Equational theories of algebraic operators on Weihrauch problems

Cécilia Pradic ⊇ <u>lies</u> and *revisionism* and j.w.w. Eike Neumann, Arno Pauly & Ian Price Dagstuhl meeting 25141

Setting for the motivation

Type 2 computability

Turing Machines with

- Input tape containing some $i \in 2^{\omega}$
- Write-and-go-right-only-output tape
- Natural setting to compute with infinite objects

(the "real" 2^{ω} is representable)

The category of represented spaces ReprSp

- Objects: (X, δ_X) where δ_X is a **partial** surjection $2^{\omega} \twoheadrightarrow X$
- Morphisms: maps $X \to X'$ with a type 2-computable witness
- Super nice: extensive, lcc, W/M-types
- (\cong subcategory of the modest sets in the Kleene-Vesley topos)

Weihrauch problems

Definition of Weihrauch problems as containers

A Weihrauch problem P is an internal family in ReprSp, i.e.

 $P: \text{positions}(P) \to \text{shape}(P)$

- $\operatorname{shape}(P)$ is the space of **questions**
- positions(P) is the space of **answers**
- P links answers with the questions they are answering
- Notation: $P_i = P^{-1}(i)$

Examples:

• $C_{\mathbb{N}}$: "Given $p \in \mathbb{N}^{\mathbb{N}}$, find something not enumerated by p" $\{(p, 1^n 0^{\omega}) \in \mathbb{N}^{\mathbb{N}} \mid n \notin \operatorname{range}(p)\} = \operatorname{positions}(C_{\mathbb{N}}) \xrightarrow{\pi_1} \operatorname{shape}(C_{\mathbb{N}}) \subseteq \mathbb{N}^{\mathbb{N}}$

 $\bullet~\ensuremath{\mathsf{WKL}}_0$: "given an infinite binary tree, produce an infinite path"

Weihrauch reducibility

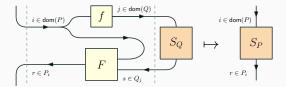
TL;DR: Turing reducibility, but

- adapted to type 2 computability
- reductions must make **exactly** one oracle call

Official definition

 $P \leq_{\mathrm{W}} Q$ if there are **computable**

$$f: \operatorname{shape}(P) \to \operatorname{shape}(Q) \quad \text{and} \quad F: \prod_{i \in \operatorname{shape}(P)} (Q_{f(i)} \to P_i)$$



Reductions compose + Quotienting by $\equiv_W \rightsquigarrow$ Weihrauch degrees

The more general picture: container morphisms

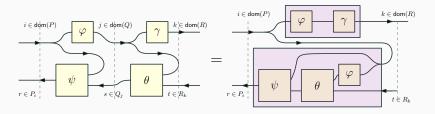
- Fix a category \mathcal{C} with **pullbacks**
- $Cont(\mathcal{C})$ has internal families in \mathcal{C} as objects

Official definition

A morphism $P \to Q$ in $\mathsf{Cont}(\mathcal{C})$ is <u>a</u> pair (f, F) of

$$f : \operatorname{shape}(P) \to \operatorname{shape}(Q) \quad \text{and} \quad F : \prod_{i \in \operatorname{shape}(P)} (Q_{f(i)} \to P_i)$$

(To make sense of what F is: requires pullbacks)



A Weihrauch reduction $P \leq_W Q = \text{morphism } P \rightarrow Q$ in $Cont(ReprSp)^{-5/23}$

Some functors on containers/Weihrauch problems

• Coproducts (joins) +:

shape
$$(P+Q) \cong$$
 shape (P) + shape (Q) $(P+Q)_{in_1(i)} = P_i$
 $(P+Q)_{in_2(j)} = Q_j$

• Cartesian product $\times:$ "given inputs for both, solve one"

 $\operatorname{shape}(P \times Q) \cong \operatorname{shape}(P) \times \operatorname{shape}(Q) \quad (P \times Q)_{i,j} = P_i + Q_j$

• Hadamard product \otimes : "solve both problems"

 $\operatorname{shape}(P \otimes Q) \cong \operatorname{shape}(P) \times \operatorname{shape}(Q) \quad (P \otimes Q)_{i,j} = P_i \times Q_j$

