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Verification of engineered systems/programs

Goal : check safety of engineered systems

i

» “The green and red lights are not on at the same time"

» “Orange is flashed before red”
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Typical system:

Q

(L)1

(1,0)]0

Typical task: Given a specification ¢ (logical formula). ..
... can the following be done automatically?

Answer whether yes or no a system satisfies 7

Generate a system satisfying ¢ from scratch.

Decide logic?
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The more extreme version of Hilbert's program (1920s):
» Reduce mathematics to formalized arithmetics.
» A mechanical method to decide the (mathematical) truth.
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The more extreme version of Hilbert's program (1920s):

» Reduce mathematics to formalized arithmetics.
» A mechanical method to decide the (mathematical) truth.

Incompleteness [Godel-Turing (1930s)]

Impossible in general

» Logics over fixed finite domains.
» Monadic Second Order (MSO) logic over infinite words.
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Formalize mathematically what is a correct proof.

» How to under-approximate truth correctly. . .
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Proof theory and constructivity

Proof theory at a very high level
Formalize mathematically what is a correct proof.
» How to under-approximate truth correctly. . .
» .. but also insight into limitations and the geometry of proofs.

~» Not all mathematical arguments are equally informative.

Theorem
m + e is transcendental or e - 7 is transcendental (or both are).

... but we do not know whether 7 + e is transcendental or not. ..

A constructive proof would be more informative.

proofs — computable witnesses
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» A fragment of Second-Order logic.
» Algorithmically decidable over
N, Q, the infinite binary tree {0,1}*, ...

» Subsumes many verification logics. LTL, CTL, ...
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Monadic Second-Order (MSO) logic and constructiveness

Monadic Second-Order logic (MSO)

» A fragment of Second-Order logic.
» Algorithmically decidable over
N, Q, the infinite binary tree {0,1}*, ...

» Subsumes many verification logics. LTL, CTL, ...

Decidable # constructive

Soundness of decision procedures <= non-constructive theorems.
» Over N: infinite Ramsey theorem, weak Kdnig's Lemma.

» Over {0,1}": determinacy of infinite parity games.
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How (non)-constructive is MSO?
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How (non)-constructive is MSO?

What axiomatic strength characterizes a given MSO theory?
» With H. Michalewski, L. Kofodziejczyk and M. Skrzypczak in Warsaw.

When can we extract computational content from MSO proofs?
» With C. Riba in Lyon.
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Motivating questions

How (non)-constructive is MSO?

What axiomatic strength characterizes a given MSO theory?
» With H. Michalewski, L. Kotodziejczyk and M. Skrzypczak in Warsaw.

~~ Metatheoretical analysis of Biichi's decidability theorem.

When can we extract computational content from MSO proofs?
» With C. Riba in Lyon.

~ Refinement of MSO(N) with witness extraction.
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Monadic Second-Order logic
Part |: Reverse Mathematics
Part II: proof systems for Church'’s synthesis

Conclusion
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ppu=ne€X | n<k | Inp | Xo¢ | ~p | oAY

» Can be regarded as a subsystem of Second-Order Arithmetic
» Standard model: n € N, X € P(N)
» Only unary predicates. no pairing, no addition
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ppu=ne€X | n<k | Inp | Xo¢ | ~p | oAY

» Can be regarded as a subsystem of Second-Order Arithmetic
» Standard model: n € N, X € P(N)
» Only unary predicates. no pairing, no addition

» “The set X C N is infinite.”
» “The set X C N is finite.”

