Some proof-theoretical approaches to Monadic Second-Order logic PhD defense

Cécilia Pradic

Supervised by Henryk Michalewski & Colin Riba (University of Warsaw) (ÉNS Lyon)

June 23rd, 2020

Goal : check safety of engineered systems

. . .

- "The green and red lights are not on at the same time"
- "Orange is flashed before red"

2/36

Goal : check safety of engineered systems

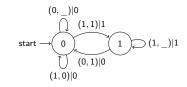
- "The green and red lights are not on at the same time"
- "Orange is flashed before red"

• ...

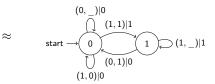
Some more complicated devices:

Typical system:

 \approx

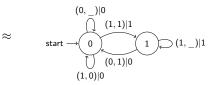


Typical system:



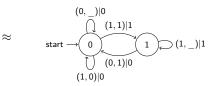
Typical task: Given a specification φ (logical formula)...

Typical system:



Typical task: Given a specification φ (logical formula)... ... can the following be done **automatically**?

Typical system:



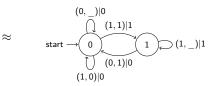
Typical task: Given a specification φ (logical formula)...

... can the following be done automatically?

Model checking

Answer whether yes or no a system satisfies φ ?

Typical system:



Typical task: Given a specification φ (logical formula)...

... can the following be done automatically?

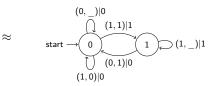
Model checking

Answer whether yes or no a system satisfies φ ?

Synthesis

Generate a system satisfying φ from scratch.

Typical system:



Typical task: Given a specification φ (logical formula)...

... can the following be done automatically?

Model checkingAnswer whether yes or no a system satisfies φ ?

Synthesis

Generate a system satisfying φ from scratch.

Decide logic?

Hilbert's dream

The more extreme version of Hilbert's program (1920s):

- Reduce mathematics to formalized arithmetics.
- A mechanical method to decide the (mathematical) truth.

Hilbert's dream

The more extreme version of Hilbert's program (1920s):

- Reduce mathematics to formalized arithmetics.
- A mechanical method to decide the (mathematical) truth.

Incompleteness [Gödel-Turing (1930s)]

Impossible in general

Hilbert's dream

The more extreme version of Hilbert's program (1920s):

- Reduce mathematics to formalized arithmetics.
- A mechanical method to decide the (mathematical) truth.

Incompleteness [Gödel-Turing (1930s)]

Impossible in general

Decidable subcases

- Logics over fixed finite domains.
- Monadic Second Order (MSO) logic over infinite words.

Formalize mathematically what is a correct proof.

How to under-approximate truth correctly...

Formalize mathematically what is a correct proof.

- How to under-approximate truth correctly...
- ... but also insight into **limitations** and the **geometry** of proofs.

Formalize mathematically what is a correct proof.

- How to under-approximate truth correctly...
- ... but also insight into **limitations** and the **geometry** of proofs.

 \rightsquigarrow Not all mathematical arguments are equally informative.

Formalize mathematically what is a correct proof.

- How to under-approximate truth correctly...
- ... but also insight into **limitations** and the **geometry** of proofs.

 \rightsquigarrow Not all mathematical arguments are equally informative.

Theorem

 $\pi + e$ is transcendental or $e \cdot \pi$ is transcendental (or both are).

Formalize mathematically what is a correct proof.

- How to under-approximate truth correctly...
- ... but also insight into **limitations** and the **geometry** of proofs.

 \rightsquigarrow Not all mathematical arguments are equally informative.

Theorem

 $\pi + e$ is transcendental or $e \cdot \pi$ is transcendental (or both are).

 \ldots but we do not know whether $\pi + e$ is transcendental or not \ldots

Formalize mathematically what is a correct proof.

- How to under-approximate truth correctly...
- ... but also insight into **limitations** and the **geometry** of proofs.

 \rightsquigarrow Not all mathematical arguments are equally informative.

Theorem

 $\pi + e$ is transcendental or $e \cdot \pi$ is transcendental (or both are).

 \ldots but we do not know whether $\pi + e$ is transcendental or not \ldots

A constructive proof would be more informative.

proofs \longrightarrow computable witnesses

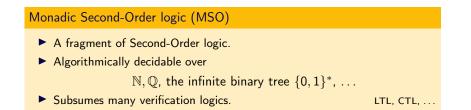
Monadic Second-Order logic (MSO)

- ► A fragment of Second-Order logic.
- Algorithmically decidable over

 $\mathbb{N},\mathbb{Q},$ the infinite binary tree $\{0,1\}^*,$ \ldots

Subsumes many verification logics.

LTL, CTL, ...



Decidable \neq constructive

Soundness of decision procedures \Leftarrow non-constructive theorems.

- ▶ Over N: infinite Ramsey theorem, weak König's Lemma.
- Over {0,1}*: determinacy of infinite parity games.

How (non)-constructive is MSO?

How (non)-constructive is MSO?

What axiomatic strength characterizes a given MSO theory?

▶ With H. Michalewski, L. Kołodziejczyk and M. Skrzypczak in Warsaw.

When can we extract computational content from MSO proofs?

▶ With C. Riba in Lyon.

How (non)-constructive is MSO?

What axiomatic strength characterizes a given MSO theory?

- ▶ With H. Michalewski, L. Kołodziejczyk and M. Skrzypczak in Warsaw.
- → Metatheoretical analysis of Büchi's decidability theorem.

When can we extract computational content from MSO proofs?

- ▶ With C. Riba in Lyon.
- \rightsquigarrow Refinement of MSO(\mathbb{N}) with witness extraction.

