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Errata (27/08/24)

• a× (b ⊓ c) ≤ a× (b ⊓ (a× c)) is actually derivable

• For (W,⊓,×, 1), the proposed theory is complete iff the pointed

one is

• Cycles in ⅁ may actually have exponential size, so the

“Corollary” did not follow from the conjecture as expected on

slide 13.

Relevant items are striked out.

Most of the conjectures of part 2 now have proofs on arXiv.

https://arxiv.org/abs/2403.13975

https://arxiv.org/abs/2408.14999
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Weihrauch problems

Definition

A Weihrauch problem P is given

• a set of instances dom(P ) ⊆ NN

• for each i ∈ dom(P ) a non-empty set of solutions Pi ⊆ NN

Examples:

• CN: “Given p ∈ NN, find something not enumerated by p”

dom(CN) = {p ∈ NN | ∃n n /∈ range(p)} CN(p) = {1n0ω | n /∈ range(p)}

• WKL0: “given an infinite binary tree, produce an infinite path”

Comparing the hardness of problems ⇝ via a notion of reducibility
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Weihrauch reducibility

TL;DR: Turing reducibility, but

• adapted to type 2 computability

• reductions must make exactly one oracle call

Official definition

P ≤W Q if there are computable

f : dom(P ) → dom(Q) and F :
∏

i∈dom(P )

(Qf(i) → Pi)

f

F

i ∈ dom(P )

j ∈ dom(Q)

s ∈ Qj

SQ 7→ SP

i ∈ dom(P )

r ∈ Pir ∈ Pi

Reductions compose + Quotienting by ≡W ⇝Weihrauch degrees
4/19



Some operation on the Weihrauch degrees

Many natural operators over Weihrauch problems/degrees:

• Joins ⊔: “solve either one of the problems”

dom(P ⊔Q) ∼= dom(P ) + dom(Q)
(P ⊔Q)in1(i) = Pi

(P ⊔Q)in2(j) = Qj

• Meets ⊓: “given inputs for both, solve one”

dom(P ⊓Q) ∼= dom(P )× dom(Q) (P ⊓Q)i,j = Pi +Qj

• Products ×: “solve both problems”

dom(P ×Q) ∼= dom(P )× dom(Q) (P ×Q)i,j = Pi ×Qj

• 1: “there is an instance, everything is a solution”

• . . .
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On the equational theory of the Weihrauch lattice

• The Weihrauch degrees are a distributive lattice.

• Every countable distributive lattice embeds into (W,⊔,⊓)
(via the Medvedev degrees)

• Thus, (W,⊔,⊓) |= t ≤ u iff t ≤ u is provable from the axioms of

distributive lattices. (formulas being implicitly universally quantified)

Driving question

Can we extend this to additional operations? In particular:

• Can we axiomatize equation in those extensions?

• What is the complexity of deciding universal validity of t ≤ u?

Known axioms investigated in “On the algebraic structure of

Weihrauch degrees”, Brattka & Pauly, LMCS 2018
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⊓, 1,×,⊔ and (−)∗ (preprint on arXiv)



A partial axiomatization of (W,⊓,×, 1)

a ≤ b ⇒ a× c ≤ b× c monotonicity

a× (b× c) = (a× b)× c a× 1 = a monoid structure

a× b = b× a commutativity

a ≤ a× a relevance

a ⊓ b ≤ a a ⊓ b ≤ b ⊓ is a lower bound

a ≤ b ∧ a ≤ c ⇒ a ≤ b ⊓ c ⊓ is the greatest lb

(a× b) ⊓ c ≤ a× (b ⊓ c) half-distributivity

Counter-example to completeness

a× (b ⊓ c) ≤ a× (b ⊓ (a× c))

Open question

Adding 1 ≤ a ⇒ complete axiomatization in the pointed degrees?
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Terms as graphs

Goal to make things more tractable

Reduce checking (W,⊓,×) |= t ≤ u to a combinatorial problem.

First step: interpret terms t as finite coloured graphs Gt:

• For a variable x, take a single vertex coloured by x.

• For ⊓, take the disjoint union

• For ×, disjoint union + all edges between the two components

bc a b
c

a
a a

b

a

b

d

a× (c ⊓ b) a× ((a× c) ⊓ b) (a ⊓ c)× (b ⊓ d)

c

d

(a× d) ⊓ (b× c)

c
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Combinatorial reduction between graphs

Definition

A reduction from (V0, E0, c0) to (V1, E1, c1) is a colour-preserving

function h : V1 → V0 such that the image of any maximal clique in

(V1, E1) under h contains a maximal clique in (V0, E0).

bc a b
c

a
a a

b

a

b

d

a× (c ⊓ b) a× ((a× c) ⊓ b) (a ⊓ c)× (b ⊓ d)

c

d

(a× d) ⊓ (b× c)

c

< <

Combinatorial characterization

and complexity

(W,⊓,×) |= t ≤ u iff there is a reduction from Gt to Gu.

As a result, deciding (W,⊓,×) |= t ≤ u is Σp
2-complete.