Corresponds exactly to sets recognizable by automata over infinite words.
» Infinite words: regard sets as sequences of bits through P(N) ~ 2¢
> o(Xi,...Xk): formula over ¢ for ¥ = 2*
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A non-deterministic Biichi automaton (NBA) A : ¥ is a tuple (@, qo, d, F)
» Q@ is a finite set of states, go € @
» transition function § : ¥ X Q@ — P(Q)
» F C Q accepting states

Recognizes languages of infinite words £(A) C T*:
w € L(A) iff there is a run over w € X* hitting F infinitely often

non-recursive acceptance condition
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Non-deterministic Biichi automata (NBA)

Definition

A non-deterministic Biichi automaton (NBA) A : X is a tuple (@, qo, d, F)
> Q is a finite set of states, qo € @
» transition function ¢ : ¥ X Q — P(Q)
» F C Q accepting states

Recognizes languages of infinite words £(A) C X*:
w € L(.A) iff there is a run over w € X hitting F infinitely often

non-recursive acceptance condition

Example:

0,1

L(A) = streams with finitely many 1.
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pr=Agp
MSO formulas over & automata over ©
P L(p) A—L(A)
P(X¥)

MSO over infinite words is decidable.

» Proof idea: automata theoretic-construction for each logical connective.

» Hard case for infinite words: negation —.

corresponds to complementation
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For finite word automata: easy complementation for deterministic automata.
0,1

0
... but Biichi automata are hard to determinize.
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Complementation, determinization and constructivity

For finite word automata: easy complementation for deterministic automata.
0,1

— 0
... but Biichi automata are hard to determinize.

Theorem [McNaughton (1968)]
Non-deterministic Biichi automata can be determinized into Rabin automata.

more complex acceptance condition

» Biichi's original complementation procedure: w/o determinization.
» Effective algorithms for automata ...

» ... but non-constructive proofs of soundness!

usual proofs: infinite Ramsey theorem, weak Kénig's lemma

Quantify how non-constructive they are?
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Monadic Second-Order logic

Part I: Reverse Mathematics
Reverse Mathematics
Biichi's theorem
Beyond infinite words

Part II: proof systems for Church’s synthesis

Conclusion
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Reverse Mathematics

» A framework to analyze axiomatic strength.

» Vast program. [Friedman, Simpson, Steele 70s]

Methodology

» Consider a theorem T formulated in second-order arithmetic.
» Work in the weak theory RCA,.

» Target some natural axiom A such that RCAg ¥ A.

» Show that RCAcF A< T.

Essentially independence proofs. . .
» Similar in spirit to statements like

“Tychonoff's theorem is equivalent to the axiom of choice.”

14 /36



The big five

I1; Comprehension
Transfinite Recursion
129 Comprehension
Weak Konig's Lemma

Recursive Comprehension

IT11-CA,
U
ATRy
U
ACA
U
WKL,

U
RCA,

Lusin’s separation theorem

Determinacy of open games

Kénig’s Lemma

Brouwer’s fixed point theorem

Outliers: infinite Ramsey for pairs, determinacy statements.
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The big five

I1; Comprehension
Transfinite Recursion
129 Comprehension
Weak Konig's Lemma

Recursive Comprehension

IT11-CA,
U
ATRy
U
ACA
U
WKL,

U
RCA,

Lusin’s separation theorem

Determinacy of open games

Kénig’s Lemma

Brouwer’s fixed point theorem

Outliers: infinite Ramsey for pairs, determinacy statements.

~» Where does Biichi's theorem sit in this hierarchy?
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Biichi's decidability theorem (over RCAy)

Weak Konig’s lemma Infinite Ramsey theorem

U

20-induction —  Additive Ramsey

U 0 b

MSO(w) <& Compl. of NBA
Bounded weak Konig’s lemma Determinization of NBA

The Logical Strength of Biichi’s Decidability Theorem
[Kotodziejczyk, Michalewski, P., Skrzypczak, 2016]
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Decidability of MSO over the infinite binary tree is not provable in M3-CA.
» Rabin’s theorem requires much higher axiomatic strength.

» Roughly on par with determinacy of infinite parity games.
BC(X3) games
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Beyond infinite words

Theorem [Kotodziejczyk, Michalewski (2015)]

Decidability of MSO over the infinite binary tree is not provable in M3-CAo.