Monadic Second-Order logic

Part I: Reverse Mathematics

Part II: proof systems for Church's synthesis

Conclusion

Syntax of $MSO(\mathbb{N})$

$\varphi, \psi ::= \mathbf{n} \in X \mid \mathbf{n} < \mathbf{k} \mid \exists \mathbf{n} \varphi \mid \exists X \varphi \mid \neg \varphi \mid \varphi \land \psi$

- Can be regarded as a subsystem of Second-Order Arithmetic
- ▶ Standard model: $n \in \mathbb{N}$, $X \in \mathcal{P}(\mathbb{N})$
- Only unary predicates.

no pairing, no addition

Syntax of $MSO(\mathbb{N})$

$\varphi, \psi ::= \mathbf{n} \in \mathbf{X} \mid \mathbf{n} < \mathbf{k} \mid \exists \mathbf{n} \varphi \mid \exists \mathbf{X} \varphi \mid \neg \varphi \mid \varphi \land \psi$

- Can be regarded as a subsystem of Second-Order Arithmetic
- ▶ Standard model: $n \in \mathbb{N}$, $X \in \mathcal{P}(\mathbb{N})$
- Only unary predicates.

no pairing, no addition

Typical MSO(\mathbb{N})-definable properties

- "The set $X \subseteq \mathbb{N}$ is infinite."
- "The set $X \subseteq \mathbb{N}$ is finite."

$\varphi, \psi ::= \mathbf{n} \in \mathbf{X} \mid \mathbf{n} < \mathbf{k} \mid \exists \mathbf{n} \varphi \mid \exists \mathbf{X} \varphi \mid \neg \varphi \mid \varphi \land \psi$

- Can be regarded as a subsystem of Second-Order Arithmetic
- ▶ Standard model: $n \in \mathbb{N}$, $X \in \mathcal{P}(\mathbb{N})$
- Only unary predicates.

no pairing, no addition

Typical MSO(\mathbb{N})-definable properties

- "The set $X \subseteq \mathbb{N}$ is infinite."
- "The set $X \subseteq \mathbb{N}$ is finite."

Corresponds exactly to sets recognizable by automata over infinite words.

▶ Infinite words: regard sets as sequences of bits through $\mathcal{P}(\mathbb{N}) \simeq 2^{\omega}$

•
$$\varphi(X_1, \ldots X_k)$$
: formula over Σ^{ω} for $\Sigma = 2^k$

Definition

A non-deterministic Büchi automaton (NBA) $\mathcal{A} : \Sigma$ is a tuple (Q, q_0, δ, F)

- Q is a finite set of states, $q_0 \in Q$
- transition function $\delta : \Sigma \times Q \rightarrow \mathcal{P}(Q)$
- $F \subseteq Q$ accepting states

Recognizes languages of infinite words $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$:

 $w \in \mathcal{L}(\mathcal{A})$ iff there is a run over $w \in \Sigma^{\omega}$ hitting F infinitely often

non-recursive acceptance condition

Definition

A non-deterministic Büchi automaton (NBA) $\mathcal{A} : \Sigma$ is a tuple (Q, q_0, δ, F)

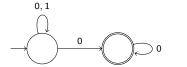
- Q is a finite set of states, $q_0 \in Q$
- transition function $\delta : \Sigma \times Q \rightarrow \mathcal{P}(Q)$
- $F \subseteq Q$ accepting states

Recognizes languages of infinite words $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$:

 $w \in \mathcal{L}(\mathcal{A})$ iff there is a run over $w \in \Sigma^{\omega}$ hitting F infinitely often

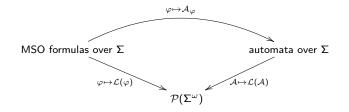
non-recursive acceptance condition

Example:



 $\mathcal{L}(\mathcal{A}) =$ streams with finitely many 1.

MSO/automata correspondance



Decidability [Büchi (1962)]

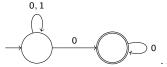
MSO over infinite words is decidable.

- Proof idea: automata theoretic-construction for each logical connective.
- ▶ Hard case for infinite words: negation ¬.

corresponds to complementation

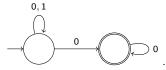
Complementation, determinization and constructivity

For finite word automata: easy complementation for *deterministic* automata.



... but Büchi automata are hard to determinize.

For finite word automata: easy complementation for *deterministic* automata.



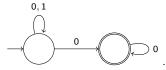
... but Büchi automata are hard to determinize.

Theorem [McNaughton (1968)]

Non-deterministic Büchi automata can be determinized into Rabin automata. more complex acceptance condition

- ▶ Büchi's original complementation procedure: w/o determinization.
- Effective algorithms for automata

For finite word automata: easy complementation for *deterministic* automata.



... but Büchi automata are hard to determinize.

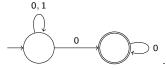
Theorem [McNaughton (1968)]

Non-deterministic Büchi automata can be determinized into Rabin automata. more complex acceptance condition

- ▶ Büchi's original complementation procedure: w/o determinization.
- Effective algorithms for automata
- ... but non-constructive proofs of soundness!

usual proofs: infinite Ramsey theorem, weak König's lemma

For finite word automata: easy complementation for *deterministic* automata.



... but Büchi automata are hard to determinize.

Theorem [McNaughton (1968)]

Non-deterministic Büchi automata can be determinized into Rabin automata. more complex acceptance condition

- Büchi's original complementation procedure: w/o determinization.
- Effective algorithms for automata
- ... but non-constructive proofs of soundness!

usual proofs: infinite Ramsey theorem, weak König's lemma

Quantify how non-constructive they are?

Outline

Monadic Second-Order logic

Part I: Reverse Mathematics Reverse Mathematics Büchi's theorem Beyond infinite words

Part II: proof systems for Church's synthesis

Conclusion

- ► A framework to analyze axiomatic strength.
- ► Vast program.

[Friedman, Simpson, Steele 70s]

Methodology

- Consider a theorem *T* formulated in second-order arithmetic.
- Work in the weak theory RCA₀.
- Target some natural axiom A such that $RCA_0 \nvDash A$.
- Show that $RCA_0 \vdash A \Leftrightarrow T$.

Essentially independence proofs...

Similar in spirit to statements like

"Tychonoff's theorem is equivalent to the axiom of choice."

The big five

Π^1_1 Comprehension	$\Pi_1^1 \text{-} CA_0$	\iff	Lusin's separation theorem
	↓		
Transfinite Recursion	ATR_0	\iff	Determinacy of open games
	↓		
Σ_1^0 Comprehension		\iff	König's Lemma
	↓		
Weak König's Lemma	WKL ₀	\iff	Brouwer's fixed point theorem
	↓		
Recursive Comprehension	RCA ₀		

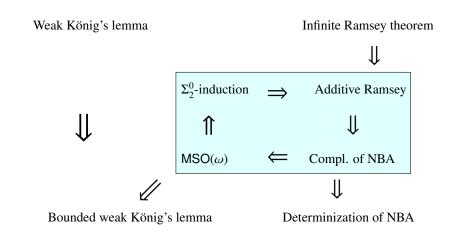
Outliers: infinite Ramsey for pairs, determinacy statements.

