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Cécilia Pradic and Manlio Valenti

CiE25 – Computable Analysis and Topology special session

Room 6.1.36

16/07/2025

1/28



Motivation

Let X ∈ {Polish, coPolish, quasi-Polish, compact Polish, . . . }.

We want spaces of X spaces to ask, for some X space S:

• when is S uniformly computably categorical?

• when is S generic?

• and many other questions. . .

Theorem (for X = compact Polish)

Cantor space is uniformly categorical and Π0
2-generic.

Theorem (for X = compact Polish)

The Weihrauch degree of uniform categoricity of S1 is lim.
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What is a represented space of

represented spaces?

(fighting with definitions)



The category of represented spaces ReprSp

Definition

A represented space X is a partial surjection δX ⊆: NN ↠ S

Idea: c ∈ dom(δX) is a name for δX(c) ∈ S

Computable maps f : X→ Y

Type 2 computable maps ⌜f⌝ :⊆ NN → NN such that

NN NN

X Y

⌜f⌝

δX δY

f

• Standard coding of R, S, subspaces, function spaces. . .

• Includes (quasi-/co) Polish spaces

• Nice (lcc) category: pullbacks, enough regular projectives
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What to put in a space of spaces?

Simpler motivating example (†)
In Polish spaces, (X,Y ) 7→ X × Y is uniformly computable.

1. A represented space A of codes

Meaning of codes/names compared to the previous slide

(†) build a computable e : A2 → A such that. . .

2. For each point a ∈ A, an interpretation JaK ∈ ReprSp0
(†) . . . s.t. ∀c d points of A, Je(c, d)K ∼= JcK× JdK in ReprSp

3. Additional coherence data for uniformity??

(†) compute the iso computably in c and d
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Dealing with the additional coherence data (1/2)

Taking a leaf from category theorists/type theorists:

• Spaces of spaces are uniform families (JcK)c∈A
• internal families to a category C are simply morphisms

• I-indexed ∼= with codomain I

External/internal families in Set

(I-indexed) families ←→ functions (to I)

(Ai)i∈I 7−→
∑
i∈I

Ai
projection−−−−−−→ I(

f−1(i)
)
i∈I ←−[ f : X → I

5/28



Dealing with the additional coherence data (2/2)

Official definition

A repr. space of repr. spaces is a morphism in ReprSp

Conventions for spaces spaces ElA : A• → A

• Call ElA a bundle

• Write JaKA for El−1(a)

• A is the base of the bundle

• A• is the total space

6/28



Application (†) continued (uniform cartesian products)

Simpler motivating example (†)
In Polish spaces, (X,Y ) 7→ X × Y is uniformly computable.

Assuming a space of Polish spaces ElP : P• → P, we want

• a morphism e : P2 → P and a uniform family∏
c,d∈P

El−1
P (c)× El−1

P (d) ∼= El−1
P (e(c, d))

• makes sense b/c ReprSp is locally cartesian closed

• intuition: that’s a subspace of P2 → (P• ⇀ P•)
2

• low-level version: ∃e• : P2
• → P• s.t. we have a pullback

P2
• P•

P2 P

e•

El2P ElP

e

⌟
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A represented space of represented Polish spaces

Polish spaces = completely metrisable + dense sequence

The bundle PM• → PM

• PM ⊆ RN2
consists of the pseudometrics over N

d(x, x) = 0 d(x, y) = d(y, x) d(x, y) ≤ (.x, y)+d(y, z)

• PM• ⊆ RN2 × NN
/∼ consists of pairs (d, s) where s is a fast

converging Cauchy sequence for d

• the map is the first projection
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Bundles from hyperspaces

Hyperspaces H over X ∈ ReprSp0

A map ∂H : R→ P(X) for some R = (R, δR) ∈ ReprSp0

Given such an hyperspace, build the bundle

• whose base is R

• whose total space H• is the subspace of R×X with

(r, x) ∈ H• iff x ∈ ∂H(r)

• which projects onto the R component
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Examples of hyperspaces

Hyperspaces H over X ∈ ReprSp0

A map ∂H : R→ P(X) for some R = (R, δR) ∈ ReprSp0

Examples:

• the hyperspace A(X) of closed subsets of X

∂A(X) : p : X→ S 7−→ p−1(⊥)

• similarly: opens, Π0
2-subsets, . . .

