T_2)}{\Gamma \vdash \bigcup \{e_2 \mid x \in e_1\}: \mathsf{Set}(T_2)}$$
$$\frac{\Gamma \vdash e_1: \mathsf{Set}(T) \qquad \frac{\Gamma \vdash e_1: \mathsf{Set}(T) \qquad \Gamma \vdash e_2: \mathsf{Set}(T)}{\Gamma \vdash e_1 \cup e_2: \mathsf{Set}(T)}$$
$$\frac{\Gamma \vdash e_1: \mathsf{Set}(T) \qquad \Gamma \vdash e_2: \mathsf{Set}(T)}{\Gamma \vdash e_1 \setminus e_2: \mathsf{Set}(T)}$$

Explicit definitions: the nested relational calculus (NRC) + Get

Usual terms and rules for variables, tupling, projections plus the following set operators:

$$\frac{\Gamma \vdash e: T}{\Gamma \vdash \{e\}: \operatorname{Set}(T)} \qquad \frac{\Gamma \vdash e_1: \operatorname{Set}(T_1) \qquad \Gamma, \ x: T_1 \vdash e_2: \operatorname{Set}(T_2)}{\Gamma \vdash \bigcup \{e_2 \mid x \in e_1\}: \operatorname{Set}(T_2)}$$
$$\frac{\Gamma \vdash e_1: \operatorname{Set}(T) \qquad \Gamma \vdash e_2: \operatorname{Set}(T)}{\Gamma \vdash e_1 \cup e_2: \operatorname{Set}(T)}$$
$$\frac{\Gamma \vdash e_1: \operatorname{Set}(T) \qquad \Gamma \vdash e_2: \operatorname{Set}(T)}{\Gamma \vdash e_1 \setminus e_2: \operatorname{Set}(T)} \qquad \frac{\Gamma \vdash e_2: \operatorname{Set}(T)}{\Gamma \vdash \operatorname{Get}(e): T}$$

Expressiveness of NRC

Our running examples

- $(A, R) \mapsto \bigcup \{ \operatorname{case}(\pi_2(p) \in_{\mathfrak{U}} A, \{\pi_1(p)\}, \emptyset) \mid p \in R \}$
- $R \mapsto \bigcup \{ \{ \mathsf{fib}(x, R) \} \mid x \in \{ \pi_1(p) \mid p \in R \} \}$

Derivable constructs:

- maps $\{e_1(x) \mid x \in e_2\}$
- at type-level, $\mathsf{Bool} := \mathsf{Set}(1)$
- basic predicates $=_T: T \times T \to \mathsf{Bool}, \in_T: T \times \mathsf{Set}(T) \to \mathsf{Bool}$
- case analyses

Expressiveness of NRC

Our running examples

- $(A, R) \mapsto \bigcup \{ \mathsf{case}(\pi_2(p) \in_{\mathfrak{U}} A, \{\pi_1(p)\}, \emptyset) \mid p \in R \}$
- $R \mapsto \bigcup \{ \{ \mathsf{fib}(x, R) \} \mid x \in \{ \pi_1(p) \mid p \in R \} \}$

Derivable constructs:

- maps $\{e_1(x) \mid x \in e_2\}$
- at type-level, $\mathsf{Bool} := \mathsf{Set}(1)$
- basic predicates $=_T: T \times T \to \mathsf{Bool}, \in_T: T \times \mathsf{Set}(T) \to \mathsf{Bool}$
- case analyses
- Δ_0 -separation $\{x \in e \mid \varphi(x)\}$

Proposition

NRC terms $e: T \to \mathsf{Bool}$ correspond to Δ_0 formulas $\varphi(x^T)$

Limits to the expressiveness of NRC

For practical purposes, NRC is not too expressive

- NRC is *conservative* over idealized SQL i.e., for flat queries
- queries *polytime* computable (over finite inputs)

Consequences

- rules out $x \mapsto \mathcal{P}(x)$
- cannot represent function spaces with Set(-)

```
Consider (x, y) \mapsto \mathtt{tt}
```

$$[T \to \mathsf{Set}(U)] \not\simeq [T \times U \to \mathsf{Bool}]$$

 $[T \to \mathsf{Set}(U)] \hookrightarrow [T \times U \to \mathsf{Bool}]$

(For the rest of the talk: no finiteness assumptions)