• I: shape(I) = positions(I) = 1

Composition, iterated composition

Sequential composition $Q \triangleright P$

- Implicitly: ability to make an oracle call to Q then P
- Explicitly: given an instance i of Q and a function that takes a solution of i to an instance of P, compute all relevant solutions

shape
$$(Q \triangleright P) \cong \sum_{i \in \text{shape}(Q)} (Q_i \to \text{shape}(P))$$

 $(Q \triangleright P)_{i,f} \cong \sum_{r \in Q_i} P_{f(r)}$

Iterated composition P^{\triangleright}

- Explicitly: computed as the least fixpoint of $X \mapsto \mathbf{I} + (P \triangleright X)$
- Implicitly: ability to make a finite but not fixed in advance number of oracle calls to P

Fixpoint of operators

least fixpoint	initial algebra	μ
greatest fixpoint	terminal coalgebra	ν

A very plausible conjecture (Folklore?)

If F is a fibred polynomial endofunctor over containers, the following exists:

- an initial algebra μF for F
- a terminal coalgebra νF for F
- a somewhat canonical bialgebra ζF sitting in-between

Examples:

- $\bullet \ P^{\triangleright} = \mu(X \mapsto \mathbf{I} + P \triangleright X)$
- $P^{\otimes} = \mu(X \mapsto \mathbf{I} + X \otimes P)$
- $P^{\otimes \infty} = \zeta(X \mapsto X \otimes P)$
- $\bullet \ P^{\triangleright\infty} = \zeta(X \mapsto P \triangleright X)$

Equational theory of the Weihrauch lattice

- The Weihrauch degrees are a distributive lattice.
- Every countable distributive lattice embeds into $(\mathfrak{W}, +, \times)$

(via the Medvedev degrees)

Thus, (𝔅, +, ×) ⊨ t ≤ u iff t ≤ u is provable from the axioms of distributive lattices. (formulas being implicitly universally quantified)

Driving question

Can we extend this to additional operations? In particular:

- Can we axiomatize equation in those extensions?
- What is the complexity of deciding universal validity of $t \leq u$?

Equational theory of the Weihrauch lattice

- The Weihrauch degrees are a distributive lattice.
- Every countable distributive lattice embeds into $(\mathfrak{W}, +, \times)$

(via the Medvedev degrees)

Thus, (𝔅, +, ×) ⊨ t ≤ u iff t ≤ u is provable from the axioms of distributive lattices. (formulas being implicitly universally quantified)

Driving question

Can we extend this to additional operations? In particular:

- Can we axiomatize equation in those extensions?
- What is the complexity of deciding universal validity of $t \leq u$?

Meta-question

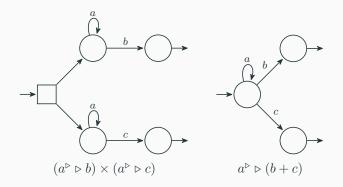
For a given signature, is there anything true in the Weihrauch degree that is not true for **all** (suitable) categories of containers?

Terms with composition and automata

Starting observation

Terms over $0, \mathbf{I}, +, \triangleright, (-)^{\triangleright} =$ can be regarded as regular expressions. (alphabet = the set of variables)

- Terms can be mapped to NFAs in a meaningful way
- Adding \times = allowing alternating automata



Universal validity and games

Given alternating automata \mathcal{A} and \mathcal{B} , we can define a game $\Im(\mathcal{A}, \mathcal{B})$ that captures a notion of simulation such that

Theorem

 $(\mathfrak{W}, +, \times, \triangleright, (-)^{\triangleright}) \models t \leq u$ iff Duplicator wins in $\partial(\mathcal{A}_t, \mathcal{A}_u)$.

Some properties of $\partial(\mathcal{A}, \mathcal{B})$:

- this is a Büchi game
- allows to make several attempts at simulating \mathcal{A} in parallel

(using \mathcal{B} exactly once)

Universal validity and games

Given alternating automata \mathcal{A} and \mathcal{B} , we can define a game $\Im(\mathcal{A}, \mathcal{B})$ that captures a notion of simulation such that

Theorem

 $(\mathfrak{W}, +, \times, \triangleright, (-)^{\triangleright}) \models t \leq u$ iff Duplicator wins in $\partial(\mathcal{A}_t, \mathcal{A}_u)$.

