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Verification of engineered systems/programs

Goal : check safety of engineered systems

▶ “The green and red lights are not on at the same time”
▶ “Orange is flashed before red”
▶ . . .

Some more complicated devices:
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Logic for verification

Typical system:

≈
0start 1

(0,_)|0

(1, 0)|0

(1, 1)|1

(0, 1)|0

(1,_)|1

Typical task: Given a specification φ (logical formula). . .
. . . can the following be done automatically?

Model checking

Answer whether yes or no a system satisfies φ?

Synthesis

Generate a system satisfying φ from scratch.

Decide logic?
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Logic and decidability, algorithmically

Hilbert’s dream
The more extreme version of Hilbert’s program (1920s):
▶ Reduce mathematics to formalized arithmetics.
▶ A mechanical method to decide the (mathematical) truth.

Incompleteness [Gödel-Turing (1930s)]

Impossible in general

Decidable subcases

▶ Logics over fixed finite domains.
▶ Monadic Second Order (MSO) logic over infinite words.
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Proof theory and constructivity

Proof theory at a very high level

Formalize mathematically what is a correct proof.
▶ How to under-approximate truth correctly. . .

▶ . . . but also insight into limitations and the geometry of proofs.

⇝ Not all mathematical arguments are equally informative.

Theorem
π + e is transcendental or e · π is transcendental (or both are).

. . . but we do not know whether π + e is transcendental or not. . .

A constructive proof would be more informative.

proofs −→ computable witnesses
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Monadic Second-Order (MSO) logic and constructiveness

Monadic Second-Order logic (MSO)

▶ A fragment of Second-Order logic.
▶ Algorithmically decidable over

N,Q, the infinite binary tree {0, 1}∗, . . .
▶ Subsumes many verification logics. LTL, CTL, . . .

Decidable ̸= constructive

Soundness of decision procedures ⇐= non-constructive theorems.
▶ Over N: infinite Ramsey theorem, weak König’s Lemma.
▶ Over {0, 1}∗: determinacy of infinite parity games.
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Motivating questions

How (non)-constructive is MSO?

What axiomatic strength characterizes a given MSO theory?
▶ With H. Michalewski, L. Kołodziejczyk and M. Skrzypczak in Warsaw.

⇝ Metatheoretical analysis of Büchi’s decidability theorem.

When can we extract computational content from MSO proofs?
▶ With C. Riba in Lyon.

⇝ Refinement of MSO(N) with witness extraction.
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Outline

Monadic Second-Order logic

Part I: Reverse Mathematics

Part II: proof systems for Church’s synthesis

Conclusion
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MSO over infinite words

Syntax of MSO(N)

φ,ψ ::= n ∈ X | n < k | ∃n φ | ∃X φ | ¬φ | φ ∧ ψ

▶ Can be regarded as a subsystem of Second-Order Arithmetic
▶ Standard model: n ∈ N, X ∈ P(N)
▶ Only unary predicates. no pairing, no addition

Typical MSO(N)-definable properties

▶ “The set X ⊆ N is infinite.”
▶ “The set X ⊆ N is finite.”

Corresponds exactly to sets recognizable by automata over infinite words.
▶ Infinite words: regard sets as sequences of bits through P(N) ≃ 2ω

▶ φ(X1, . . .Xk): formula over Σω for Σ = 2k
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Non-deterministic Büchi automata (NBA)

Definition
A non-deterministic Büchi automaton (NBA) A : Σ is a tuple (Q, q0, δ,F )

▶ Q is a finite set of states, q0 ∈ Q

▶ transition function δ : Σ× Q → P(Q)

▶ F ⊆ Q accepting states

Recognizes languages of infinite words L(A) ⊆ Σω:

w ∈ L(A) iff there is a run over w ∈ Σω hitting F infinitely often

non-recursive acceptance condition

Example:

0, 1

0
0 L(A) = streams with finitely many 1.
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MSO/automata correspondance

MSO formulas over Σ

φ7→Aφ

''

φ7→L(φ) ((

automata over Σ

A7→L(A)ww
P(Σω)

Decidability [Büchi (1962)]

MSO over infinite words is decidable.