The big five

Π^1_1 Comprehension	Π_1^1 –CA $_0$	\iff	Lusin's separation theorem
	↓		
Transfinite Recursion	ATR_0	\iff	Determinacy of open games
	↓		
Σ_1^0 Comprehension	ACA ₀	\iff	König's Lemma
	↓		
Weak König's Lemma	WKL ₀	\iff	Brouwer's fixed point theorem
	↓		
Recursive Comprehension	RCA ₀		

Outliers: infinite Ramsey for pairs, determinacy statements.

→ Where does Büchi's theorem sit in this hierarchy?



The Logical Strength of Büchi's Decidability Theorem

[Kołodziejczyk, Michalewski, P., Skrzypczak, 2016]

Theorem [Kołodziejczyk, Michalewski (2015)]

Decidability of MSO over the infinite binary tree is not provable in Π_2^1 -CA₀.

- ▶ Rabin's theorem requires much higher axiomatic strength.
 - Roughly on par with determinacy of infinite parity games.

 $BC(\Sigma_2^0)$ games

Theorem [Kołodziejczyk, Michalewski (2015)]

Decidability of MSO over the infinite binary tree is not provable in Π_2^1 -CA₀.

- Rabin's theorem requires much higher axiomatic strength.
 - Roughly on par with determinacy of infinite parity games.

 $BC(\Sigma_2^0)$ games

Intermediate cases?

Theorem [Kołodziejczyk, Michalewski (2015)]

Decidability of MSO over the infinite binary tree is not provable in Π_2^1 -CA₀.

- ► Rabin's theorem requires much higher axiomatic strength.
 - Roughly on par with determinacy of infinite parity games.

 $BC(\Sigma_2^0)$ games

Intermediate cases?

MSO over the rationals $(MSO(\mathbb{Q}))$

- Decidable via a reduction to the infinite tree.
- Cover all countable linear orders.
- Direct algebraic decidability proofs.

[Shelah (1975)], [Carton, Colcombet, Puppis (2013)]

Theorem [Kołodziejczyk, Michalewski, P., Skrzypczak]
Over RCA ₀ , the following are equivalent:
► the shuffle principle [Carton, Colcombet, Puppis (2013)]
► Shelah's additive Ramseyan theorem over \mathbb{Q} [Shelah (1975)]
• induction for Σ_2^0 formulas

Theorem	[Kołodziejczyk, Michalewski, P., Skrzypczak]
Over RCA_0 , the following are equivalent:	
the shuffle principle	[Carton, Colcombet, Puppis (2013)]
Shelah's additive Ramseyan theorem	over Q [Shelah (1975)]
• induction for Σ_2^0 formulas	

However, does not gauge the strength of $MSO(\mathbb{Q})$

Theorem	[Kołodziejczyk, Michalewski, P., Skrzypczak]		
Over RCA ₀ , the following are equivalent:			
the shuffle principle	[Carton, Colcombet, Puppis (2013)]		
Shelah's additive Ramseyan theorem	n over \mathbb{Q} [Shelah (1975)]		
• induction for Σ_2^0 formulas			
However, does not gauge the strength of $MSO(\mathbb{Q})$			
Expressivity			

The classical theory $MSO(\mathbb{Q})$ has a sentence equivalent to Π^1_1 -CA₀.

Theorem	[Kołodziejczyk, Michalewski, P., Skrzypczak]			
Over RCA_0 , the following are equivalent:				
the shuffle principle	[Carton, Colcombet, Puppis (2013)]			
Shelah's additive Ramseyan theorem	n over \mathbb{Q} [Shelah (1975)]			
• induction for Σ_2^0 formulas				
However, does not gauge the strength of $MSO(\mathbb{Q})$				
Expressivity				

The classical theory $MSO(\mathbb{Q})$ has a sentence equivalent to Π^1_1 -CA₀.

Conjecture

Over RCA₀, the following are equivalent:

- The axiom of finite Π_1^1 -recursion.
- Determinacy of infinite weak parity games.
- ► Soundness of the decision algorithm for MSO(Q).

 $BC(\Sigma_1^0)$ games

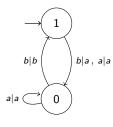
Monadic Second-Order logic

Part I: Reverse Mathematics

Reverse Mathematics Büchi's theorem Beyond infinite words

Part II: proof systems for Church's synthesis Church's synthesis and witness extraction Constructive proof systems Categorical/syntactic approach

Conclusion



Causal/synchronous stream functions f : Σ^ω → Γ^ω
Interpret n ∈ N as time steps.
Lifted from functions f̂ : Σ⁺ → Γ as

f̂ : Σ^ω → Γ^ω
s ↦ n ↦ f(s(0) ... s(n))

i.e., the output does not depend on the future.
Focus on finite-state causal functions.

(Correspond to Mealy machines)

- ► All f.s. causal functions are recursive.
- All causal functions are continuous.
- Some recursive functions are not causal.

 $w \mapsto n \mapsto w_{n+1}$

Church's synthesis (2/2): the Büchi-Landweber theorem

Church's synthesis problem

Given a formula $\varphi(X, Y)$, find a f. s. causal $f : \Sigma^{\omega} \to \Gamma^{\omega}$ such that $\forall w \ \varphi(w, f(w))$

Church's synthesis problem

Given a formula
$$\varphi(X, Y)$$
, find a f. s. causal $f : \Sigma^{\omega} \to \Gamma^{\omega}$ such that
 $\forall w \ \varphi(w, f(w))$

Example (inspired from [Thomas (2008)]):

• $\varphi(X, Y) \equiv (X \text{ infinite} \Rightarrow Y \text{ infinite}) \text{ and } \forall i (i \in Y \Rightarrow i + 1 \notin Y)$



Theorem [Büchi-Landweber (1969)]

Algorithmic solution for $\varphi(X, Y)$ in MSO.

MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]

MSO is completely axiomatized by the axioms of second-order arithmetic.

MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]

MSO is completely axiomatized by the axioms of second-order arithmetic.