Some properties of $\partial(\mathcal{A}, \mathcal{B})$:

- this is a Büchi game
- allows to make several attempts at simulating ${\mathcal A}$ in parallel

(using \mathcal{B} exactly once)

 $\Rightarrow \mathcal{O}(|\mathcal{B}|2^{|\mathcal{A}|}) \text{ positions}$

Universal validity and games

Given alternating automata \mathcal{A} and \mathcal{B} , we can define a game $\Im(\mathcal{A}, \mathcal{B})$ that captures a notion of simulation such that

Theorem

 $(\mathfrak{W}, +, \times, \triangleright, (-)^{\triangleright}) \models t \leq u$ iff Duplicator wins in $\partial(\mathcal{A}_t, \mathcal{A}_u)$.

Some properties of $\partial(\mathcal{A}, \mathcal{B})$:

- this is a Büchi game
- allows to make several attempts at simulating \mathcal{A} in parallel

(using \mathcal{B} exactly once)

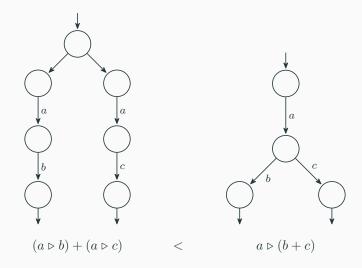
 $\Rightarrow \mathcal{O}(|\mathcal{B}|2^{|\mathcal{A}|})$ positions

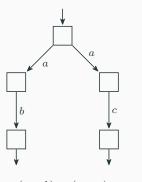
Corollary

" $(\mathfrak{W}, \mathbf{I}, 0, +, \times, \triangleright, (-)^{\triangleright}) \models t \leq u$?" is decidable.

• Conjecture: this is PSPACE-complete.

A simple example of simulation and non-simulation



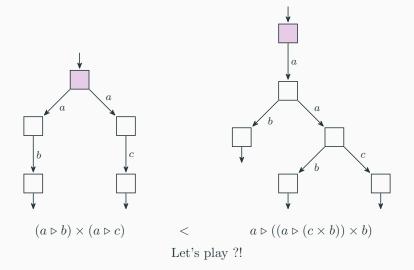


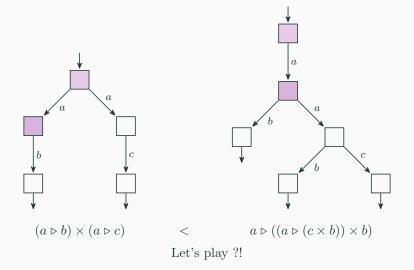
 $(a \triangleright b) \times (a \triangleright c)$

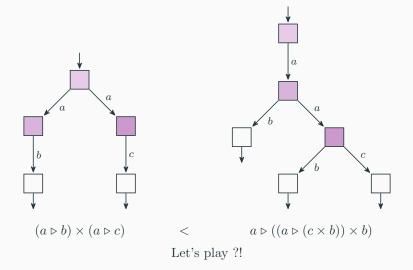
<

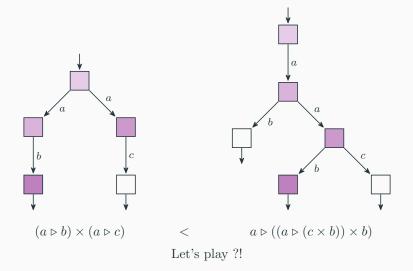


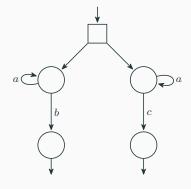
 $a \triangleright ((a \triangleright (c \times b)) \times b)$





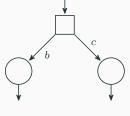






 $(a^{\rhd} \rhd b) \times (a^{\rhd} \rhd c)$

 \equiv



a

 $a^{\triangleright} \triangleright (b \times c)$

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

$$x \triangleright x \leq x \qquad \Rightarrow \qquad x^{\triangleright} \leq x$$

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

$$x \triangleright x \leq x \qquad \Rightarrow \qquad x^{\triangleright} \leq x$$

• Similar: an axiom of left-handed Kleene algebras (LKA)

$$y \triangleright x \le x \qquad \Rightarrow \qquad y^{\triangleright} \triangleright x \le x$$

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

$$x \triangleright x \leq x \qquad \Rightarrow \qquad x^{\triangleright} \leq x$$