▶ Proof idea: automata theoretic-construction for each logical connective.
▶ Hard case for infinite words: negation ¬.

corresponds to complementation
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Complementation, determinization and constructivity

For finite word automata: easy complementation for deterministic automata.
0, 1

0
0

. . . but Büchi automata are hard to determinize.

Theorem [McNaughton (1968)]

Non-deterministic Büchi automata can be determinized into Rabin automata.
more complex acceptance condition

▶ Büchi’s original complementation procedure: w/o determinization.
▶ Effective algorithms for automata . . .
▶ . . . but non-constructive proofs of soundness!

usual proofs: infinite Ramsey theorem, weak König’s lemma

Quantify how non-constructive they are?
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Outline

Monadic Second-Order logic

Part I: Reverse Mathematics
Reverse Mathematics
Büchi’s theorem
Beyond infinite words

Part II: proof systems for Church’s synthesis

Conclusion
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Reverse Mathematics

▶ A framework to analyze axiomatic strength.
▶ Vast program. [Friedman, Simpson, Steele 70s]

Methodology

▶ Consider a theorem T formulated in second-order arithmetic.
▶ Work in the weak theory RCA0.
▶ Target some natural axiom A such that RCA0 ⊬ A.
▶ Show that RCA0 ⊢ A ⇔ T .

Essentially independence proofs. . .
▶ Similar in spirit to statements like

“Tychonoff’s theorem is equivalent to the axiom of choice.”

14 / 36



The big five

Outliers: infinite Ramsey for pairs, determinacy statements.

⇝ Where does Büchi’s theorem sit in this hierarchy?
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Büchi’s decidability theorem (over RCA0)

Weak König’s lemma Infinite Ramsey theorem

Bounded weak König’s lemma Determinization of NBA

⇓

⇓

⇓w

Compl. of NBAMSO(ω)

Σ0
2-induction Additive Ramsey

⇑ ⇓

⇐

⇒

⇑

The Logical Strength of Büchi’s Decidability Theorem
[Kołodziejczyk, Michalewski, P., Skrzypczak, 2016]
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Beyond infinite words

Theorem [Kołodziejczyk, Michalewski (2015)]

Decidability of MSO over the infinite binary tree is not provable in Π1
2-CA0.

▶ Rabin’s theorem requires much higher axiomatic strength.
▶ Roughly on par with determinacy of infinite parity games.

BC(Σ0
2) games

▶ Intermediate cases?

MSO over the rationals (MSO(Q))

▶ Decidable via a reduction to the infinite tree.
▶ Cover all countable linear orders.
▶ Direct algebraic decidability proofs.

[Shelah (1975)], [Carton, Colcombet, Puppis (2013)]
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Strength of additive Ramsey over Q and MSO(Q)

Theorem [Kołodziejczyk, Michalewski, P., Skrzypczak]

Over RCA0, the following are equivalent:
▶ the shuffle principle [Carton, Colcombet, Puppis (2013)]

▶ Shelah’s additive Ramseyan theorem over Q [Shelah (1975)]

▶ induction for Σ0
2 formulas

However, does not gauge the strength of MSO(Q)

Expressivity

The classical theory MSO(Q) has a sentence equivalent to Π1
1-CA0.

Conjecture

Over RCA0, the following are equivalent:
▶ The axiom of finite Π1

1-recursion.
▶ Determinacy of infinite weak parity games. BC(Σ0

1) games

▶ Soundness of the decision algorithm for MSO(Q).
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Outline

Monadic Second-Order logic

Part I: Reverse Mathematics
Reverse Mathematics
Büchi’s theorem
Beyond infinite words

Part II: proof systems for Church’s synthesis
Church’s synthesis and witness extraction
Constructive proof systems
Categorical/syntactic approach

Conclusion
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Church’s synthesis (1/2): causal functions

1

0

b|a , a|a

a|a

b|b

Causal/synchronous stream functions f : Σω → Γω

▶ Interpret n ∈ N as time steps.
▶ Lifted from functions f̂ : Σ+ → Γ as

f̂ : Σω → Γω

s 7→ n 7→ f (s(0) . . . s(n))

i.e., the output does not depend on the future.
▶ Focus on finite-state causal functions.