Extraction from Δ_0 specifications

Recall that $\varphi(i, o)$ is an implicit definition when it is functional: $\varphi(i, o) \land \varphi(i, o') \implies o = o'$

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term e(i)

$$\varphi(i, o) \implies o = e(i)$$

Recall that $\varphi(i, o)$ is an implicit definition when it is functional: $\varphi(i, o) \land \varphi(i, o') \implies o = o'$

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term e(i)

$$\varphi(i, o) \implies o = e(i)$$

e(i) polytime computable from a **focused** proof

Recall that $\varphi(i, o)$ is an implicit definition when it is functional: $\varphi(i, o) \land \varphi(i, o') \implies o = o'$

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term e(i)

$$\varphi(i, o) \implies o = e(i)$$

 $\boldsymbol{e}(i)$ polytime computable from a **focused** proof

Extension of Beth definability for flat queries
 Set(𝔅^k) × ... × Set(𝔅^m) → Set(𝔅ⁿ)

Recall that $\varphi(i, o)$ is an implicit definition when it is functional: $\varphi(i, o) \land \varphi(i, o') \implies o = o'$

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term e(i)

$$\varphi(i, o) \implies o = e(i)$$

 $\boldsymbol{e}(i)$ polytime computable from a **focused** proof

- Extension of Beth definability for flat queries Set(𝔅^k) × ... × Set(𝔅^m) → Set(𝔅ⁿ)
- Remark: a non-effective proof would still yield an algorithm
 - Can be proven elementarily
 - Alternatively, this can be reduced to a Π_2^0 statement

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea

Decompose proofs by forcing saturations by certain rules in *positive* and *negative* phases. Roughly:

- Negative: apply invertible rules as much as possible
- Positive: focus on a single formula until it turns negative.

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea

Decompose proofs by forcing saturations by certain rules in *positive* and *negative* phases. Roughly:

- Negative: apply invertible rules as much as possible
- Positive: focus on a single formula until it turns negative.

Complexity-wise (to the best of my knowledge)

A cut-free proof can be turned into a focused cut-free proof in exponential time.

Toward a proof system for nested sets

Wlog, we restrict to the following syntax

 $t, u ::= x | (t, u) | \pi_1(t) | \pi_2(t) | ()$

 $\varphi, \psi \quad ::= \quad t =_{\mathfrak{U}} u \mid t \neq_{\mathfrak{U}} u \mid \exists x \in_{T} t \; \varphi \mid \forall x \in_{T} t \; \varphi \mid \varphi \land \psi \mid \varphi \lor \psi$

Toward a proof system for nested sets

Wlog, we restrict to the following syntax

 $t, u \quad ::= \quad x \mid (t, u) \mid \pi_1(t) \mid \pi_2(t) \mid ()$

 $\varphi, \psi \quad ::= \quad t =_{\mathfrak{U}} u \mid t \neq_{\mathfrak{U}} u \mid \exists x \in_{T} t \; \varphi \mid \forall x \in_{T} t \; \varphi \mid \varphi \land \psi \mid \varphi \lor \psi$

Macros		
$t \in_T u$:=	$\exists x \in u. \ t =_T u$
$t \subseteq_T u$:=	$\forall x \in t. \ x \in_T u$
$t =_{Set(T)} u$:=	$t \subseteq_T u \land u \subseteq_T t$
$t =_{T \times U} u$:=	$\pi_1(t) =_T \pi_1(u) \land \pi_2(t) =_U \pi_2(u)$
$t =_1 u$:=	Т

Toward a proof system for nested sets

Wlog, we restrict to the following syntax

$$t, u ::= x | (t, u) | \pi_1(t) | \pi_2(t) | ()$$

 $\varphi, \psi \quad ::= \quad t =_{\mathfrak{U}} u \mid t \neq_{\mathfrak{U}} u \mid \exists x \in_T t \; \varphi \mid \forall x \in_T t \; \varphi \mid \varphi \land \psi \mid \varphi \lor \psi$

Macros		
$t \in_T u$:=	$\exists x \in u. \ t =_T u$
$t \subseteq_T u$:=	$\forall x \in t. \ x \in_T u$
$t =_{Set(T)} u$:=	$t \subseteq_T u \land u \subseteq_T t$
$t =_{T \times U} u$:=	$\pi_1(t) =_T \pi_1(u) \land \pi_2(t) =_U \pi_2(u)$
$t =_1 u$:=	Т