Church's synthesis reminiscent of extraction from proofs:

 $\mathsf{MSO} \vdash \forall x \exists y \ \varphi(x, y) \qquad \stackrel{?}{\Longrightarrow} \qquad \exists f \text{ f.s. causal } \forall x \ \varphi(x, f(x))$

MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]

MSO is completely axiomatized by the axioms of second-order arithmetic.

Church's synthesis reminiscent of extraction from proofs:

 $\mathsf{MSO} \vdash \forall x \exists y \ \varphi(x, y) \qquad \Rightarrow \qquad \exists f \text{ f.s. causal} \quad \forall x \ \varphi(x, f(x))$

Classical theorems in MSO

- Excluded middle
- The infinite pigeonhole principle
- Instances of additive Ramsey

 \rightsquigarrow No algorithmic witnesses for $\forall\exists$ theorems.

(subtle point $\{0,1\}^{\omega}$ vs $\mathcal{P}(\mathbb{N})$)

Extraction from proofs

Goal: a refinement of $MSO(\mathbb{N})$ with extraction for **causal** functions.

- Toward semi-automatic approach to synthesis.
- Approach inspired by realizability.

[Kleene (1945), ...]

Extraction from proofs

Goal: a refinement of $MSO(\mathbb{N})$ with extraction for **causal** functions.

- Toward semi-automatic approach to synthesis.
- Approach inspired by realizability.

[Kleene (1945), ...]

Analogous example: extraction for intuitionistic arithmetic (HA) If $HA \vdash \forall x \exists y \varphi(x, y)$, there is an algorithm computing $f : \mathbb{N} \to \mathbb{N}$ recursive such that $\forall x \ \varphi(x, f(x))$

- A subset of classical arithmetic (PA).
- As expressive as classical arithmetic. $(\varphi \mapsto \varphi \neg \neg)$
- Can be refined to System T functions.

[Gödel (1930s)]

Analogy				
	Classical system	MSO(ℕ)	PA	
	Realizers	Causal functions	System T	
	Intuitionistic system	???	HA	

$$\varphi, \psi \quad ::= \quad \alpha \quad \mid \quad \varphi \wedge \psi \quad \mid \quad \exists X \; \varphi \; \mid \; \neg \varphi$$

Quantification over individuals encoded as usual

$$\varphi, \psi \quad ::= \quad \alpha \quad \mid \quad \varphi \wedge \psi \quad \mid \quad \exists X \; \varphi \; \mid \; \neg \varphi$$

Quantification over individuals encoded as usual

Glivenko's theorem for SMSO MSO $\vdash \varphi$ if and only if SMSO $\vdash \neg \neg \varphi$

Negation erases computational contents.

$$\varphi, \psi \quad ::= \quad \alpha \quad \mid \quad \varphi \wedge \psi \quad \mid \quad \exists X \; \varphi \; \mid \; \neg \varphi$$

Quantification over individuals encoded as usual

Glivenko's theorem for SMSO MSO $\vdash \varphi$ if and only if SMSO $\vdash \neg \neg \varphi$

Negation erases computational contents.

Extraction of f.s. causal functions SMSO $\vdash \exists y \neg \neg \varphi(x, y)$ iff there is a f.s. causal f s.t. MSO $\vdash \forall x \varphi(x, f(x))$

• Proofs $\varphi \vdash \psi$ interpreted as simulations between ND automata.

$$\varphi, \psi \quad ::= \quad \alpha \quad \mid \quad \varphi \wedge \psi \quad \mid \quad \exists X \; \varphi \; \mid \; \neg \varphi$$

Quantification over individuals encoded as usual

Glivenko's theorem for SMSO MSO $\vdash \varphi$ if and only if SMSO $\vdash \neg \neg \varphi$

Negation erases computational contents.

Extraction of f.s. causal functions SMSO $\vdash \exists y \neg \neg \varphi(x, y)$ iff there is a f.s. causal f s.t. MSO $\vdash \forall x \varphi(x, f(x))$

• Proofs $\varphi \vdash \psi$ interpreted as simulations between ND automata.

No interpretation for \Rightarrow and \forall

$$\varphi, \psi \quad ::= \quad \alpha \quad \mid \quad \varphi \wedge \psi \quad \mid \quad \exists X \; \varphi \; \mid \; \neg \varphi$$

Quantification over individuals encoded as usual

Glivenko's theorem for SMSO MSO $\vdash \varphi$ if and only if SMSO $\vdash \neg \neg \varphi$

Negation erases computational contents.

Extraction of f.s. causal functions SMSO $\vdash \exists y \neg \neg \varphi(x, y)$ iff there is a f.s. causal f s.t. MSO $\vdash \forall x \varphi(x, f(x))$

• Proofs $\varphi \vdash \psi$ interpreted as simulations between ND automata.

No interpretation for \Rightarrow and \forall Polarity restriction

- Polarized system with dualities.
- Requires the introduction of linear connectives.

Linear MSO (LMSO)

$\varphi, \psi \quad ::= \quad \alpha \quad \mid \ \varphi \otimes \psi \quad \mid \ \varphi \stackrel{\gamma}{\gg} \psi \quad \mid \ \varphi \multimap \psi \quad \mid \ \forall X \varphi \quad \mid \ \exists X \varphi \quad \mid \ ! \varphi^- \quad \mid \ ? \varphi^+ \quad \mid \ \ldots$

- Polarized system with dualities.
- Requires the introduction of linear connectives.

Linear MSO (LMSO)

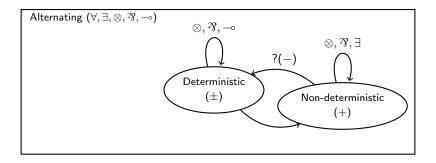
 $\varphi, \psi \quad ::= \quad \alpha \quad \mid \ \varphi \otimes \psi \quad \mid \ \varphi \stackrel{\gamma}{\Rightarrow} \psi \quad \mid \ \varphi \multimap \psi \quad \mid \ \forall X \varphi \quad \mid \ \exists X \varphi \quad \mid \ ! \varphi^- \quad \mid \ ? \varphi^+ \quad \mid \ \ldots$

Alternating $(\forall, \exists, \otimes, ??, \multimap)$

- Polarized system with dualities.
- Requires the introduction of linear connectives.