• Similar: an axiom of left-handed Kleene algebras (LKA)

$$y \triangleright x \le x \qquad \Rightarrow \qquad y^{\triangleright} \triangleright x \le x$$

• For \times , it seems like we sometimes need

$$(y \triangleright x) \times z \leq x \qquad \Rightarrow \qquad (y^{\triangleright} \triangleright x) \times z \leq x$$

(key example: $\mathbf{I} \leq a \times b$ implies $a^{\triangleright} \times b^{\triangleright} \leq (a \times b)^{\triangleright}$)

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

$$x \triangleright x \leq x \qquad \Rightarrow \qquad x^{\triangleright} \leq x$$

• Similar: an axiom of left-handed Kleene algebras (LKA)

$$y \triangleright x \le x \qquad \Rightarrow \qquad y^{\triangleright} \triangleright x \le x$$

• For \times , it seems like we sometimes need

$$(y \triangleright x) \times z \leq x \qquad \Rightarrow \qquad (y^{\triangleright} \triangleright x) \times z \leq x$$

(key example: $\mathbf{I} \leq a \times b$ implies $a^{\triangleright} \times b^{\triangleright} \leq (a \times b)^{\triangleright}$)

Theorem

The above axioms are valid in the extended Weihrauch degrees.

Candidate axiomatization of inequations

All the axioms of LKA minus right-distributivity of + over
 *

Candidate axiomatization of inequations

- All the axioms of LKA minus right-distributivity of + over
 *
 - i.e. it can be the case that $R \triangleright (P+Q) \not\equiv_{W} (R \triangleright P) + (R \triangleright Q)$

Candidate axiomatization of inequations

- All the axioms of LKA minus right-distributivity of + over
 *
 - i.e. it can be the case that $R \triangleright (P+Q) \not\equiv_{\mathrm{W}} (R \triangleright P) + (R \triangleright Q)$
 - why: LKA = language inclusions, but we want simulations

Candidate axiomatization of inequations

- All the axioms of LKA minus right-distributivity of + over
 *
 - i.e. it can be the case that $R \triangleright (P+Q) \not\equiv_{\mathcal{W}} (R \triangleright P) + (R \triangleright Q)$
 - $\bullet\,$ why: LKA = language inclusions, but we want simulations
- The distributive lattice axioms with units +

$$\begin{array}{rcl} (y \triangleright x) \times (z \triangleright x) &\leq & (y \times z) \triangleright x \\ (y \triangleright x) \times z &\leq & y \triangleright (x \times z) \\ (y \triangleright x) \times z \leq x &\Rightarrow & (y^{\triangleright} \triangleright x) \times z \leq x \\ 1 \triangleright x = 1 & & 0 \triangleright x = 0 \end{array}$$

Candidate axiomatization of inequations

- All the axioms of LKA minus right-distributivity of + over
 *
 - i.e. it can be the case that $R \triangleright (P+Q) \not\equiv_{\mathcal{W}} (R \triangleright P) + (R \triangleright Q)$
 - why: LKA = language inclusions, but we want simulations
- The distributive lattice axioms with units +

$$\begin{array}{rcl} (y \triangleright x) \times (z \triangleright x) &\leq & (y \times z) \triangleright x \\ & (y \triangleright x) \times z &\leq & y \triangleright (x \times z) \\ (y \triangleright x) \times z \leq x &\Rightarrow & (y^{\triangleright} \triangleright x) \times z \leq x \\ & 1 \triangleright x = 1 & & 0 \triangleright x = 0 \end{array}$$

Theorem

Complete for the equational theory of $(\mathfrak{W}, \mathbf{I}, 0, 1, +, \times, \triangleright, (-)^{\triangleright})$.

Candidate axiomatization of inequations

- All the axioms of LKA minus right-distributivity of + over
 *
 - i.e. it can be the case that $R \triangleright (P+Q) \not\equiv_{\mathcal{W}} (R \triangleright P) + (R \triangleright Q)$
 - $\bullet\,$ why: LKA = language inclusions, but we want simulations
- The distributive lattice axioms with units +

$$\begin{array}{rcl} (y \triangleright x) \times (z \triangleright x) &\leq & (y \times z) \triangleright x \\ & (y \triangleright x) \times z &\leq & y \triangleright (x \times z) \\ (y \triangleright x) \times z \leq x &\Rightarrow & (y^{\triangleright} \triangleright x) \times z \leq x \\ & 1 \triangleright x = 1 & & 0 \triangleright x = 0 \end{array}$$

Theorem

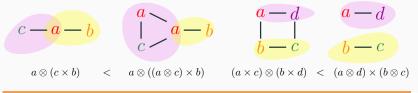
Complete for the equational theory of $(\mathfrak{W}, \mathbf{I}, 0, 1, +, \times, \triangleright, (-)^{\triangleright})$.