- Bakes the axiom of extensionality in the definition of $=_T$
- No further non-equational axioms
- For the rest of the talk: we use sequent calculus

Formal proofs of functionality

Certificate that $\varphi(i, o)$ is an implicit definition: a derivation

$$\varphi(i,o), \ \varphi(i,o') \vdash o = o'$$

$$= -\text{SUBST} \begin{array}{c} \overset{\text{AX}}{\overset{\text{}}{\text{}} = -\text{c}} & \overset{\text{}}{\text{}} = \frac{z \in o, x \in X, z \in x; z \in o' \vdash z \in o'}{(X, x, z)}, x(X, x, z) \Rightarrow z \in o' \vdash z \in o'}{(x \in v, z \in v, z \in x; x(X, x, z), x(X, x, z))} \\ \overset{\text{}}{\text{} = z \in o, x \in X, z \in x; x(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') \vdash z \in o'}{(x \in v, x \in X; z \in x; \chi(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') \vdash z \in o'}{(x \in v, x \in X; z \in x, \chi(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') \vdash z \in o'}{(x \in v, x \in X; z \in v, x(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') \vdash z \in o'}{(x \in v, x \in X; \psi(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') \vdash z \in o')}{(x \in v, x \in X; \psi(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') \vdash z \in o')}{(x \in v, x \in X; \psi(X, x, z), \forall a \in x (\chi(X, x, a) \Rightarrow a \in o') \vdash z \in o')}{(x \in v, x \in X; \psi(X, x, x), \forall y \in X \forall a \in y (\chi(X, y, a) \Rightarrow a \in o') \vdash z \in o')}{(x \in v, x \in X; \psi(X, x, x), \forall y \in X \forall a \in y (\chi(X, y, a) \Rightarrow a \in o') \vdash z \in o')}{(x \in v, x \in X; \psi(X, x, x), \forall y \in X \forall a \in y (\chi(X, y, a) \Rightarrow a \in o') \vdash z \in o')}}{(x \in v, x \in X; \psi(X, x, x), \forall (X, x, x), \Sigma(X, o') \vdash z \in o')}{(x \in v, x \in X; \psi(X, x, x), \forall (X, x, x), \Sigma(X, o') \vdash z \in o')}{(x \in v, x \in X; \psi(X, x, x), \Sigma(X, o') \vdash z \in o')}}}$$

Problem: what inductive invariant?

The intuitionistic case

 $\Gamma(c,l), \ \Delta(c,r) \ \vdash \ l \subseteq r$ $l \subseteq r$ $l = e. \ l \subseteq e(c) \subseteq r$

Input: $\Gamma(c, l), \Delta(c, r) \vdash \psi$, cut-free Output: a NRC term e(c) s.t.

Key lemma

• if
$$\psi$$
 is $l = r$, then

$$\Gamma, \Delta \models l = e \wedge r = e$$

• if
$$\psi$$
 is $l \subseteq r$, then

$$\Gamma, \Delta \models l \subseteq e \land e \subseteq r$$

• if
$$\psi$$
 is $l \in r$, then

$$\Gamma, \Delta \models l \in e$$
The intuitionistic case

 $\Gamma(c,l), \ \Delta(c,r) \ \vdash \ l \subseteq r$ l = c r $l = e. \ l \subseteq e(c) \subseteq r$

Input: $\Gamma(c, l), \Delta(c, r) \vdash \psi$, cut-free Output: a NRC term e(c) s.t.

Key lemma • if ψ is l = r, then $\Gamma, \Delta \models l = e \land r = e$ • if ψ is $l \subseteq r$, then $\Gamma, \Delta \models l \subseteq e \land e \subseteq r$ • if ψ is $l \in r$, then $\Gamma, \Delta \models l \in e$

Why this is easy: single RHS formula, subformula of $=_T$.

