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Errata (27/08/24)

e ax (bMe)<ax(bM(axc)) is actually derivable
e For (20,1, x, 1), the proposed theory is complete iff the pointed

one is

e Cycles in © may actually have exponential size, so the
“Corollary” did not follow from the conjecture as expected on
slide 13.

Relevant items are striked out.

Most of the conjectures of part 2 now have proofs on arXiv.

https://arxiv.org/abs/2403.13975
https://arxiv.org/abs/2408.14999
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Weihrauch problems

A Weihrauch problem P is given

e a set of instances dom(P) C NN

e for each i € dom(P) a non-empty set of solutions P; C NV
Examples:

o Cy: “Given p € NV, find something not enumerated by p”
dom(Cx) = {p € NY | Inn ¢ range(p)}  Cn(p) = {1"0% | n ¢ range(p)}

e WKLy: “given an infinite binary tree, produce an infinite path”
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Comparing the hardness of problems ~~ via a notion of reducibility
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Weihrauch reducibility

TL;DR: Turing reducibility, but

e adapted to type 2 computability

e reductions must make exactly one oracle call
Official definition
P <w Q@ if there are computable

fidom(P) > dom(Q) and F: [[ (Qw —P)
i€dom(P)

rep T
s€Q;

Reductions compose + Quotienting by =w ~~» Weihrauch degrees
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Some operation on the Weihrauch degrees

Many natural operators over Weihrauch problems/degrees:

e Joins LI: “solve either one of the problems”

ina (g 7

e Meets M: “given inputs for both, solve one”

dom(P M Q) =dom(P) xdom(Q) (PMNQ),; =P +Q,

Products x: “solve both problems”

dom(P x Q) = dom(P) x dom(Q) (P x Q)i ; =P xQ;

1: “there is an instance, everything is a solution”
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On the equational theory of the Weihrauch lattice

e The Weihrauch degrees are a distributive lattice.
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e The Weihrauch degrees are a distributive lattice.

e Every countable distributive lattice embeds into (207, L, M)
(via the Medvedev degrees)

e Thus, (W,U,MN) =t <wiff t < w is provable from the axioms of
distributive lattices. (formulas being implicitly universally quantified)

Can we extend this to additional operations? In particular:
e Can we axiomatize equation in those extensions?

e What is the complexity of deciding universal validity of ¢ < u?

Known axioms investigated in “On the algebraic structure of
Weihrauch degrees”, Brattka & Pauly, LMCS 2018
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A partial axiomatization of (20,1, x, 1)

a<b=axc<bxce monotonicity

ax (bxc)=(axb)xc ax1=a  monoid structure
axb=bxa commutativity

a<axa relevance

allb<a al1b<b M 1is a lower bound
a<bANa<c = a<ble M is the greatest Ib
(axb)Me<ax(bMc) half-distributivity
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GCeounter-example-to-completeness

ax (bMec)<ax (bM(axc))
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A partial axiomatization of (20,1, x, 1)

a<b=axc<bxce monotonicity

ax (bxc)=(axb)xc ax1=a  monoid structure
axb=bxa commutativity

a<axa relevance

afnb<a afllb<b M is a lower bound
a<bANa<c = a<bMe M is the greatest Ib
(axb)Me<ax(bMe) half-distributivity

ax (bMNe)<ax (bM(axc))

Adding 1 < a = complete axiomatization in the pointed degrees?
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Terms as graphs

Reduce checking (2,1, X) =t < u to a combinatorial problem.

First step: interpret terms ¢ as finite coloured graphs Gy:

e For a variable x, take a single vertex coloured by z.
e For MM, take the disjoint union

e For X, disjoint union + all edges between the two components

a~_ a—d a—d
c—a—1b | a—10 | |
= b— b—c
x (e11b) ax ((axc)nb) (aMc)x (bMd) (axd)m(bxc)

8/19



Combinatorial reduction between graphs

Definition

A reduction from (Vp, Eg, ¢) to (V1, E1,c1) is a colour-preserving
function h : V3 — V4 such that the image of any maximal clique in
(Vi, Eq) under h contains a maximal clique in (Vp, Ep).

a4 ~_ a—d a— d
c—a— | a— |
c” —c —c
ax (crb) < ax((axc)nbd) (aMe) x (bMd) < (axd)r(bxc)
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Combinatorial reduction between graphs

Definition

A reduction from (Vp, Eg, ¢) to (V1, E1,c1) is a colour-preserving
function h : V3 — V4 such that the image of any maximal clique in
(Vi, Eq) under h contains a maximal clique in (Vp, Ep).

a4 ~_ a—d a— d
c—a— | a— |
c” —c —c
ax (crb) < ax((axc)nbd) (aMe) x (bMd) < (axd)r(bxc)

Combinatorial characterization and complexity
(20,1, x) =t < u iff there is a reduction from G¢ to G,,.
As a result, deciding (20,7, X) = t < u is ¥5-complete.