Corollary: same valid inequations as the free ⊔-⊓-completion of the

ordered monoid (N>0, |, 1,×)
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Handling ⊔ is easier

Relative completeness

True inequations in (W,⊓,×) + the axioms below derive all true

inequations in (W,⊔,⊓,×, 1, (−)∗)

(P ∗ is finite parallelization, the lfp of X 7→ 1 ⊔X × P )

a ≤ a ⊔ b b ≤ a ⊔ b

b ≤ a ∧ c ≤ a ⇒ b ⊔ c ≤ a

a ⊓ (b ⊔ c) = a ⊓ b ⊔ a ⊓ c

a× (b ⊔ c) = a× b ⊔ a× c

a ≤ a∗ (a∗)∗ ≤ a∗

a∗ × a∗ ≤ a∗

(a ⊔ b)∗ = a∗ × b∗

(a ⊓ b)∗ = a∗ ⊓ b∗

(a× b)∗ = 1 ⊔ a× a∗ × b× b∗

1∗ = 1

The notion of combinatorial reducibility can be adapted to show that

deciding validity of an equation is Πp
3-complete
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⊔, 0, 1, ⋆,⊓ and (−)⋄ (work in progress)



Composition, iterated composition

Composition P ⋆ Q

• Implicitly: ability to make an oracle call to Q then P

• Explicitly: given an instance i of Q and a function that takes a

solution of i to an instance of P , compute all relevant solutions

dom(P ⋆Q) ∼=
∑

i∈dom(Q)

(Qi → dom(P )) (P ⋆Q)i,f ∼=
∑
r∈Qi

Pf(r)

Iterated composition P ⋄

• Explicitly: computed as the least fixpoint of X 7→ 1 ⊔ (X ⋆ P )

• Implicitly: ability to make a finite but not fixed in advance

number of oracle calls to P
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Terms with composition and automata

Starting observation

Terms over 0, 1,⊔, ⋆, (−)⋄ = can be regarded as regular expressions.

(alphabet = the set of variables)

• Terms can be mapped to NFAs in a meaningful way

• Adding ⊓ = allowing alternating automata

b

c

a

a

a
b

c

(b ⋆ a⋄) ⊓ (c ⋆ a⋄) (b ⊔ c) ⋆ a⋄
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Universal validity and games

Given alternating automata A and B, we can define a game ⅁(A,B)
that captures a notion of simulation such that

Conjecture

(W, 1, 0,⊔,⊓, ⋆, (−)⋄) |= t ≤ u iff Duplicator wins in ⅁(At,Au).

Some properties of ⅁(A,B):

• this is a Büchi game

• allows to make several attempts at simulating A in parallel

(using B exactly once)

⇒ O(|B|2|A|) positions, cycles of polynomial size

Corollary Conjecture

Deciding “(W, 1, 0,⊔,⊓, ⋆, (−)⋄) |= t ≤ u?” is Pspace-complete.
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A simple example of simulation and non-simulation

a

b

a

c

a

b

c

(b ⋆ a) ⊔ (c ⋆ a) < (b ⊔ c) ⋆ a
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A simulation requiring several concurrent attempts

a
a

b c

a

b

a

c

b

(b ⋆ a) ⊓ (c ⋆ a) < (((c ⊓ b) ⋆ a) ⊓ b) ⋆ a
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Another simulation requiring several concurrent attempts

b c

a a

a

b

c

(b ⋆ a⋄) ⊓ (c ⋆ a⋄) ≡ (b ⊓ c) ⋆ a⋄
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Induction principles for (−)⋄

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

x ⋆ x ≤ x ⇒ x⋄ ≤ x

• Similar: an axiom of right-handed Kleene algebras (RKA)

x ⋆ y ≤ x ⇒ x ⋆ y⋄ ≤ x

• For ⊓, it seems like we sometimes need

(x ⋆ y) ⊓ z ≤ x ⇒ (x ⋆ y⋄) ⊓ z ≤ x

(key example: a⋄ ⊓ b⋄ ≤ (a ⊓ b)⋄)

Conjecture

The above axioms are valid in the Weihrauch degrees.
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Completeness

Candidate axiomatization of inequations in (W, 0,⊔,⊓, ⋆, (−)⋄)

• All the axioms of RKA minus left-distributivity of ⊔ over ⋆

• i.e. it can be the case that (P ⊔Q) ⋆ R ̸≡W (P ⋆ R) ⊔ (Q ⋆ R)

• why: RKA = language inclusions, but we want simulations

• The distributive lattice axioms +

(x ⋆ y) ⊓ (x ⋆ z) ≤ x ⋆ (y ⊓ z)

(x ⋆ y) ⊓ z ≤ (x ⊓ z) ⋆ y

(x ⋆ y) ⊓ z ≤ x ⇒ (x ⋆ y⋄) ⊓ z ≤ x

Conjecture

The above axiomatization is not only sound but also complete.

Proof idea: ∃ positional simulation strategies, induction on the syntax
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Thoughts for further work

• Understand (W,⊓,×, 1)!!

• What about the Horn theories?

• Establish a similar connection with higher-dimensional

automata/concurrency to handle ⊔, × and ⋆ together?

• Handle the substructure of finitary/first-order/type 1 degrees?

• Can we generalize the proofs turning universal validity into

combinatorial characterization for any set of “nice” operations?

Thanks for listening! Questions?
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