Let us look at the key step that involves interpolation.

$$\frac{\Gamma, z \in_T l, \Delta \vdash z \in_T r}{\Gamma, \Delta \vdash l \subseteq_T r} \qquad \longmapsto \qquad \frac{\Gamma, z \in_T l, \Delta \models z \in_T e^{\mathrm{IH}}}{\Gamma, \Delta \models l \subseteq_T e \wedge e \subseteq_T r}$$

Assuming a Δ_0 interpolant $\theta(z)$ such that

 $\Gamma \land z \in_T l \models \theta(z)$ and $\theta(z) \models \Delta \Rightarrow z \in_T r$

Let us look at the key step that involves interpolation.

$$\frac{\Gamma, z \in_T l, \Delta \vdash z \in_T r}{\Gamma, \Delta \vdash l \subseteq_T r} \qquad \longmapsto \qquad \frac{\Gamma, z \in_T l, \Delta \models z \in_T e^{\mathrm{IH}}}{\Gamma, \Delta \models l \subseteq_T e \wedge e \subseteq_T r}$$

Assuming a Δ_0 interpolant $\theta(z)$ such that

 $\Gamma \land z \in_T l \models \theta(z)$ and $\theta(z) \models \Delta \Rightarrow z \in_T r$

we can set $e := \{x \in e^{\mathrm{IH}} \mid \theta(z)\}$

Let us look at the key step that involves interpolation.

$$\frac{\Gamma, z \in_T l, \Delta \vdash z \in_T r}{\Gamma, \Delta \vdash l \subseteq_T r} \qquad \longmapsto \qquad \frac{\Gamma, z \in_T l, \Delta \models z \in_T e^{\mathrm{IH}}}{\Gamma, \Delta \models l \subseteq_T e \wedge e \subseteq_T r}$$

Assuming a Δ_0 interpolant $\theta(z)$ such that

 $\Gamma \wedge z \in_T l \models \theta(z)$ and $\theta(z) \models \Delta \Rightarrow z \in_T r$

we can set $e := \{x \in e^{\mathrm{IH}} \mid \theta(z)\}$

Other key cases in a hurry \cup for \lor -L, \bigcup for \forall -L, $\{-\}$ for \exists -R

Difficulty: with classical logic, we can contract the goal formula

Reduction to the \in case From a proof $\Gamma, \Delta \vdash \exists x \in {}^+ r. \ l = x$, compute a NRC term esuch that $l \in e$

• Weaker than definability: **set** of possible solutions

Difficulty: with classical logic, we can contract the goal formula

Reduction to the \in case From a proof $\Gamma, \Delta \vdash \exists x \in {}^+ r. \ l = x$, compute a NRC term esuch that $l \in e$

- Weaker than definability: **set** of possible solutions
- Proven by outer induction on the type structure

Difficulty: with classical logic, we can contract the goal formula

Reduction to the \in case From a proof $\Gamma, \Delta \vdash \exists x \in {}^+ r. \ l = x$, compute a NRC term esuch that $l \in e$

- Weaker than definability: **set** of possible solutions
- Proven by outer induction on the type structure
- Set-case by modifying the input proof to

$$\exists x \in_{\mathsf{Set}(T)} . \forall c \in a. \ c \in l \Leftrightarrow c \in x \qquad (\text{fresh } a)$$

and then applying interpolation

Working with multisorted FO, no function symbols, signatures L, R and $C \subseteq L \cap R$. (and C "has a sort with ≥ 2 elements")

Theorem

If we have a **focused** derivation of

$$\Gamma, \Delta \vdash \exists r. \forall c. \ \lambda(c) \Longleftrightarrow \rho(r, c)$$

then we can compute in linear time a $\psi(\vec{p}, c)$ over C such that

$$\Gamma, \Delta \models \exists \vec{p}. \forall c. \ \lambda(c) \Longleftrightarrow \psi(\vec{p}, c)$$

Call ψ a **parameterized definition** for λ .

Reminder of what is the theorem

 $\frac{\Gamma, \Delta \vdash \exists r. \forall c. \ \lambda(c) \Longleftrightarrow \rho(r, c)}{\psi \text{ such that } \Gamma, \Delta \models \exists \vec{p}. \forall c. \ \lambda(c) \Longleftrightarrow \psi(\vec{p}, c)}$

(Not useful) ways to instantiate the hypotheses:

- Trivial $\exists r$.: same premise as in Beth definability
- One generalization $\varphi(R)$ defines finitely many Rs, then we have a parameterized definition of R
 - Throw in a finite sort n to index finitely many distinct R_i with φ(R_i) for all i and φ(R)
 - (Kueker already gave a proof-theoretic method)

Relation to Beth definability/vague examples (2/2)