(Correspond to Mealy machines)

▶ All f.s. causal functions are recursive.
▶ All causal functions are continuous.
▶ Some recursive functions are not causal. w 7−→ n 7→ wn+1

20 / 36



Church’s synthesis (2/2): the Büchi-Landweber theorem

Church’s synthesis problem

Given a formula φ(X ,Y ), find a f. s. causal f : Σω → Γω such that

∀w φ(w , f (w))

Example (inspired from [Thomas (2008)]):
▶ φ(X ,Y ) ≡ (X infinite ⇒ Y infinite) and ∀i (i ∈ Y ⇒ i + 1 /∈ Y )

1 0
1|0 , 0|0

0|0
1|1

Theorem [Büchi-Landweber (1969)]

Algorithmic solution for φ(X ,Y ) in MSO.

▶ Algorithmically costly. . .
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MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]

MSO is completely axiomatized by the axioms of second-order arithmetic.

Church’s synthesis reminiscent of extraction from proofs:

MSO ⊢ ∀x∃y φ(x , y)

?
=⇏⇒

∃f f.s. causal ∀x φ(x , f (x))

Classical theorems in MSO

▶ Excluded middle (subtle point {0, 1}ω vs P(N))

▶ The infinite pigeonhole principle
▶ Instances of additive Ramsey

⇝ No algorithmic witnesses for ∀∃ theorems.
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Extraction from proofs

Goal: a refinement of MSO(N) with extraction for causal functions.
▶ Toward semi-automatic approach to synthesis.
▶ Approach inspired by realizability. [Kleene (1945), . . . ]

Analogous example: extraction for intuitionistic arithmetic (HA)

If HA ⊢ ∀x∃yφ(x , y), there is an algorithm computing

f : N → N recursive such that ∀x φ(x , f (x))

▶ A subset of classical arithmetic (PA).
▶ As expressive as classical arithmetic. (φ 7→ φ¬¬)
▶ Can be refined to System T functions. [Gödel (1930s)]

Analogy
Classical system MSO(N) PA

Realizers Causal functions System T
Intuitionistic system ??? HA
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▶ Can be refined to System T functions. [Gödel (1930s)]

Analogy
Classical system MSO(N) PA

Realizers Causal functions System T
Intuitionistic system ??? HA
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Synchronous MSO (SMSO) [P., Riba (2017)]

Intuitionistic version of MSO

φ,ψ ::= α | φ ∧ ψ | ∃X φ | ¬φ
Quantification over individuals encoded as usual

Glivenko’s theorem for SMSO
MSO ⊢ φ if and only if SMSO ⊢ ¬¬φ

▶ Negation erases computational contents.

Extraction of f.s. causal functions
SMSO ⊢ ∃y ¬¬φ(x , y) iff there is a f.s. causal f s.t. MSO ⊢ ∀x φ(x , f (x))

▶ Proofs φ ⊢ ψ interpreted as simulations between ND automata.

No interpretation for ⇒ and ∀
Polarity restriction
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A linear refinement LMSO [P., Riba (2018)]

▶ Polarized system with dualities.
▶ Requires the introduction of linear connectives.

Linear MSO (LMSO)

φ,ψ ::= α | φ⊗ ψ | φ` ψ | φ⊸ ψ | ∀Xφ | ∃Xφ | !φ− | ?φ+ | . . .

Deterministic
(±) Non-deterministic

(+)

Universal
(−)

?(−)

⊗,`,∃
⊗,`,⊸

!(−)

⊗,`,∀

(−)⊥

Alternating (∀, ∃,⊗,`,⊸)

SMSO ≈ restriction to positives

25 / 36



A linear refinement LMSO [P., Riba (2018)]

▶ Polarized system with dualities.
▶ Requires the introduction of linear connectives.

Linear MSO (LMSO)

φ,ψ ::= α | φ⊗ ψ | φ` ψ | φ⊸ ψ | ∀Xφ | ∃Xφ | !φ− | ?φ+ | . . .

Deterministic
(±) Non-deterministic

(+)

Universal
(−)

?(−)

⊗,`,∃
⊗,`,⊸

!(−)

⊗,`,∀

(−)⊥

Alternating (∀, ∃,⊗,`,⊸)

SMSO ≈ restriction to positives

25 / 36



A linear refinement LMSO [P., Riba (2018)]

▶ Polarized system with dualities.
▶ Requires the introduction of linear connectives.