Linear MSO (LMSO)

 $\varphi, \psi \quad ::= \quad \alpha \quad \mid \ \varphi \otimes \psi \quad \mid \ \varphi \stackrel{\gamma}{\rightarrow} \psi \quad \mid \ \varphi \multimap \psi \quad \mid \ \forall X \varphi \quad \mid \ \exists X \varphi \quad \mid \ ! \varphi^- \quad \mid \ ? \varphi^+ \quad \mid \ \ldots$

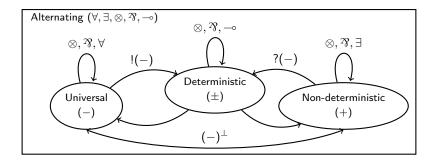


SMSO \approx restriction to positives

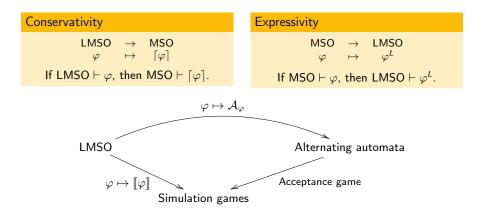
- Polarized system with dualities.
- Requires the introduction of linear connectives.

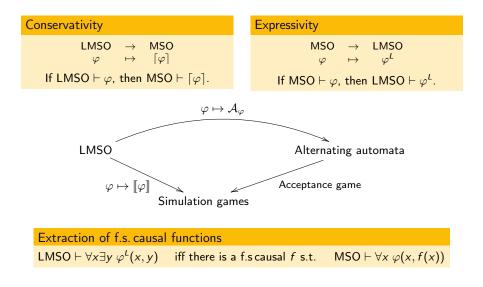
Linear MSO (LMSO)

 $\varphi, \psi \quad ::= \quad \alpha \quad \mid \ \varphi \otimes \psi \quad \mid \ \varphi \stackrel{\gamma}{\rightarrow} \psi \quad \mid \ \varphi \multimap \psi \quad \mid \ \forall X \varphi \quad \mid \ \exists X \varphi \quad \mid \ ! \varphi^- \quad \mid \ ? \varphi^+ \quad \mid \ \ldots$



SMSO \approx restriction to positives





► LMSO includes *Full Intuitionistic Multiplicative Linear Logic*.

[Hyland, de Paiva (1993)]

Similarities with Dialectica categories DC:

[de Paiva (1989,1991)]

► LMSO includes Full Intuitionistic Multiplicative Linear Logic.

[Hyland, de Paiva (1993)]

Similarities with Dialectica categories DC:

[de Paiva (1989,1991)]

Realized principles

Linear Markov principle and independence of premise.

LMSO includes Full Intuitionistic Multiplicative Linear Logic.

[Hyland, de Paiva (1993)]

Similarities with Dialectica categories DC:

[de Paiva (1989,1991)]

Realized principles

- Linear Markov principle and independence of premise.
- A classically false choice-like scheme

 $\forall x \in \Sigma^{\omega} \exists y \in \Gamma^{\omega} \varphi(x, y) \quad \longrightarrow \quad \exists f \in (\Sigma \to \Gamma)^{\omega} \forall x \in \Sigma^{\omega} \varphi(x, f(x))$

f(x) for pointwise application

LMSO includes Full Intuitionistic Multiplicative Linear Logic.

[Hyland, de Paiva (1993)]

Similarities with Dialectica categories DC:

[de Paiva (1989,1991)]

Realized principles

- Linear Markov principle and independence of premise.
- A classically false choice-like scheme

 $\forall x \in \Sigma^{\omega} \exists y \in \Gamma^{\omega} \varphi(x, y) \quad \longrightarrow \quad \exists f \in (\Sigma \to \Gamma)^{\omega} \ \forall x \in \Sigma^{\omega} \varphi(x, f(x))$

f(x) for pointwise application

Double linear-negation elimination

For every φ , there is a realizer

$$(\varphi \multimap \bot) \multimap \bot \longrightarrow \varphi$$

LMSO includes Full Intuitionistic Multiplicative Linear Logic.

[Hyland, de Paiva (1993)]

Similarities with Dialectica categories DC:

[de Paiva (1989,1991)]

Realized principles

- Linear Markov principle and independence of premise.
- A classically false choice-like scheme

 $\forall x \in \Sigma^{\omega} \exists y \in \Gamma^{\omega} \varphi(x, y) \quad \longrightarrow \quad \exists f \in (\Sigma \to \Gamma)^{\omega} \ \forall x \in \Sigma^{\omega} \varphi(x, f(x))$

f(x) for pointwise application

Also holds in DC if the base satisfies choice.

The above logic can be defined without reference to automata.

- ω -word automata guarantee decidability properties...
- But they are not needed to extract realizers.

The above logic can be defined without reference to automata.

- ω -word automata guarantee decidability properties...
- But they are not needed to extract realizers.

 \rightsquigarrow A purely logical reformulation of LMSO using categorical semantics.

Goals

Purely syntactic transformations.

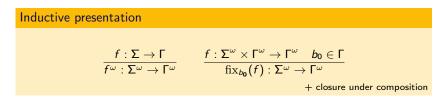
Understand links with typed realizability and Dialectica.

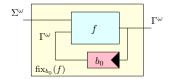
Define the category $\ensuremath{\mathbb{M}}$ of causal functions

- Objects: sets of streams Σ^{ω} for Σ finite
- Morphisms: finite-state causal functions
- Cartesian products $\Sigma^{\omega} \times \Gamma^{\omega} \simeq (\Sigma \times \Gamma)^{\omega}$, but **not** cartesian-closed

Define the category ${\mathbb M}$ of causal functions

- Objects: sets of streams Σ^{ω} for Σ finite
- Morphisms: finite-state causal functions
- ► Cartesian products $\Sigma^{\omega} \times \Gamma^{\omega} \simeq (\Sigma \times \Gamma)^{\omega}$, but **not** cartesian-closed





$$\approx$$
 guarded recursion fix : $A^{\triangleright A} \rightarrow A$

topos of trees

FOM (First-Order Mealy)

$$\varphi, \psi \quad ::= \quad \mathbf{t} =_{\boldsymbol{\Sigma}^{\omega}} \mathbf{u} \quad \mid \quad \varphi \land \psi \quad \mid \quad \neg \varphi \quad \mid \quad \exists \mathbf{x} \in \boldsymbol{\Sigma}^{\omega} \varphi$$

► Typed variables stand for streams, terms for every f.s. causal functions.