 $\begin{array}{l} \textbf{Reminder of what is the theorem} \\ \hline \Gamma, \Delta \vdash \exists r. \forall c. \ \lambda(c) \Longleftrightarrow \rho(r,c) \\ \hline \overline{\psi \text{ such that } \Gamma, \Delta \models \exists \vec{p}. \forall c. \ \lambda(c) \Longleftrightarrow \psi(\vec{p},c) \end{array}$

An instantiation (of questionable utility?):

- Fix a FO formula $\varphi(P)$ over a signature $\Sigma \uplus \{P\}$
- Call CA the theory of comprehension over Σ
- If we have

$$\varphi(P), \mathsf{CA} \vdash \exists X. \forall x. P(x) \Leftrightarrow x \in X$$

then P is parametrically FO-definable over Σ .

Relation to Beth definability/vague examples (2/2)

 $\begin{array}{l} \textbf{Reminder of what is the theorem} \\ \hline \Gamma, \Delta \vdash \exists r. \forall c. \ \lambda(c) \Longleftrightarrow \rho(r,c) \\ \hline \overline{\psi \text{ such that } \Gamma, \Delta \models \exists \vec{p}. \forall c. \ \lambda(c) \Longleftrightarrow \psi(\vec{p},c) \end{array}$

An instantiation (of questionable utility?):

- Fix a FO formula $\varphi(P)$ over a signature $\Sigma \uplus \{P\}$
- Call CA the theory of comprehension over Σ
- If we have

$$\varphi(P), \mathsf{CA} \vdash \exists X. \forall x. P(x) \Leftrightarrow x \in X$$

then P is parametrically FO-definable over Σ .

• Can be derived from a theorem of Chang & Makkai

Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)

Let \mathcal{T} be a theory over $\Sigma \uplus \{P\}$. TFAE:

- P is parametrically FO-definable over Σ (in \mathcal{T})
- for every model (M,..., P) of T there are at most |M| many valid alternatives for P

 (i.e. P' ⊆ M such that (M,..., P') is also a model of T)

Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)

Let \mathcal{T} be a theory over $\Sigma \uplus \{P\}$. TFAE:

- P is parametrically FO-definable over Σ (in \mathcal{T})
- for every model (M,..., P) of T there are at most |M| many valid alternatives for P

 (i.e. P' ⊆ M such that (M,..., P') is also a model of T)

Proof: via saturated models

(equivalent condition: there exists a saturated model...)

Parametrized definability from countably many options

Extends the cardinality condition of Kueker as far as possible.

Theorem (Chang-Makkai, 64)

Let \mathcal{T} be a theory over $\Sigma \uplus \{P\}$. TFAE:

- P is parametrically FO-definable over Σ (in \mathcal{T})
- for every model (M,..., P) of T there are at most |M| many valid alternatives for P

 (i.e. P' ⊆ M such that (M,..., P') is also a model of T)

Proof: via saturated models

(equivalent condition: there exists a saturated model...)

Question

Can we give a satisfactory effective counterpart to this?

Back to our nested relations business

Adaptation in our setting with Δ_0 set-theoretic formulas (sadly not derived as a corollary)

Theorem

If we have a **focused** derivation

$$\Gamma(\vec{i},\ldots),\Delta(\vec{i},r,\ldots)\vdash \exists r'\in r. \forall x\in a. \ \lambda(x,\ldots) \Longleftrightarrow \rho(r',\ldots,x)$$

then we have in linear time a NRC term $E(\vec{i})$ such that

$$\Gamma(\vec{i},\ldots), \Delta(\vec{i},r,\ldots) \models a \cap \lambda \in E(\vec{i})$$

Proof: induction; we need also to compute a $\theta(\vec{i})$ such that

$$\Delta(\vec{i}, \textbf{\textit{r}}, \ldots) \models \theta(\vec{i}) \qquad \text{and} \qquad \Gamma(\vec{i}, \ldots), \theta(\vec{i}) \models a \cap \lambda \in E(\vec{i})$$

Key step: existential rule introducing the "main" formula

With
$$\mathcal{G} = \exists r' \in^+ r. \forall z \in c. \quad \lambda(z) \iff \rho(z, r')$$