Linear MSO (LMSO)

φ,ψ ::= α | φ⊗ ψ | φ` ψ | φ⊸ ψ | ∀Xφ | ∃Xφ | !φ− | ?φ+ | . . .

Deterministic
(±) Non-deterministic

(+)

Universal
(−)

?(−)

⊗,`,∃
⊗,`,⊸

!(−)

⊗,`,∀

(−)⊥

Alternating (∀, ∃,⊗,`,⊸)

SMSO ≈ restriction to positives

25 / 36



A linear refinement LMSO [P., Riba (2018)]

▶ Polarized system with dualities.
▶ Requires the introduction of linear connectives.

Linear MSO (LMSO)

φ,ψ ::= α | φ⊗ ψ | φ` ψ | φ⊸ ψ | ∀Xφ | ∃Xφ | !φ− | ?φ+ | . . .

Deterministic
(±) Non-deterministic

(+)

Universal
(−)

?(−)

⊗,`,∃
⊗,`,⊸

!(−)

⊗,`,∀

(−)⊥

Alternating (∀, ∃,⊗,`,⊸)

SMSO ≈ restriction to positives

25 / 36



Expressivity and proof extraction for LMSO

Conservativity

LMSO → MSO
φ 7→ ⌈φ⌉

If LMSO ⊢ φ, then MSO ⊢ ⌈φ⌉.

Expressivity

MSO → LMSO
φ 7→ φL

If MSO ⊢ φ, then LMSO ⊢ φL.

LMSO

φ 7→ Aφ

((

φ 7→ JφK ''

Alternating automata

Acceptance gameuu
Simulation games

Extraction of f.s. causal functions
LMSO ⊢ ∀x∃y φL(x , y) iff there is a f.s causal f s.t. MSO ⊢ ∀x φ(x , f (x))
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Simulation model: logical aspects

▶ LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

▶ Similarities with Dialectica categories DC: [de Paiva (1989,1991)]

Realized principles

▶ Linear Markov principle and independence of premise.
▶ A classically false choice-like scheme

∀x ∈ Σω ∃y ∈ Γω φ(x , y) −⊸ ∃f ∈ (Σ → Γ)ω ∀x ∈ Σω φ(x , f (x))

f (x) for pointwise application

Double linear-negation elimination

For every φ, there is a realizer (φ⊸ ⊥)⊸ ⊥ −⊸ φ
but no canonical iso in general!

▶ Also holds in DC if the base satisfies choice.
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Why automata?

The above logic can be defined without reference to automata.
▶ ω-word automata guarantee decidability properties. . .
▶ But they are not needed to extract realizers.

⇝ A purely logical reformulation of LMSO using categorical semantics.

Goals

▶ Purely syntactic transformations.
▶ Understand links with typed realizability and Dialectica.
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Finite-state causal functions as terms

Define the category M of causal functions
▶ Objects: sets of streams Σω for Σ finite
▶ Morphisms: finite-state causal functions
▶ Cartesian products Σω × Γω ≃ (Σ× Γ)ω, but not cartesian-closed

Inductive presentation

f : Σ → Γ

f ω : Σω → Γω

f : Σω × Γω → Γω b0 ∈ Γ

fixb0(f ) : Σ
ω → Γω

+ closure under composition

Σω

Γω

Γω

f

b0
fixb0(f)

≈ guarded recursion fix : A▶A → A
topos of trees
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MSO(N) as an equational logic over M

FOM (First-Order Mealy)

φ,ψ ::= t =Σω u | φ ∧ ψ | ¬φ | ∃x ∈ Σω φ

▶ Typed variables stand for streams, terms for every f.s. causal functions.

Proposition

FOM and MSO(N) are interpretable in one another.

▶ Justifies focusing on FOM.

Tarskian semantics (categorical logic)

▶ Regard M as a multi-sorted Lawvere theory.