» Rabin's theorem requires much higher axiomatic strength.

» Roughly on par with determinacy of infinite parity games.
BC(%3) games

» Intermediate cases?

MSO over the rationals (MSO(Q))

» Decidable via a reduction to the infinite tree.
» Cover all countable linear orders.

» Direct algebraic decidability proofs.
[Shelah (1975)], [Carton, Colcombet, Puppis (2013)]
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Over RCAy, the following are equivalent:
» the shuffle principle [Carton, Colcombet, Puppis (2013)]
» Shelah’s additive Ramseyan theorem over Q [Shelah (1975)]

» induction for ¥3 formulas
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Strength of additive Ramsey over Q and MSO(Q)

Theorem [Kotodziejczyk, Michalewski, P., Skrzypczak]

Over RCAy, the following are equivalent:
» the shuffle principle [Carton, Colcombet, Puppis (2013)]
» Shelah’s additive Ramseyan theorem over Q [Shelah (1975)]

» induction for £3 formulas

However, does not gauge the strength of MSO(Q)

Expressivity

The classical theory MSO(Q) has a sentence equivalent to Mi-CAo.

Conjecture

Over RCAy, the following are equivalent:
» The axiom of finite Mi-recursion.
» Determinacy of infinite weak parity games. BC(X?) games
» Soundness of the decision algorithm for MSO(Q).
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Monadic Second-Order logic

Part |: Reverse Mathematics
Reverse Mathematics
Biichi's theorem
Beyond infinite words

Part II: proof systems for Church’s synthesis
Church'’s synthesis and witness extraction
Constructive proof systems
Categorical /syntactic approach

Conclusion
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Church'’s synthesis (1/2): causal functions

0 Causal/synchronous stream functions f : X — %

» Interpret n € N as time steps.
> Lifted from functions f : ¥t — T as

~

f: ¢ — I
ala e s = n~f(s(0)...s(n))

i.e., the output does not depend on the future.

b|b bla, ala

» Focus on finite-state causal functions.

(Correspond to Mealy machines)

» All f.s. causal functions are recursive.
» All causal functions are continuous.

» Some recursive functions are not causal. W — N Wot1
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Given a formula ¢(X, Y), find a f. s. causal f: X* — ' such that
Yw o(w, f(w))
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Given a formula ¢(X, Y), find a f. s. causal f: X* — ' such that
Yw o(w, f(w))

Example (inspired from [Thomas (2008)]):
> o(X,Y) = (Xinfinite = Y infinite) and Vi(ieY=i+1¢Y)

Algorithmic solution for ¢(X, Y) in MSO.

» Algorithmically costly. ..

21/36



MSO can also be seen as a classical axiomatic theory

MSO is completely axiomatized by the axioms of second-order arithmetic.
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MSO can also be seen as a classical axiomatic theory

MSO is completely axiomatized by the axioms of second-order arithmetic.

Church’s synthesis reminiscent of extraction from proofs:

MSO + Vx3y ¢(x, y) # 3f fs. causal Vx o(x, f(x))

» Excluded middle (subtle point {0,1}* vs P(N))
» The infinite pigeonhole principle
» Instances of additive Ramsey

~ No algorithmic witnesses for V3 theorems.
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Goal: a refinement of MSO(N) with extraction for causal functions.
» Toward semi-automatic approach to synthesis.

» Approach inspired by realizability. [Kleene (1945), ...]
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Extraction from proofs

Goal: a refinement of MSO(N) with extraction for causal functions.
» Toward semi-automatic approach to synthesis.

» Approach inspired by realizability. [Kleene (1945), ...]

Analogous example: extraction for intuitionistic arithmetic (HA)
If HAF Vx3ye(x, y), there is an algorithm computing
f : N — N recursive such that Vx o(x, f(x))

» A subset of classical arithmetic (PA).