 $\wedge \frac{\Theta_L, \Theta_R, x \in c \vdash \Delta_L, \Delta_R, \neg \rho(x, w), \lambda(x), \mathcal{G}}{\Theta_L, \Theta_R, x \in c \vdash \Delta_L, \Delta_R, \rho(x, w) \Rightarrow \lambda(x), \mathcal{G}} \vdots$
 $\forall \frac{\Theta_L, \Theta_R, x \in c \vdash \Delta_L, \Delta_R, \lambda(x) \Leftrightarrow \rho(x, w), \mathcal{G}}{\Theta_L, \Theta_R \vdash \Delta_L, \Delta_R, \forall z \in c. \; (\lambda(z) \Leftrightarrow \rho(z, w)), \mathcal{G}}$
 $\exists^+ \frac{\Theta_L, \Theta_R \vdash \Delta_L, \Delta_R, \forall z \in c. \; (\lambda(z) \Leftrightarrow \rho(z, w)), \mathcal{G}}{\Theta_L, \Theta_R \vdash \Delta_L, \Delta_R, \mathcal{G}}$

- Shape around the root of the tree guaranteed by focusing
- Applying the induction hypothesis we have

$$\begin{split} \Theta_L, x \in c \models & \lambda(x), \Delta_L, \theta_1^{\mathsf{IH}} \lor \Lambda \in E_1^{\mathsf{IH}} \\ \Theta_R \models \neg \rho(x, w), \Delta_R, \neg \theta_1^{\mathsf{IH}} \end{split}$$

• Take
$$\theta := \exists x \in c. \ \theta_1^{\mathsf{IH}} \land \theta_2^{\mathsf{IH}}$$
 and
 $E := \left\{ \left\{ x \in c \mid \theta_2^{\mathsf{IH}} \right\} \right\} \cup \bigcup \left\{ E_1^{\mathsf{IH}} \cup E_2^{\mathsf{IH}} \mid x \in c \right\}$

27/37

What have we not learned?

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term e(i)

$$\varphi(i, o) \implies o = e(i)$$

What have we not learned?

Extraction from Δ_0 implicit definitions

For every such $\varphi(i, o)$, there is a compatible NRC term e(i)

$$\varphi(i, o) \implies o = e(i)$$

 $\boldsymbol{e}(i)$ polytime computable from a **focused** proof

• The intuitionistic case is much easier

Conservativity for implicit definitions

If $\phi(i, o)$ is functional, then there is a formula $\chi(\vec{x})$ such that the conjoined formula $\phi^{\neg \neg}(i, o) \land \forall \vec{x}. \ \chi(\vec{x}) \lor \neg \chi(\vec{x})$ can be proved to be functional in intuitionistic logic.

- (but finding χ has no reason being easy!)
- W/o the complexity bound: easier proof via model theory

Nested collections can be regarded as multi-sorted structures

An object X of sort $Set(\mathfrak{U} \times Set(\mathfrak{U}))$ Sorts: $\mathfrak{U}, Set(\mathfrak{U}), \mathfrak{U} \times Set(\mathfrak{U})$ Function symbols: $\pi_1, \pi_2, \langle -, - \rangle$ Relation symbol: $\in_{\mathfrak{U}}$

Semantics: subobjects of X

Nested collections can be regarded as multi-sorted structures

An object X of sort $Set(\mathfrak{U} \times Set(\mathfrak{U}))$ Sorts: $\mathfrak{U}, Set(\mathfrak{U}), \mathfrak{U} \times Set(\mathfrak{U})$ Function symbols: $\pi_1, \pi_2, \langle -, - \rangle$ Relation symbol: $\in_{\mathfrak{U}}$ Semantics: subobjects of X

Interpretations: maps Models \rightarrow Models via FO formulas

Nested collections can be regarded as multi-sorted structures

An object X of sort $Set(\mathfrak{U} \times Set(\mathfrak{U}))$ Sorts: $\mathfrak{U}, Set(\mathfrak{U}), \mathfrak{U} \times Set(\mathfrak{U})$ Function symbols: $\pi_1, \pi_2, \langle -, - \rangle$ Relation symbol: $\in_{\mathfrak{U}}$ Semantics: subobjects of X

Interpretations: maps Models \rightarrow Models via FO formulas Can express

- product, disjoint union of structures $\mathfrak{M}, \mathfrak{N} \mapsto \mathfrak{M} \times \mathfrak{N}, \mathfrak{M} + \mathfrak{N}$
- definable substructures and quotients

