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Weihrauch problems

Definition

A Weihrauch problem P is given

• a set of instances dom(P ) ⊆ NN

• for each i ∈ dom(P ) a non-empty set of solutions Pi ⊆ NN

Examples:

• CN: “Given p ∈ NN, find something not enumerated by p”

dom(CN) = {p ∈ NN | ∃n n /∈ range(p)} CN(p) = {1n0ω | n /∈ range(p)}

• WKL0: “given an infinite binary tree, produce an infinite path”

Comparing the hardness of problems ⇝ via a notion of reducibility
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Weihrauch reducibility

TL;DR: Turing reducibility, but

• adapted to type 2 computability

• reductions must make exactly one oracle call

Official definition

P ≤W Q if there are computable

f : dom(P ) → dom(Q) and F :
∏

i∈dom(P )

(Qf(i) → Pi)

f

F

i ∈ dom(P )

j ∈ dom(Q)

s ∈ Qj

SQ 7→ SP

i ∈ dom(P )

r ∈ Pir ∈ Pi

Reductions compose + Quotienting by ≡W ⇝Weihrauch degrees
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Containers

Fix a category C with pullbacks

• minimal assumption to talk about “families of sets in C”
• formally: morphisms f : A → B represents (f−1(a))a∈A

Definition

A container P is given by

• an object of shapes shape(P )

• a family of solutions (Pi)i∈shape(P )

(formally a morphism positions(P ) → shape(P ))

Example (Weihrauch problems)

Call pMod(Krec
2 ,K2) the category of subspaces of NN and

computable maps between them.

All Weihrauch problems are containers.

4/18



Container morphisms

Official definition

A morphism P → Q in Cont(C) is a pair (f, F ) of

f : shape(P ) → shape(Q) and F :
∏

i∈shape(P )

(Qf(i) → Pi)

(To make sense of what F is: requires pullbacks)

i ∈ dom(P ) k ∈ dom(R)
φ γ

t ∈ Rk

ψ θ
φ

r ∈ Pi

φ
j ∈ dom(Q)

ψ

γ
i ∈ dom(P )

θ
s ∈ Qj

k ∈ dom(R)

t ∈ Rk

=

r ∈ Pi
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Containers over pMod(K2,Krec
2 ) ≈ Weihrauch problems

Not all containers in pMod(Krec
2 ,K2) are Weihrauch problems

dom(⊤) = {•} ⊤• = ∅

Call those containers where Pi ̸∼= 0 answerable

Contention/Theorem (P., Price)

Weihrauch problems/reducibility

⇐⇒

the fullsubcategory of answerable containers over pMod(Krec
2 ,K2).

(Theorem: the degree structures are isomorphic)

• For structural stuff, answerability is annoying

• answerable = slightly extended Weihrauch problems

(terminology suggestions welcome)
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Extended Weihrauch problems

• Assume AC for this slide

• pAsm(Krec
2 ,K2) = multirepresented subspaces of some ∇(X)×NN

Theorem (P., Price)

The degree structure of containers over pAsm(Krec
2 ,K2) is the same

as extended Weihrauch degrees.

• This says nothing about instance reducibility in general.

Other things we know how to do

• Trivially: continuous/generalized W reducibility

• With some work: strong reducibility
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Point? (not sure)

Seen in the container literature

⊓ ⊔ ⋆ × (−)⋄ → / ⇒

• Assuming we are working in a elcc with (co)inductive types

• Sadly not quite true for pAsm(Krec
2 ,K2))

• Let’s pretend it is :) for now

Maths is easier when assuming something patently false!

• A lot of work on type theory and containers (von Glehn & Moss 18)

• Another way to link linear arithmetic/Weihrauch reducibility?

(other than (Uftring 21); I’m not optimistic atm)
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Some functors on containers (operators on Weihrauch prob-

lems)

Many natural operators over Weihrauch problems/degrees:

• Coproducts (joins) ⊔:

dom(P ⊔Q) ∼= dom(P ) + dom(Q)
(P ⊔Q)in1(i) = Pi

(P ⊔Q)in2(j) = Qj

• Meets ⊓: “given inputs for both, solve one”

dom(P ⊓Q) ∼= dom(P )× dom(Q) (P ⊓Q)i,j = Pi +Qj

• Products ×: “solve both problems”

dom(P ×Q) ∼= dom(P )× dom(Q) (P ×Q)i,j = Pi ×Qj

• 1: “there is a computable instance which has a computable

solution”
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Fixpoint of operators

least fixpoint initial algebra µ

greatest fixpoint terminal coalgebra ν

A very plausible conjecture (Folklore?)

If F is a fibred polynomial endofunctor over containers, the

following exists:

• an initial algebra µF for F

• a terminal coalgebra νF for F

• a somewhat canonical bialgebra ζF sitting in-between

Examples:

• P ⋄ = µ(X 7→ 1 ⊔X ⋆ P )

• P ∗ = µ(X 7→ 1 ⊔X × P )

• P̂ = ζ(X 7→ X × P )

• P∞ = ζ(X 7→ X ⋆ P )
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Abstract nonsense over!

(Talk 2)



Equational theory of the s.e. Weihrauch lattice

• The (s.e.) Weihrauch degrees are a distributive lattice.

• Every countable distributive lattice embeds into (W,⊔,⊓)
(via the Medvedev degrees)

• Thus, (W,⊔,⊓) |= t ≤ u iff t ≤ u is provable from the axioms of

distributive lattices. (formulas being implicitly universally quantified)

Driving question

Can we extend this to additional operations? In particular:

• Can we axiomatize equation in those extensions?