⇝ Tarskian semantics ≈ indexed category, from global section functor Γ

Γ : Σω 7−→ HomM (1ω,Σω)

Σω 7−→ (P (Γ (Σω)) ,⊆)
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SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

X × Y
π−→ X

⇝ the simple fibration s(C) → C

The construction Sum

Sum(E)

Sum(p)

  

��

//
⌟

E

p

��
s(C) × //

��

C

C

▶ Sum(p)-predicate: (U, φ(a, u))

U object of C, φ over A × U (in p)

≈ ∃u : U φ(a, u)

▶ Freely adds existential quantifications
(simple sums)

▶ Reminiscent of typed realizability
realizers in C

Reconstructing SMSO

Simulations of non-determinstic automata ≈ Sum applied to FOM
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Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]

Dial ∼= Sum ◦Prod Prod(p) ∼= Sum(pop)op [Hofstra (2011)]

▶ Dial(p)-predicate over A ≈ (U,X , φ(a, u, x))
think ∃u ∀x φ(a, u, x)

▶ interprets full intuitionistic MLL+FO

and exponentials
!(U,X , φ(u, x)) = (U, 1, ∀x φ(u, x)

Sum(p)

LNL-adjunction

**
⊥ Dial(p)

Dial▶(p)

jj

**
⊤ Prod(p)jj

Realized Dialectica-like construction Dial▶

▶ Only over a CCC extension of M
!(U,X , φ(u, x)) = (U▶X , 1, ∀x φ(f (▶ x), x)

▶ Relationship with Dial via a “feedback” monad
exploits fix : A▶A → A

▶ Polarity restrictions ≈ model of LMSO (restricted exponentials)
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Outline

Monadic Second-Order logic

Part I: Reverse Mathematics

Part II: proof systems for Church’s synthesis

Conclusion
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Part I : the logical strength of MSO

Summary

Axiomatic strength of two classical MSO theories.
▶ In the context of Reverse Mathematics.
▶ Strong link between Σ0

2-induction and MSO(N).
▶ Preliminary results on MSO(Q).

Related work

▶ Characterizations of the topological complexity of MSO-definable sets.
▶ Extension to the Reverse-mathematical analysis to intuitionistic logic.

[Lichter and Smolka (2018)]

▶ Conservativity results for cyclic arithmetic.
[Simpson (2017), Das (2019)]

34 / 36



Part I : the logical strength of MSO

Summary

Axiomatic strength of two classical MSO theories.
▶ In the context of Reverse Mathematics.
▶ Strong link between Σ0

2-induction and MSO(N).
▶ Preliminary results on MSO(Q).

Related work

▶ Characterizations of the topological complexity of MSO-definable sets.
▶ Extension to the Reverse-mathematical analysis to intuitionistic logic.

[Lichter and Smolka (2018)]

▶ Conservativity results for cyclic arithmetic.
[Simpson (2017), Das (2019)]

34 / 36



Part II: Curry-Howard for MSO(N)

Summary

▶ Realizability models based on simulations between automata
▶ Abstract reformulation link with Dialectica and typed realizability

▶ Complete extension of LMSO omitted from the talk [P., Riba (2019)]

Related work

▶ Fibrations of tree automata [Riba (2015)]

▶ Good-for-games automata
[Henziger, Piterman (2006), Kuperberg Skrzypczak (2015)]
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Final word

Some further questions

▶ Realizability for continuous functions Σω → Γω?
▶ Extensions of Dial▶ for fibrations over the topos of trees?

Fam(Fam(pop)op) instead of Dial(p)

▶ Undecidability of the equational logic of higher-order extensions of FOM?

Thanks for your attention! Questions?
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Induction and comprehension

RCA0 is defined by restricting induction and comprehension

Comprehension axiom

For every formula ϕ(n) (with X /∈ FV (ϕ)

∃X ∀n ∈ N (ϕ(n) ⇔ n ∈ X )

▶ RCA0: restricted to ∆0
1 formulas

recursive comprehension

Induction axiom
To prove that ∀n ∈ Nϕ(n) it suffices to show
▶ ϕ(0) holds
▶ for every n ∈ N, ϕ(n) implies ϕ(n + 1)

▶ RCA0: restricted to Σ0
1 formulas.

∃n δ(n) with δ ∈ ∆0
1

▶ Equivalent to minimization principles and comprehension for finite sets.

1 / 6



Additive Ramsey over ω

For any linear order (P, <) write [P]2 for {(i , j) ∈ P2 | i < j} and fix a finite
monoid (M, ·, e).
Call f : [P]2 → M additive when f (i , j) · f (j , k) = f (i , k) for all i < j < k

Additive Ramsey

For any additive f : [P]2 → M, there is an unbounded monochromatic X ⊆ P
(s.t. |f ([X ]2)| = 1).