Nested collections can be regarded as multi-sorted structures

An object X of sort $Set(\mathfrak{U} \times Set(\mathfrak{U}))$ Sorts: $\mathfrak{U}, Set(\mathfrak{U}), \mathfrak{U} \times Set(\mathfrak{U})$ Function symbols: $\pi_1, \pi_2, \langle -, - \rangle$ Relation symbol: $\in_{\mathfrak{U}}$ Semantics: subobjects of X

Interpretations: maps Models \rightarrow Models via FO formulas Can express

- product, disjoint union of structures $\mathfrak{M}, \mathfrak{N} \mapsto \mathfrak{M} \times \mathfrak{N}, \mathfrak{M} + \mathfrak{N}$
- definable substructures and quotients

NRC and interpretations

For structures corresponding to nested collections, NRC and Δ_0 -interpretations coincide

The key model-theoretic lemma

Consider models of a theory \mathcal{T} over two sorts τ and σ Multi-sorted implicit definability

 σ is implicitly definable from τ when every $f: \mathfrak{M}|_{\tau} \cong \mathfrak{M}'|_{\tau}$ has a unique extension $\widehat{f}: \mathfrak{M} \cong \mathfrak{M}'$

The key model-theoretic lemma

Consider models of a theory \mathcal{T} over two sorts τ and σ Multi-sorted implicit definability

 σ is implicitly definable from τ when every $f: \mathfrak{M}|_{\tau} \cong \mathfrak{M}'|_{\tau}$ has a unique extension $\widehat{f}: \mathfrak{M} \cong \mathfrak{M}'$

Lemma (\sim relative rigid categoricity, dcl)

 σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of \mathcal{T} into $\mathcal{T}|_{\tau}$.

Multi-sorted implicit definability

 σ is implicitly definable from τ when every $f: \mathfrak{M}|_{\tau} \cong \mathfrak{M}'|_{\tau}$ has a unique extension $\widehat{f}: \mathfrak{M} \cong \mathfrak{M}'$

Example: \mathcal{T} says that τ is a real closed field and that σ is a dimension two field extension with a distinguished *i* with $i^2 = -1$.

Lemma (~ relative rigid categoricity, dcl) σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of \mathcal{T} into $\mathcal{T}|_{\tau}$.

Example (cont): exercise :)

Coordinizability

Lemma (\sim relative rigid categoricity, dcl)

 σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of \mathcal{T} into $\mathcal{T}|_{\tau}$.

Proof idea: use Beth definability after computing coordinates.

Coordinizability (~ Gaifman's coordinizability) \exists a FO-definable partial surjection $\tau^n \rightharpoonup \sigma$. That is, there exists $\chi(\vec{p}, x^{\sigma})$ such that $\forall x. \exists \vec{p}. \chi(\vec{p}, x)$ $\forall \vec{p} x y. \chi(\vec{p}, x) \land \chi(\vec{p}, y) \Longrightarrow x = y$

Coordinizability

Lemma (~ relative rigid categoricity, dcl)

 σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of \mathcal{T} into $\mathcal{T}|_{\tau}$.

Proof idea: use Beth definability after computing coordinates.

Coordinizability (~ Gaifman's coordinizability) \exists a FO-definable partial surjection $\tau^n \rightharpoonup \sigma$. That is, there exists $\chi(\vec{p}, x^{\sigma})$ such that $\forall x. \exists \vec{p}. \chi(\vec{p}, x)$ $\forall \vec{p} x y. \chi(\vec{p}, x) \land \chi(\vec{p}, y) \Longrightarrow x = y$

From implicit definability: via the omitting type theorem

Coordinizability

Lemma (\sim relative rigid categoricity, dcl)

 σ implicitly definable from $\tau \Rightarrow \exists$ interpretation of \mathcal{T} into $\mathcal{T}|_{\tau}$.

Proof idea: use Beth definability after computing coordinates.

Coordinizability (~ Gaifman's coordinizability) \exists a FO-definable partial surjection $\tau^n \rightharpoonup \sigma$. That is, there exists $\chi(\vec{p}, x^{\sigma})$ such that $\forall x. \exists \vec{p}. \ \chi(\vec{p}, x)$ $\forall \vec{p} x y. \ \chi(\vec{p}, x) \land \chi(\vec{p}, y) \Longrightarrow x = y$

From implicit definability: via the omitting type theorem

Question

Can we make coordinizability effective/efficient?