• What is the complexity of deciding universal validity of t ≤ u?

Meta-question

For a given signature, is there anything true in the s.e. Weihrauch

degree that is not true for all (suitable) categories of containers?
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Terms with composition and automata

Starting observation

Terms over 0, 1,⊔, ⋆, (−)⋄ = can be regarded as regular expressions.

(alphabet = the set of variables)

• Terms can be mapped to NFAs in a meaningful way

• Adding ⊓ = allowing alternating automata

b

c

a

a

a
b

c

(b ⋆ a⋄) ⊓ (c ⋆ a⋄) (b ⊔ c) ⋆ a⋄
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Universal validity and games

Given alternating automata A and B, we can define a game ⅁(A,B)
that captures a notion of simulation such that

Theorem

(W,⊔,⊓, ⋆, (−)⋄) |= t ≤ u iff Duplicator wins in ⅁(At,Au).

Some properties of ⅁(A,B):

• this is a Büchi game

• allows to make several attempts at simulating A in parallel

(using B exactly once)

⇒ O(|B|2|A|) positions

Corollary

The equational theory of “(W, 1, 0,⊔,⊓, ⋆, (−)⋄) |= t ≤ u?” is

decidable.

• Conjecture: this is Pspace-complete.
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A simple example of simulation and non-simulation

a

b

a

c

a

b

c

(b ⋆ a) ⊔ (c ⋆ a) < (b ⊔ c) ⋆ a
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A simulation requiring several concurrent attempts

a
a

b c

a

b

a

c

b

(b ⋆ a) ⊓ (c ⋆ a) < (((c ⊓ b) ⋆ a) ⊓ b) ⋆ a
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Another simulation requiring several concurrent attempts

b c

a a

a

b

c

(b ⋆ a⋄) ⊓ (c ⋆ a⋄) ≡ (b ⊓ c) ⋆ a⋄

16/18



Induction principles for (−)⋄

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

x ⋆ x ≤ x ⇒ x⋄ ≤ x

• Similar: an axiom of right-handed Kleene algebras (RKA)

x ⋆ y ≤ x ⇒ x ⋆ y⋄ ≤ x

• For ⊓, it seems like we sometimes need

(x ⋆ y) ⊓ z ≤ x ⇒ (x ⋆ y⋄) ⊓ z ≤ x

(key example: a⋄ ⊓ b⋄ ≤ (a ⊓ b)⋄)

Theorem

The above axioms are valid in the extended Weihrauch degrees.
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Completeness

Candidate axiomatization of inequations

• All the axioms of RKA minus left-distributivity of ⊔ over ⋆

• i.e. it can be the case that (P ⊔Q) ⋆ R ̸≡W (P ⋆ R) ⊔ (Q ⋆ R)

• why: RKA = language inclusions, but we want simulations

• The distributive lattice axioms with units +

(x ⋆ y) ⊓ (x ⋆ z) ≤ x ⋆ (y ⊓ z)

(x ⋆ y) ⊓ z ≤ (x ⊓ z) ⋆ y

(x ⋆ y) ⊓ z ≤ x ⇒ (x ⋆ y⋄) ⊓ z ≤ x

x ⋆⊤ = ⊤
x ⋆ 0 = 0

Theorem

Complete for the equational theory of (seW, 1, 0,⊤,⊔,⊓, ⋆, (−)⋄).

Proof idea: ∃ positional simulation strategies, induction on the syntax
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Conjectures!

(and related mess)



Extending the signature/the simulation game

• Enriching the signature with aforementioned µ = same thing

with all finite alternating automata

• Then enriching the signature with ν = parity alternating

automata

• Then enriching the signature with ζ (or (−)∞) = runs of

countable ordinal length

• Enriching with × = going to higher-dimensional automata

• Dealing with stuff that sounds like concurrency

• Scarier to me!



Some englobing syntax for all signatures discussed here

x ∈ Γ ∪∆

Γ;∆ ⊢ x

Γ;∆ ⊢ t Γ;∆ ⊢ u � ∈ {×,⊓,⊔}
Γ;∆ ⊢ t � u

Γ;∆ ⊢ 1

Γ; · ⊢ t Γ;∆ ⊢ u

Γ;∆ ⊢ t ⋆ u

Γ;∆ ⊢ t Γ; · ⊢ u

Γ;∆ ⊢ u → t

Γ; · ⊢ t Γ; · ⊢ u −∗ ∈ {⊸,⇒}
Γ;∆ ⊢ t−∗ u

Γ;∆, x ⊢ t γ ∈ {µ, ν, ζ}
Γ;∆ ⊢ γx.t



Another kind of questions

Conjecture(s)

For various signatures, true inequations in the slightly extended

Weihrauch degrees are true in all categories of containers.

• Proofs of completeness = there exists messy enough problems to

not create other true equations in Weihrauch degrees.

• When does that happen in a category C

Conjecture: that’s true when

For every n ∈ N, there is

• an object A in C
• a strong antichain of (regular?) subobjects (Vi)i<n of A

• with all Vi ∪ Vj are connected



A vaguer project

Containers over subspaces of Baire space are only weakly locally

cartesian closed

• (and also have only weak (co)inductive types)

• It sounds unproblematic in practice because

• The weak structure is good enough

• (a systematic way of relating that = this is the category of

regular projectives of represented spaces, which is a nice lccc)

Question(s)

How do we transfer cleanly results about containers on a nice

category C with enough projectives to containers of the full

subcategory of projectives?



Example of what’s a higher-dimensional automaton

a

a

bb

d

c c

a⊗ b

a⊗ c
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