Proposition

FOM and MSO(\mathbb{N}) are interpretable in one another.

Justifies focusing on FOM.

FOM (First-Order Mealy)

$$\varphi, \psi \quad ::= \quad \mathbf{t} =_{\Sigma^{\omega}} \mathbf{u} \quad \mid \ \varphi \wedge \psi \quad \mid \ \neg \varphi \quad \mid \ \exists x \in \Sigma^{\omega} \ \varphi$$

► Typed variables stand for streams, terms for every f.s. causal functions.

Proposition

FOM and $MSO(\mathbb{N})$ are interpretable in one another.

Justifies focusing on FOM.

Tarskian semantics (categorical logic)

 \blacktriangleright Regard $\mathbb M$ as a multi-sorted Lawvere theory.

 $\rightsquigarrow\,$ Tarskian semantics \approx indexed category, from global section functor Γ

 $\boldsymbol{\mathsf{\Gamma}}: \hspace{0.1cm} \boldsymbol{\mathsf{\Sigma}}^{\omega} \hspace{0.1cm} \longmapsto \hspace{0.1cm} \operatorname{\mathsf{Hom}}_{\mathbb{M}}\left(1^{\omega}, \boldsymbol{\mathsf{\Sigma}}^{\omega}\right)$

$$\Sigma^{\omega} \longrightarrow (\mathcal{P}(\mathbf{\Gamma}(\Sigma^{\omega})), \subseteq)$$

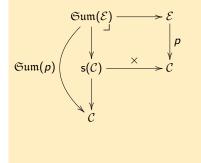
SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

$$X \times Y \xrightarrow{\pi} X$$

 \rightsquigarrow the simple fibration $\mathsf{s}(\mathcal{C}) \to \mathcal{C}$

The construction Sum



- $\mathfrak{Sum}(p)$ -predicate: $(U, \varphi(a, u))$ U object of \mathcal{C}, φ over $A \times U$ (in p) $\approx \exists u : U \varphi(a, u)$
- Freely adds existential quantifications (simple sums)
- Reminiscent of typed realizability realizers in C

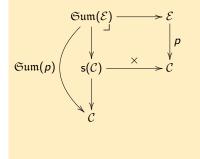
SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

$$X \times Y \xrightarrow{\pi} X$$

 \rightsquigarrow the simple fibration $s(\mathcal{C}) \rightarrow \mathcal{C}$

The construction Sum

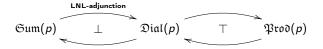


- $\mathfrak{Sum}(p)$ -predicate: $(U, \varphi(a, u))$ U object of \mathcal{C}, φ over $A \times U$ (in p) $\approx \exists u : U \varphi(a, u)$
- Freely adds existential quantifications (simple sums)
- Reminiscent of typed realizability realizers in C

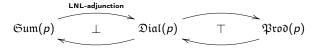
Reconstructing SMSO

Simulations of non-determinstic automata $~\approx~~$ Sum applied to FOM

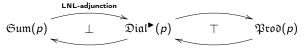
Fibered Dialectica		[Hyland (2001)]						
Dial ≅ Sum o Prod	$\mathfrak{Prod}(p) \cong \mathfrak{Sum}(p^{\mathbf{op}})^{\mathbf{op}}$	[Hofstra (2011)]						
• $\mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$								
	thin	$k \exists u \; \forall x \; \varphi(a, u, x)$						
interprets full intuitionistic MLL+F	-0							



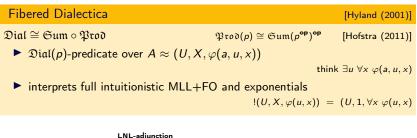
Fibered Dialectica[Hyland (2001)] $\mathfrak{Dial} \cong \mathfrak{Sum} \circ \mathfrak{Ptod}$ $\mathfrak{Ptod}(p) \cong \mathfrak{Sum}(p^{\mathsf{op}})^{\mathsf{op}}$ [Hofstra (2011)] $\blacktriangleright \mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$ think $\exists u \ \forall x \ \varphi(a, u, x)$ \flat interprets full intuitionistic MLL+FO and exponentials $!(U, X, \varphi(u, x)) = (U, 1, \forall x \ \varphi(u, x))$

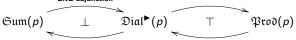


Fibered Dialectica[Hyland (2001)] $\mathfrak{Dial} \cong \mathfrak{Sum} \circ \mathfrak{Ptod}$ $\mathfrak{Ptod}(p) \cong \mathfrak{Sum}(p^{\mathsf{op}})^{\mathsf{op}}$ [Hofstra (2011)] $\mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$ think $\exists u \forall x \varphi(a, u, x)$ think $\exists u \forall x \varphi(a, u, x)$ think $\exists u \forall x \varphi(u, x)$ $\iota(U, X, \varphi(u, x)) = (U, 1, \forall x \varphi(u, x))$



Realized Dialectica-like construction Dial





Realized Dialectica-like construction Dial

 \blacktriangleright Only over a CCC extension of $\mathbb M$

 $!(U, X, \varphi(u, x)) = (U^{\triangleright X}, 1, \forall x \varphi(f(\triangleright x), x))$

Fibered Dialectica [Hyland (2001)] $\mathfrak{Dial} \cong \mathfrak{Sum} \circ \mathfrak{Prod}$ $\mathfrak{Prod}(p) \cong \mathfrak{Sum}(p^{op})^{op}$ [Hofstra (2011)] • $\mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$ think $\exists u \ \forall x \ \varphi(a, u, x)$ interprets full intuitionistic MLL+FO and exponentials $!(U, X, \varphi(u, x)) = (U, 1, \forall x \varphi(u, x))$ LNL-adjunction $\mathfrak{Dial}^{\blacktriangleright}(p)$ $\operatorname{Sum}(p)$ Prod(p) Realized Dialectica-like construction Dial Only over a CCC extension of M $!(U, X, \varphi(u, x)) = (U^{\triangleright X}, 1, \forall x \varphi(f(\triangleright x), x))$