Proof idea: \exists positional simulation strategies, induction on the syntax

How this started: the theory of \otimes, \times

A notion of combinatorial reduction between graphs

A reduction from (V_0, E_0, c_0) to (V_1, E_1, c_1) is a colour-preserving function $h: V_1 \to V_0$ such that the image of any maximal clique in (V_1, E_1) under h contains a maximal clique in (V_0, E_0) .



Combinatorial characterization (Neumann, Pauly, P.)

 $(\mathfrak{W}, \times, \otimes) \models t \leq u$ iff there is a reduction from G_t to G_u . As a result, deciding $(\mathfrak{W}, \times, \otimes) \models t \leq u$ is Σ_2^p -complete.

- Axiomatizing: harder!
- +, \triangleright and \otimes : opens the gates of hell (concurrency theory)

Conjectures! (and related mess)

- Enriching the signature with a forementioned $\mu =$ same thing with all finite alternating automata
- Then enriching the signature with $\nu = \text{parity alternating}$ automata
- Then enriching the signature with ζ (or (−)^{▷∞}) = runs of countable ordinal length
- Enriching with \otimes = going to higher-dimensional automata
 - Dealing with stuff that sounds like concurrency
 - Scarier to me!

Some englobing syntax for all signatures discussed here

$x\in \Gamma\cup \Delta$	$\Gamma;\Delta \vdash t$	$\Gamma;\Delta\vdash u$	$\Box \in \{\otimes,\times,+\}$		
$\Gamma; \Delta \vdash x$	$\Gamma; \Delta \vdash t \square u$				
$\overline{\Gamma;\Delta\vdash\mathbf{I}}$	I -	$\frac{\Gamma; \cdot \vdash t \Gamma}{\Gamma; \Delta \vdash t}$			
$\frac{\Gamma; \Delta \vdash t \qquad \Gamma; \cdot \vdash u}{\Gamma; \Delta \vdash t \blacktriangleright u}$	$\underline{\Gamma;\cdot\vdash z}$		$\frac{u \neg * \in \{\neg \circ, \Rightarrow\}}{t \neg * u}$		
$\frac{\Gamma; \Delta, x \vdash t \qquad \gamma \in \{\mu, \nu, \zeta\}}{\Gamma; \Delta \vdash \gamma x.t}$					

Conjecture(s)

For various signatures, true inequations in the slightly extended Weihrauch degrees are true in **all** categories of containers.

- Proofs of completeness = there exists messy enough problems to not create other true equations in Weihrauch degrees.
- \bullet When does that happen in a category ${\cal C}$

Conjecture: that's true when

For every $n \in \mathbb{N}$, there is

- an object A in \mathcal{C}
- a strong antichain of (regular?) subobjects $(V_i)_{i < n}$ of A
- with all $V_i \cup V_j$ are connected

Would anyone care about similar results for other categories of containers?

A vaguer project

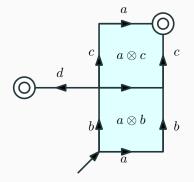
Inconvenient truths

- Weihrauch problems are the containers over **regular projective** represented spaces (subspaces of $\mathbb{N}^{\mathbb{N}}$) for which every question has an answer
- Containers over subspaces of Baire space are only **weakly** locally cartesian closed
- (and also have only weak (co)inductive types)
- It sounds unproblematic in practice because
 - The weak structure is good enough
 - (a systematic way of relating that = this is the category of regular projectives of represented spaces, which is a nice lccc)

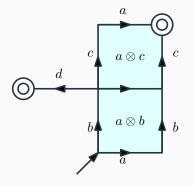
Question(s)

How do we transfer cleanly results about containers on a nice category C with enough projectives to containers of the full subcategory of projectives?

Example of what's a higher-dimensional automaton



Example of what's a higher-dimensional automaton



(I dislike this HDA, I feel it is not nice enough to interpret in containers)