> As expressive as classical arithmetic. (¢ — ¢77)

» Can be refined to System T functions. [Godel (1930s)]
Analogy
Classical system MSO(N) PA
Realizers Causal functions | System T
Intuitionistic system 77 HA
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Intuitionistic version of MSO

e = a | oAy | X @ | o

Quantification over individuals encoded as usual
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Intuitionistic version of MSO

e = a | pAY | X | o

Quantification over individuals encoded as usual

MSO F ¢ if and only if SMSO  ——¢p

» Negation erases computational contents.

SMSO F 3y ——p(x,y) iff thereis a f.s.causal £ s.t.  MSO F Vx ¢(x, f(x))

» Proofs ¢ - 4 interpreted as simulations between ND automata.

No interpretation for = and V
Polarity restriction
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» Polarized system with dualities.

» Requires the introduction of linear connectives.

o = a | ey | 9BY | p—oy | VXe | IXe | o7 | 2T |
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A linear refinement LMSO [P., Riba (2018)]

» Polarized system with dualities.

» Requires the introduction of linear connectives.
Linear MSO (LMSO)

o n= a | e®Y | BY | p ot | VXp | e | lo7 | 2T |

Alternating (v, 3, ®, %, —)

®77§)7_°

Deterministic

(£) Non-deterministic

(+)

SMSO ~ restriction to positives
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A linear refinement LMSO [P., Riba (2018)]

» Polarized system with dualities.
» Requires the introduction of linear connectives.

Linear MSO (LMSO)

o)

a | oY | oBY | p—v | VXp | IXep | lo7 | 7ot |

Alternating (v, 3, ®, %, —)

®,3,V
()

m (+)

®77§)7_°

Deterministic
(£) Non-deterministic

SMSO

~ restriction to positives

~
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LMSO — MSO MSO — LMSO
e = [l e = ot
If LMSO | ¢, then MSO - [¢]. If MSO F ¢, then LMSO F !
o Ap
LMSO Alternating automata

(pm JACe game

Simulation games
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LMSO — MSO MSO — LMSO
e = [l e = ot
If LMSO | ¢, then MSO - [¢]. If MSO F ¢, then LMSO F !
o Ap
LMSO Alternating automata

(pm MCe game

Simulation games

LMSO F Vx3y o'(x,y) iff there is a f.scausal f s.t.  MSO F Vx ¢(x, f(x))
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» LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

» Similarities with Dialectica categories DC: [de Paiva (1989,1991)]
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Simulation model: logical aspects

» LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

» Similarities with Dialectica categories DC: [de Paiva (1989,1991)]
Realized principles

» Linear Markov principle and independence of premise.
» A classically false choice-like scheme
Vxex¥ Iy el p(x,y) —o JfFe(Z—=T)° VxeX¥ px, f(x))

f(x) for pointwise application

Double linear-negation elimination

For every ¢, there is a realizer (p—oLl)—oL —o  p
but no canonical iso in general!

» Also holds in DC if the base satisfies choice.

27/36



The above logic can be defined without reference to automata.
» w-word automata guarantee decidability properties. ..

» But they are not needed to extract realizers.
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The above logic can be defined without reference to automata.
» w-word automata guarantee decidability properties. ..

» But they are not needed to extract realizers.

~+ A purely logical reformulation of LMSO using categorical semantics.

» Purely syntactic transformations.

» Understand links with typed realizability and Dialectica.
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Define the category M of causal functions
» Objects: sets of streams X* for X finite
» Morphisms: finite-state causal functions
» Cartesian products X x ¥ ~ (X x '), but not cartesian-closed
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Finite-state causal functions as terms

Define the category M of causal functions
» Objects: sets of streams X* for X finite
» Morphisms: finite-state causal functions

» Cartesian products ¥ x ' ~ (X x I)*, but not cartesian-closed

Inductive presentation

f:X—T f:X¥ xI® >T* berl
fo:¥w 5w fixp (f) : X¥ — @
+ closure under composition
Zw
v
g f
~ guarded recursion fix : A" — A
fixog (/) m topos of trees
bo (.