Theorem
Over RCA0, additive Ramsey over ω is equivalent to Σ0

2-induction.

Direct proof: “as usual” for additive Ramsey (factored through an ordered variant in

the paper)

Π0
2-induction from additive Ramsey

Consider equivalently comprehension for sets bounded by n for ∃∞k δ(x , k).
Define the coloring f : [ω]2 → 2n as f (i , j)x = max

i≤l<j
δ(x , l).

Apply additive Ramsey and consider the color X of the monochromatic set; we
have

x ∈ X ⇔ ∃∞δ(x , k)

2 / 6
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Call f : [P]2 → M additive when f (i , j) · f (j , k) = f (i , k) for all i < j < k

Additive Ramsey

For any additive f : [P]2 → M, there is an unbounded monochromatic X ⊆ P
(s.t. |f ([X ]2)| = 1).

Theorem
Over RCA0, additive Ramsey over ω is equivalent to Σ0

2-induction.

Direct proof: “as usual” for additive Ramsey (factored through an ordered variant in

the paper)
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Combinatorics for coloring over Q

Let D be a dense linear order (≃ Q).
A function f : D → X is called homogeneous if f −1(x) is either dense or empty
for every x ∈ X .

The shuffle principle

For any coloring c : Q → J0, nK, there is I ⊆conv Q such that c
∣∣
I
is a shuffle.

▶ the key additional principle behind the usual inductive argument in
[Carton, Colcombet, Puppis (2015)]

Shelah’s additive Ramseyan theorem

Let M be a monoid. For every map f : [Q]2 → M such that
f (q, r)f (r , s) = f (q, s), there exists an interval I ⊆ Q and a finite partition into
finitely many dense sets Di of I such that f is constant over each [Di ]

2.

▶ the key additional principle behind the usual inductive argument in
[Shelah (1975)]
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The Büchi-Landweber theorem

Consider a formula φ(u, x). (u ∈ Uω, x ∈ Xω)
⇝ Infinite 2-player game Gφ between P and O.

O x0 x1 xn
P u0 u1

. . .
un

. . .
P wins
⇐⇒

φ(u, x) holds

P-strategies ≃ X+ → U O-strategies ≃ U∗ → X
causal functions eager causal functions

Theorem [Büchi-Landweber (1969)]

Suppose φ is MSO-definable. The game Gφ is determined:
▶ Either there exists a finite-state P-strategy sP(x) s.t. ∀x ∈ Xω φ(sP(x), x)
▶ Or there exists a finite-state O-strategy sO(u) s.t. ∀u ∈ Uω ¬φ(u, sO(u))
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The realizability notion for SMSO

Uniform non-deterministic automata
Tuples A = (Q, q0,U, δA,ΩA) : Σ where
▶ U a set of moves ≃ amount of non-determinism

▶ transition function δA : Σ× Q × U → Q induces δ∗A : Σω × Uω → Qω

▶ ΩA ⊆ Qω reasonable acceptance condition (parity, Muller, . . . )

▶ Same definable languages L(A) = {w | ∃u δ∗A(w , u)} U ≃ Q

Simulations A ⊩ f : B
Finite-state causal function f : Σω × Uω → V ω such that

∀w ∈ Σω∀u ∈ Uω δ∗A(w , u) ∈ ΩA ⇒ δ∗A(w , f (w , u)) ∈ ΩB

▶ If A ⊩ B, then L(A) ⊆ L(B)
▶ Natural interpretation for ∃, ∧ and ¬ for deterministic automata. . .
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Alternating uniform automata

Define a notion of alternating uniform automata (Q, q0,U,X , δ,Ω)

▶ sets of P-moves U and O-moves X

▶ δ : Σ× Q × U × X → Q

▶ w ∈ L(A) iff P wins an acceptance game

Simulation game

(U , X ) −⊸ (V , Y )
...

O un
P vn
O yn
P xn

...

P wins iff

⟨u, x⟩ P-winning ⇒ ⟨v , y⟩ P-winning

▶ X ≃ 1 ⇝ non-deterministic uniform automata
▶ U ≃ X ≃ 1 ⇝ deterministic automata

trivial simulations
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