Corollary: same valid inequations as the free L-M-completion of the
ordered monoid (N, |, 1, x)
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Handling U is easier

True inequations in (20,1, x) + the axioms below derive all true
inequations in (20,11, X, 1, (—))
(P* is finite parallelization, the lfp of X — 1L X x P)

a<a* (a*)*ga*
a<alb b<alUb a* xa*<a*
b<a ANc<a = bUc<a (aUb)* =a* x b*
af(bUc)=aNblUalc (amb)* =a*Mb*
ax (bUc)=axbUaxc (axb)*=1Uax a* xbxb*
1*=1
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Handling U is easier

True inequations in (20,1, x) + the axioms below derive all true
inequations in (20,11, X, 1, (—))
(P* is finite parallelization, the Ifp of X — 1L X x P)

a S a[* (a*)* S a*

a<alb b<alUb a* xa*<a*
b<a ANc<a = bUc<a (aUb)* =a* x b*
af(bUc)=aNblUalc (amb)* =a*Mb*
ax (bUc)=axbUaxc (axb)*=1Uax a* xbxb*
1*=1

The notion of combinatorial reducibility can be adapted to show that
deciding validity of an equation is IT§-complete
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l_l, O, 1, *, M and (—)O (work in progress)




Composition, iterated composition

Composition P x Q
e Implicitly: ability to make an oracle call to @) then P

e Explicitly: given an instance i of () and a function that takes a
solution of 7 to an instance of P, compute all relevant solutions

dom(P % Q) = Z (Q; — dom(P)) (P*Q);p = Z Py,

i€dom(Q) r€Q;

Iterated composition P°
e Explicitly: computed as the least fixpoint of X — 1Ll (X x P)

e Implicitly: ability to make a finite but not fixed in advance
number of oracle calls to P
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Terms with composition and automata

Terms over 0, 1,11, %, (—)® = can be regarded as regular expressions.
(alphabet = the set of variables)

e Terms can be mapped to NFAs in a meaningful way

e Adding M = allowing alternating automata
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Universal validity and games

Given alternating automata A and B, we can define a game O(A, B)
that captures a notion of simulation such that

(20,1,0,U, 1, %, (—)°) &= ¢ < w iff Duplicator wins in 9( Ay, Ay,).

Some properties of O(A, B):

e this is a Biichi game

e allows to make several attempts at simulating A in parallel

(using B exactly once)
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Universal validity and games

Given alternating automata A and B, we can define a game O(A, B)
that captures a notion of simulation such that

(20,1,0,U, 1, %, (—)°) &= ¢ < w iff Duplicator wins in 9( Ay, Ay,).

Some properties of O(A, B):

e this is a Biichi game

e allows to make several attempts at simulating A in parallel

(using B exactly once)

= O(|B|2M) positions, eyeles-of-polynomial-size

Deciding “(20,1,0,U, M, %, (—)°) Et < u?” is PSPACE-complete.
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A simple example of simulation and non-simulation

¥
% @ﬂ@

(bxa)U (c*a) < (bUc)*xa

*Q—Q—Q
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A simulation requiring several concurrent attempts

o
AL A
R

(bxa)M(c*a) < (((cMb)xa)Mb)*
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Another simulation requiring several concurrent attempts

>

cﬁb} ?Qa 1,
% @}\@

(bMe)*a®
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The following is valid in the Weihrauch degrees

rxx <x = z° <z
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Induction principles for (—)°¢

Non-trivial useful axiom for fixpoints (Westrick, 2021)
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Induction principles for (—)°¢

Non-trivial useful axiom for fixpoints (Westrick, 2021)
The following is valid in the Weihrauch degrees

zxr <z = <z

e Similar: an axiom of right-handed Kleene algebras (RKA)

rxy <x = zxy® <z

e For M, it seems like we sometimes need
(zxy)Nz<z = (xxy®)Nz<z
(key example: a® Mb® < (amb)°)

Conjecture

The above axioms are valid in the Weihrauch degrees.
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Completeness

Candidate axiomatization of inequations in (20,0, L, M, , (—)°)

e All the axioms of RKA minus left-distributivity of U over x
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Completeness

Candidate axiomatization of inequations in (20,0, L, M, , (—)°)

e All the axioms of RKA minus left-distributivity of U over x

e i.e. it can be the case that (P U Q) * R #w (P R) LU (Q * R)
e why: RKA = language inclusions, but we want simulations

e The distributive lattice axioms +

(zxy)MN(z*xz) < xz*x(yMz)
(xxy)Nz < (zMNz)*y
(zxy)Nz<z = (@Exy)Nz<z

The above axiomatization is not only sound but also complete.

Proof idea: 3 positional simulation strategies, induction on the syntax
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Thoughts for further work

e Understand (20,11, x, 1)!!
e What about the Horn theories?

e Establish a similar connection with higher-dimensional
automata/concurrency to handle U, x and * together?

e Handle the substructure of finitary/first-order/type 1 degrees?

e Can we generalize the proofs turning universal validity into
combinatorial characterization for any set of “nice” operations?
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e Establish a similar connection with higher-dimensional
automata/concurrency to handle U, x and * together?

e Handle the substructure of finitary/first-order/type 1 degrees?

e Can we generalize the proofs turning universal validity into
combinatorial characterization for any set of “nice” operations?

Thanks for listening! Questions?
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