20/36



e n= t=seu | @AY | mp | IXETY @

» Typed variables stand for streams, terms for every f.s. causal functions.

FOM and MSO(N) are interpretable in one another.

» Justifies focusing on FOM.
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t= t=seu | @AY | np | IxeX¥p

» Typed variables stand for streams, terms for every f.s. causal functions.

FOM and MSO(N) are interpretable in one another.
» Justifies focusing on FOM.

» Regard M as a multi-sorted Lawvere theory.
~~ Tarskian semantics ~ indexed category, from global section functor I
r- @ +—— Homy(1¥,x%)

v — (P(F(2¥),9)
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SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

XxY5S X
~> the simple fibration s(C) — C
The construction Gum
Gum(€&) € > Sum(p)-predicate: (U, ¢(a, u))
- U object of C, ¢ over A x U (in p)
i p ~ Ju: U ¢(a,u)
X
GSum(p) s(C) ———=¢C
> Freely adds existential quantifications
i (simple sums)
¢

» Reminiscent of typed realizability

realizers in C
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SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

XxY5S X
~> the simple fibration s(C) — C
The construction Gum
Gum(€&) € > Sum(p)-predicate: (U, ¢(a, u))
- U object of C, ¢ over A x U (in p)
i p ~ Ju: U ¢(a,u)
X
GSum(p) s(C) ———=¢C
> Freely adds existential quantifications
i (simple sums)
¢

» Reminiscent of typed realizability

realizers in C

Reconstructing SMSO

Simulations of non-determinstic automata =~ G&um applied to FOM

31/36



Dial =2 Sum o Proo Proo(p) = Sum(p®®)°P  [Hofstra (2011)]

» Dial(p)-predicate over A =~ (U, X, p(a, u, x))
think Ju Vx ¢(a, u, x)

» interprets full intuitionistic MLL+FO

LNL-adjunction

— —
Sum(p) L Dial(p) T Proo(p)
N~~~ @@ N~~~ 0
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Dial =2 Sum o Proo Proo(p) = Sum(p®®)°P  [Hofstra (2011)]

» Dial(p)-predicate over A =~ (U, X, p(a, u, x))
think Ju Vx ¢(a, u, x)

» interprets full intuitionistic MLL+FO and exponentials
I(U, X, ¢(u,x)) = (U,1,Vx o(u,x)

LNL-adjunction

/\ /\
Sum(p) 1 Dial*(p) T Prod(p)

~—  —  ~N~}9B @ —
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Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]
Dial =2 Sum o Proo Prod(p) = Sum(p°P)°P [Hofstra (2011)]

» Dial(p)-predicate over A = (U, X, ¢(a, u, x))
think Ju Vx ¢(a, u, x)

» interprets full intuitionistic MLL4+FO and exponentials
(U, X, o(u,x)) = (U,1,Yx p(u,x)

LNL-adjunction

— — T
Sum(p) i Dial* (p) T Prod(p)
N~~~ @@ N~~~

Realized Dialectica-like construction Dial™

» Only over a CCC extension of M
(U, X, (u, x)) = (UPX,1,Vx p(f(» x), x)
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Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]
Dial =2 Sum o Proo Prod(p) = Sum(p°P)°P [Hofstra (2011)]

» Dial(p)-predicate over A = (U, X, ¢(a, u, x))
think Ju Vx ¢(a, u, x)

» interprets full intuitionistic MLL4+FO and exponentials
(U, X, o(u,x)) = (U,1,Yx p(u,x)

LNL-adjunction

— — T
Sum(p) i Dial* (p) T Prod(p)
N~~~ @@ N~~~

Realized Dialectica-like construction @ial™
» Only over a CCC extension of M
(U, X, (u, x)) = (UPX,1,Vx p(f(» x), x)