Relationship with Dial via a "feedback" monad

exploits fix : $A^{\triangleright A} \to A$

Fibered Dialectica [Hyland (2001)] $\mathfrak{Dial} \cong \mathfrak{Sum} \circ \mathfrak{Prod}$ $\mathfrak{Prod}(p) \cong \mathfrak{Sum}(p^{op})^{op}$ [Hofstra (2011)] • $\mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$ think $\exists u \forall x \varphi(a, u, x)$ interprets full intuitionistic MLL+FO and exponentials $|(U, X, \varphi(u, x))| = (U, 1, \forall x \varphi(u, x))$ LNL-adjunction $\mathfrak{Dial}^{\blacktriangleright}(p)$ $\operatorname{Sum}(p)$ Prod(p) Realized Dialectica-like construction Dial Only over a CCC extension of M $!(U, X, \varphi(u, x)) = (U^{\triangleright X}, 1, \forall x \varphi(f(\triangleright x), x))$ Relationship with Dial via a "feedback" monad exploits fix : $A^{\triangleright A} \rightarrow A$ ▶ Polarity restrictions ≈ model of LMSO (restricted exponentials)

Monadic Second-Order logic

Part I: Reverse Mathematics

Part II: proof systems for Church's synthesis

Conclusion

Axiomatic strength of two classical MSO theories.

- In the context of Reverse Mathematics.
- Strong link between Σ_2^0 -induction and MSO(\mathbb{N}).
- ▶ Preliminary results on MSO(Q).

Axiomatic strength of two classical MSO theories.

- In the context of Reverse Mathematics.
- Strong link between Σ_2^0 -induction and MSO(\mathbb{N}).
- Preliminary results on MSO(Q).

Related work

- Characterizations of the topological complexity of MSO-definable sets.
- Extension to the Reverse-mathematical analysis to intuitionistic logic.

[Lichter and Smolka (2018)]

Conservativity results for cyclic arithmetic.

[Simpson (2017), Das (2019)]

- Realizability models based on simulations between automata
- Abstract reformulation
- Complete extension of LMSO

link with Dialectica and typed realizability

omitted from the talk [P., Riba (2019)]

- Realizability models based on simulations between automata
- Abstract reformulation
- Complete extension of LMSO

link with Dialectica and typed realizability

omitted from the talk [P., Riba (2019)]

Related work

- Fibrations of tree automata
- Good-for-games automata

[Henziger, Piterman (2006), Kuperberg Skrzypczak (2015)]

[Riba (2015)]

Some further questions

- Realizability for *continuous* functions $\Sigma^{\omega} \to \Gamma^{\omega}$?
- ► Extensions of Dial[►] for fibrations over the topos of trees?

 $\mathfrak{Fam}(\mathfrak{Fam}(p^{\mathsf{op}})^{\mathsf{op}})$ instead of $\mathfrak{Dial}(p)$

Undecidability of the equational logic of higher-order extensions of FOM?

Some further questions

- Realizability for *continuous* functions $\Sigma^{\omega} \to \Gamma^{\omega}$?
- ► Extensions of Dial[►] for fibrations over the topos of trees?
 - $\mathfrak{Fam}(\mathfrak{Fam}(p^{\mathbf{op}})^{\mathbf{op}})$ instead of $\mathfrak{Dial}(p)$
- Undecidability of the equational logic of higher-order extensions of FOM?

Thanks for your attention! Questions?

Induction and comprehension

 RCA_0 is defined by restricting induction and comprehension

Comprehension axiom

```
For every formula \phi(n) (with X \notin FV(\phi)
\exists X \ \forall n \in \mathbb{N} \ (\phi(n) \Leftrightarrow n \in X)
```

• RCA₀: restricted to Δ_1^0 formulas

recursive comprehension

Induction axiom

To prove that $\forall n \in \mathbb{N}\phi(n)$ it suffices to show

- ► *ϕ*(0) holds
- ▶ for every $n \in \mathbb{N}$, $\phi(n)$ implies $\phi(n+1)$
- RCA₀: restricted to Σ_1^0 formulas.

 $\exists n \ \delta(n) \text{ with } \delta \in \Delta_1^0$

Equivalent to minimization principles and comprehension for finite sets.

Additive Ramsey over ω

For any linear order (P, <) write $[P]^2$ for $\{(i, j) \in P^2 \mid i < j\}$ and fix a finite monoid (M, \cdot, e) . Call $f : [P]^2 \to M$ additive when $f(i, j) \cdot f(j, k) = f(i, k)$ for all i < j < k

Additive Ramsey

For any additive $f : [P]^2 \to M$, there is an unbounded monochromatic $X \subseteq P$ (s.t. $|f([X]^2)| = 1$).

Additive Ramsey over ω

For any linear order (P, <) write $[P]^2$ for $\{(i, j) \in P^2 \mid i < j\}$ and fix a finite monoid (M, \cdot, e) . Call $f : [P]^2 \to M$ additive when $f(i, j) \cdot f(j, k) = f(i, k)$ for all i < j < k

Additive Ramsey

For any additive $f : [P]^2 \to M$, there is an unbounded monochromatic $X \subseteq P$ (s.t. $|f([X]^2)| = 1$).

Theorem

Over RCA₀, additive Ramsey over ω is equivalent to Σ_2^0 -induction.

Direct proof: "as usual" for additive Ramsey (factored through an ordered variant in the paper)

Π_2^0 -induction from additive Ramsey

Consider equivalently comprehension for sets bounded by *n* for $\exists^{\infty} k \ \delta(x, k)$. Define the coloring $f : [\omega]^2 \to 2^n$ as $f(i,j)_x = \max_{\substack{i \leq l < j}} \delta(x, l)$.

Apply additive Ramsey and consider the color X of the monochromatic set; we have

$$x \in X \quad \Leftrightarrow \quad \exists^{\infty} \delta(x,k)$$

Let D be a dense linear order ($\simeq \mathbb{Q}$). A function $f : D \to X$ is called *homogeneous* if $f^{-1}(x)$ is either dense or empty for every $x \in X$.