Effective implicit definability for sorts (1/2)

Problem #1: witness of implicit definability? **Multi-sorted implicit definability (mild alteration)** σ is **implicitly definable from** τ if whenever $\mathfrak{M}|_{\tau} = \mathfrak{M}'|_{\tau}$, there is a unique isomorphism $f : \mathfrak{M} \cong \mathfrak{M}'$ with $f|_{\tau} = \mathsf{id}$.

Effective implicit definability for sorts (1/2)

Problem #1: witness of implicit definability? Multi-sorted implicit definability (mild alteration) σ is implicitly definable from τ if whenever $\mathfrak{M}|_{\tau} = \mathfrak{M}'|_{\tau}$, there is a unique isomorphism $f : \mathfrak{M} \cong \mathfrak{M}'$ with $f|_{\tau} = \operatorname{id}$.

Idea to reduce to provability

Consider the theory $\mathcal{T} \cup \mathcal{T}'$ over τ, σ, σ' talking about the join of a pair of models $\mathfrak{M} \cup \mathfrak{M}'$

Effective implicit definability for sorts (2/2)

Lemma

Implicit definability is equivalent to the existence of a FO formula $\psi(x^{\tau}, y^{\tau'})$ such that

 $\mathcal{T} \cup \mathcal{T}' \vdash \psi$ is an embedding extending the identity

 (\Rightarrow) use Beth definability to compute $\psi!$

(\Leftarrow) FO definable embedding = isomorphism (crucial thing $\tau \neq \tau'$!) (requires comprehension for the trivial part (ACA₀))

We have a nice Π_2^0 statement

Effective implicit definable \Rightarrow coordinizable, effectively

Question: how efficient can we make that?

For intuitionistic logic

From a cut-free proof of totality of $\varphi(x^{\tau}, y^{\tau'})$ in LJ

$$\vdash \forall x^{\tau} \exists y^{\tau'}. \varphi(x, y)$$

we can compute in polynomial time coordinates for τ .

Proof idea: induction until we hit the \exists -R rule

Restricted to Σ_1 formulas

From a cut-free proof of totality of $\varphi(x^{\tau}, y^{\tau'})$, if φ is Σ_1 and functional, we can compute coordinates for τ .

Proof: via Herbrand's theorem

(and some fiddly steps to get rid of function symbols)

For intuitionistic logic

From a cut-free proof of totality of $\varphi(x^{\tau}, y^{\tau'})$ in LJ we can compute in polynomial time coordinates for τ .

While all φ can be "made intuitistically total", I don't have a proof of this that does not presuppose classical coordinizability.

Restricted to Σ_1 formulas

From a cut-free proof of totality of $\varphi(x^{\tau}, y^{\tau'})$, if φ is Σ_1 and functional, we can compute coordinates for τ .

For NRC, φ exhausts the quantifier hierarchy.

Why that won't generalize too well

There exists a silly $\Pi_2 \varphi$ functional and total (but which is not an embedding) such that τ is not coordinizable.

Takeaways/further work that could be done

Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

- Chang-Makkai
- Definable closures
- Algebraic closures

 $(\sim \text{ countably many predicates})$ (what I just discussed) Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

- Chang-Makkai (\sim countably many predicate
- Definable closures
- Algebraic closures
- NRC with multisets/list operators
 - Basic unanswered question: specification logic?
 - Rough idea for the model-theoretic route: theory of families indexed by FinSet/FinOrd, and look at coarser equivalences

(~ countably many predicates) (what I just discussed) Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

- Chang-Makkai (\sim countably many predicates)
- Definable closures
- Algebraic closures
- NRC with multisets/list operators
 - Basic unanswered question: specification logic?
 - Rough idea for the model-theoretic route: theory of families indexed by FinSet/FinOrd, and look at coarser equivalences
- Implementation.

 \sim countably many predicates) (what I just discussed)
Nice theorem about NRC and implicit definitions but:

• Proof-theoretic take on definability results?

(one excuse: complexity)

- Chang-Makkai (\sim countably many predicates)
- Definable closures
- Algebraic closures
- NRC with multisets/list operators
 - Basic unanswered question: specification logic?
 - Rough idea for the model-theoretic route: theory of families indexed by FinSet/FinOrd, and look at coarser equivalences
- Implementation.

Thanks for listening! :)

(what I just discussed)