» Relationship with Dial via a “feedback” monad
exploits fix : A4 — A

» Polarity restrictions ~ model of LMSO (restricted exponentials)
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Monadic Second-Order logic
Part I: Reverse Mathematics
Part II: proof systems for Church'’s synthesis

Conclusion

33/36



Axiomatic strength of two classical MSO theories.
» In the context of Reverse Mathematics.
» Strong link between ¥3-induction and MSO(N).
» Preliminary results on MSO(Q).
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Part | : the logical strength of MSO

Summary

Axiomatic strength of two classical MSO theories.
» In the context of Reverse Mathematics.
> Strong link between ¥3-induction and MSO(N).
» Preliminary results on MSO(Q).

Related work

» Characterizations of the topological complexity of MSO-definable sets.
» Extension to the Reverse-mathematical analysis to intuitionistic logic.
[Lichter and Smolka (2018)]

» Conservativity results for cyclic arithmetic.
[Simpson (2017), Das (2019)]
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» Realizability models based on simulations between automata
» Abstract reformulation link with Dialectica and typed realizability
» Complete extension of LMSO omitted from the talk [P., Riba (2019)]
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» Realizability models based on simulations between automata

» Abstract reformulation link with Dialectica and typed realizability
» Complete extension of LMSO omitted from the talk [P., Riba (2019)]

» Fibrations of tree automata [Riba (2015)]

» Good-for-games automata
[Henziger, Piterman (2006), Kuperberg Skrzypczak (2015)]
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» Realizability for continuous functions X% — 7

» Extensions of Dial™> for fibrations over the topos of trees?
Fam(Fam(p°P)°P) instead of Dial(p)

» Undecidability of the equational logic of higher-order extensions of FOM?
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» Realizability for continuous functions X% — 7

» Extensions of Dial™> for fibrations over the topos of trees?
Fam(Fam(p°P)°P) instead of Dial(p)

» Undecidability of the equational logic of higher-order extensions of FOM?

Thanks for your attention! Questions?
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Induction and comprehension

RCA, is defined by restricting induction and comprehension

Comprehension axiom
For every formula ¢(n) (with X ¢ FV(¢)
X VneN (¢(n) < n e X)

» RCAq: restricted to A formulas

recursive comprehension

Induction axiom

To prove that Vn € N¢(n) it suffices to show
> ¢(0) holds
» for every n € N, ¢(n) implies ¢(n+ 1)

» RCAo: restricted to X9 formulas.
3n §(n) with § € Ag

» Equivalent to minimization principles and comprehension for finite sets.
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For any linear order (P, <) write [P]? for {(i,j) € P?| i < j} and fix a finite
monoid (M, -, e).
Call f: [P]* — M additive when f(i,j) - f(j, k) = f(i,k) forall i <j < k

For any additive f : [P]> — M, there is an unbounded monochromatic X C P
(. [F(IXT?)| = ).



Additive Ramsey over w

For any linear order (P, <) write [P]? for {(i,j) € P? | i < j} and fix a finite
monoid (M, -, e).

Call f: [P]* — M additive when f(i,j) - f(j, k) = f(i,k) forall i <j < k
Additive Ramsey

For any additive f : [P]* — M, there is an unbounded monochromatic X C P
(st [F(IXI)| = 1).

Over RCAy, additive Ramsey over w is equivalent to ~3-induction.

Direct proof: “as usual’ for additive Ramsey (factored through an ordered variant in
the paper)

MNY-induction from additive Ramsey

Consider equivalently comprehension for sets bounded by n for 3%k 4(x, k).
Define the coloring f : [w]* — 2" as (i, j)x = 'r21a<x'6(x, 1.
i<I<j

Apply additive Ramsey and consider the color X of the monochromatic set; we
have

xeX & 3%°6(x, k)
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Combinatorics for coloring over Q

Let D be a dense linear order (~ Q).

A function f : D — X is called homogeneous if f~*(x) is either dense or empty
for every x € X.