The shuffle principle

For any coloring $c : \mathbb{Q} \to [0, n]$, there is $I \subseteq_{conv} Q$ such that $c|_I$ is a shuffle.

 the key additional principle behind the usual inductive argument in [Carton, Colcombet, Puppis (2015)]

Shelah's additive Ramseyan theorem

Let *M* be a monoid. For every map $f : [\mathbb{Q}]^2 \to M$ such that f(q, r)f(r, s) = f(q, s), there exists an interval $I \subseteq \mathbb{Q}$ and a finite partition into finitely many dense sets D_i of *I* such that *f* is constant over each $[D_i]^2$.

 the key additional principle behind the usual inductive argument in [Shelah (1975)]

The Büchi-Landweber theorem

Consider a formula $\varphi(u, x)$. \rightsquigarrow Infinite 2-player game \mathcal{G}_{φ} between P and O.

$$(u \in U^{\omega}, x \in X^{\omega})$$

0	<i>x</i> ₀		<i>x</i> ₁			x _n		
Р		<i>u</i> ₀		u_1	•••		u _n	

The Büchi-Landweber theorem

Consider a formula $\varphi(u, x)$. \rightsquigarrow Infinite 2-player game \mathcal{G}_{φ} between P and O.

$$(u \in U^{\omega}, x \in X^{\omega})$$

$$\begin{array}{rcl} \text{P-strategies} &\simeq & X^+ \to U \\ & & \\ &$$

 $\begin{array}{rcl} \text{O-strategies} &\simeq & U^* \to X \\ & & \\ & eager \text{ causal functions} \end{array}$

The Büchi-Landweber theorem

Consider a formula $\varphi(u, x)$. \rightsquigarrow Infinite 2-player game \mathcal{G}_{φ} between P and O.

$$(u \in U^{\omega}, x \in X^{\omega})$$

 $U^* \to X$

$$\begin{array}{rcl} \mbox{P-strategies} &\simeq & X^+ \to U & & \mbox{O-strategies} &\simeq & U^* - \\ & & & \mbox{causal functions} & & & eager \mbox{causal functions} \end{array}$$

Theorem [Büchi-Landweber (1969)]

Suppose φ is MSO-definable. The game \mathcal{G}_{φ} is determined:

- Either there exists a finite-state P-strategy $s_P(x)$ s.t. $\forall x \in X^{\omega} \quad \varphi(s_P(x), x)$
- Or there exists a finite-state O-strategy $s_0(u)$ s.t. $\forall u \in U^{\omega} \neg \varphi(u, s_0(u))$

The realizability notion for SMSO

Uniform non-deterministic automata

Tuples $\mathcal{A} = (Q, q_0, U, \delta_{\mathcal{A}}, \Omega_{\mathcal{A}}) : \Sigma$ where

U a set of moves

 \simeq amount of non-determinism

- transition function $\delta_{\mathcal{A}} : \Sigma \times Q \times U \rightarrow Q$
- $\Omega_{\mathcal{A}} \subseteq Q^{\omega}$ reasonable acceptance condition

induces $\delta^*_{\mathcal{A}}: \Sigma^{\omega} \times U^{\omega} \to Q^{\omega}$

(parity, Muller, ...)

► Same definable languages $\mathcal{L}(\mathcal{A}) = \{w \mid \exists u \; \delta^*_{\mathcal{A}}(w, u)\}$ $U \simeq Q$

The realizability notion for SMSO

Uniform non-deterministic automataTuples $\mathcal{A} = (Q, q_0, U, \delta_{\mathcal{A}}, \Omega_{\mathcal{A}}) : \Sigma$ where \blacktriangleright U a set of moves \blacktriangleright transition function $\delta_{\mathcal{A}} : \Sigma \times Q \times U \rightarrow Q$ $\triangleright \Omega_{\mathcal{A}} \subseteq Q^{\omega}$ reasonable acceptance condition

► Same definable languages
$$\mathcal{L}(\mathcal{A}) = \{w \mid \exists u \; \delta^*_{\mathcal{A}}(w, u)\}$$
 $U \simeq Q$

Simulations $\mathcal{A} \Vdash f : \mathcal{B}$

Finite-state causal function $f: \Sigma^{\omega} \times U^{\omega} \to V^{\omega}$ such that

 $\forall w \in \Sigma^{\omega} \forall u \in U^{\omega} \qquad \quad \delta^*_{\mathcal{A}}(w, u) \in \Omega_{\mathcal{A}} \ \, \Rightarrow \ \, \delta^*_{\mathcal{A}}(w, f(w, u)) \in \Omega_{\mathcal{B}}$

The realizability notion for SMSO

Uniform non-deterministic automataTuples $\mathcal{A} = (Q, q_0, U, \delta_{\mathcal{A}}, \Omega_{\mathcal{A}}) : \Sigma$ where \blacktriangleright U a set of moves \blacktriangleright transition function $\delta_{\mathcal{A}} : \Sigma \times Q \times U \to Q$ $\triangleright \Omega_{\mathcal{A}} \subseteq Q^{\omega}$ reasonable acceptance condition

Same definable languages
$$\mathcal{L}(\mathcal{A}) = \{w \mid \exists u \; \delta^*_{\mathcal{A}}(w, u)\}$$
 $U \simeq Q$

Simulations $\mathcal{A} \Vdash f : \mathcal{B}$

Finite-state causal function $f: \Sigma^{\omega} \times U^{\omega} \to V^{\omega}$ such that

 $\forall w \in \Sigma^{\omega} \forall u \in U^{\omega} \qquad \quad \delta^*_{\mathcal{A}}(w, u) \in \Omega_{\mathcal{A}} \ \, \Rightarrow \ \, \delta^*_{\mathcal{A}}(w, f(w, u)) \in \Omega_{\mathcal{B}}$

If
$$\mathcal{A} \Vdash \mathcal{B}$$
, then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B})$

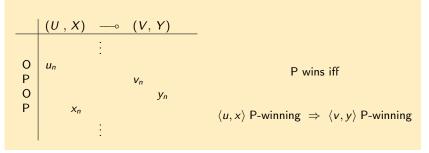
▶ Natural interpretation for \exists , \land and \neg for deterministic automata...

Alternating uniform automata

Define a notion of *alternating* uniform automata $(Q, q_0, U, X, \delta, \Omega)$

- sets of P-moves U and O-moves X
- $\blacktriangleright \ \delta: \Sigma \times Q \times U \times X \to Q$
- $w \in \mathcal{L}(\mathcal{A})$ iff P wins an acceptance game

Simulation game



- $X \simeq 1 \longrightarrow$ non-deterministic uniform automata
- $U \simeq X \simeq 1$ \rightsquigarrow deterministic automata

trivial simulations