The shuffle principle

For any coloring ¢ : Q — [0, n], there is I Cconv Q such that c|, is a shuffle.

» the key additional principle behind the usual inductive argument in
[Carton, Colcombet, Puppis (2015)]

Shelah’s additive Ramseyan theorem

Let M be a monoid. For every map f : [Q]> — M such that
f(q,r)f(r,s) = f(q,s), there exists an interval | C Q and a finite partition into
finitely many dense sets D; of / such that f is constant over each [Di]*.

» the key additional principle behind the usual inductive argument in
[Shelah (1975)]
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Consider a formula ¢(u, x).

~ Infinite 2-player game G, between P and O.

0]
P

X0

to

X1

U1

Xn

Un

(ue U¥ xeXv)

P wins
<~
(u, x) holds
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Consider a formula ¢(u, x). (ue U” xeX)
~ Infinite 2-player game G, between P and O.

0 X0 x1 Xn P wins

P uo uy Un o(u, x) holds

P-strategies ~ X' = U O-strategies ~ U*— X
causal functions eager causal functions
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The Buchi-Landweber theorem

Consider a formula ¢(u, x). (ue U¥ xeX?)
~ Infinite 2-player game G, between P and O.

0 [ x x1 Xn P wins

P ) Uy Up ©(u, x) holds

P-strategies ~ X' = U O-strategies ~ U* = X
causal functions eager causal functions

Theorem [Biichi-Landweber (1969)]

Suppose ¢ is MSO-definable. The game G, is determined:
» Either there exists a finite-state P-strategy sp(x) s.t. Vx € X ¢(sp(x), x)
» Or there exists a finite-state O-strategy so(u) s.t. VYu € U¥ —p(u,so(u))
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Tuples A = (Q, go, U,6.4,Q.4) : X where

» U a set of moves ~ amount of non-determinism
» transition function 64 : Z X Q@ x U — Q induces 6% : % x U¥ — Q¥
> Q4 C Q% reasonable acceptance condition (parity, Muller, ...)
» Same definable languages £(A) = {w | Ju % (w, u)} U~Q



The realizability notion for SMSO

Uniform non-deterministic automata
Tuples A = (Q, qo, U,.4,Q2.4) : X where

» U a set of moves ~ amount of non-determinism
» transition function d4 : X X @ X U — @ induces 0% : ¥ x U® — Q¥
» Q4 C QY reasonable acceptance condition (parity, Muller, ...)
» Same definable languages £(A) = {w | Ju 6 (w, u)} U~Q

Simulations A I f : B
Finite-state causal function f : ¥“ x U“ — V“ such that

VYw € ¥“Vu € U¥ a(w,u) € Qs = &a(w,f(w,u)) € Qs
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The realizability notion for SMSO

Uniform non-deterministic automata
Tuples A = (Q, qo, U,.4,Q2.4) : X where

» U a set of moves ~ amount of non-determinism
» transition function d4 : X X @ X U — @ induces 8% : T x U¥ — Q*
» Q4 C QY reasonable acceptance condition (parity, Muller, ...)
» Same definable languages £(A) = {w | Ju 6 (w, u)} U~Q

Simulations A I f : B
Finite-state causal function f : ¥“ x U“ — V“ such that

VYw € ¥“Vu € U¥ a(w,u) € Qs = &a(w,f(w,u)) € Qs

> If AlF B, then £(A) C £(B)

» Natural interpretation for 3, A and — for deterministic automata. . .
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Alternating uniform automata

Define a notion of alternating uniform automata (Q, go, U, X, 6,Q)
» sets of P-moves U and O-moves X
> i xQxUxX—=>Q
> w € L(A) iff P wins an acceptance game

Simulation game

U, x) — (v,Y)

. P wins iff
Vn

Yn

VO TO

Xn (u, x) P-winning = (v, y) P-winning

» X ~1 ~» non-deterministic uniform automata

» U~ X ~1 ~- deterministic automata
trivial simulations
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