• the hyperspace V(X) of overt subsets of X

(interprets maps ∃X : XS → S)
• combined hyperspace H1 ∧H2

∂H1∧H2(r1, r2)) = A iff ∂Hi(ri) = A for i ∈ {1, 2}
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Polish spaces as hyperspaces

Convention: H+ = restrict to non-empty subspaces

Characterizations and matching hyperspaces

Polish spaces are

• Gδ subsets of the Hilbert cube ⇝
(
Π0

2 ∧ V
) (

[0, 1]N
)
+

• closed subsets of RN ⇝ (A ∧ V)
(
RN)

+

Recall that PM• → PM is another Polish bundle

Three different definitions

Are they equivalent? In which sense?
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Embedding and equivalence of spaces of spaces

An embedding of A•
ElA−−→ A into B•

ElB−−→ B is a pair

e : A→ B translates A-codes into B-codes. . .

E :
∏
a∈A

El−1
A (a) ∼= El−1

B (e(a)) . . . w/o modifying the spaces

Elementary characterization: ∃ a pullback

A• B•

A B

ElA
⌟

ElB

e

Equivalence

When there are embedding both ways
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Pseudometrics ⊆ Π0
2 (overt) subsets of Hilbert cube

Turn d ∈ PM with d ≤ 1 (wlog) into

Xd =
{
x ∈ [0, 1]N | ∀k ∃mk ∀i ≤ k |xi − d(i,m)| < 2−k

}
Obvious Π0

2, easy to see it is overt ⇝ code ⌜Xd⌝

Map between total spaces

RN2 × NN
/∼

(
S[0,1]

N

Π0
2
× SS[0,1]

N)
× [0, 1]N

⊆ ⊆

PM• −→
(
Π0

2 ∧ V
) (

[0, 1]N
)
+,•

(d, s) 7−→
(
⌜Xd⌝,

(
k 7−→ lim

n→+∞
d(k, sn)

))
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Pseudometrics ⊇ Π0
2 (overt) subsets of Hilbert cube

For the other way around,
(
Π0

2 ∧ V
) (

[0, 1]N
)
+
→ PM

• By overt choice, pick a dense sequence in X ∈ V
(
[0, 1]N

)
+

• Problem: this only gives us a multivalued map(
Π0

2 ∧ V
) (

[0, 1]N
)
+
⇒ PM

• Multivaluedness does not play well at all with other defs

Solution

Considering bundles A• → A up to reindexing along(
NN ⊇

)
dom(δA) −→ A

Intensional equivalence: equivalence up to that reindexing

(abstract nonsense: reindexing along regular projective covers)
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TL;DR natural options are intensionally equivalent

Bundles for Polish spaces

PM• → PM is intensionally equivalent to bundles given by(
Π0

2 ∧ V
) (

[0, 1]N
)
+

(A ∧ V)
(
RN

)
+

and V
(
RN

)
+

Call TBPM• → TBPM for the variant of PM• → PM where we

add a witness of total boundedness ∈ NN.

Bundles for compact Polish spaces

TBPM• → TBPM is intensionally equivalent to the bundles

given by (K ∧ V)
(
[0, 1]N

)
+
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Uniform computable categoricity

(fun!)



The degree of (uniform) computable categoricity

Let El : A• → A be a space of spaces.

Computable categoricity of S ∈ ReprSp0 as a problem

• Input: a, b ∈ A such that El−1(a) ∼= El−1(b) ∼= S

(non-necessarily computably so)

• Output: an homeomorphism El−1(a) ∼= El−1(b)

We talk about the degree of computable categoricity CCat(S)

S is computably categorical when CCat(S,El) ≤ id

Sanity check: notion stable under intensional equivalence ✓
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Cantor space among compact Polish spaces

Theorem

2N is uniformly computably categorical in (K ∧ V)
(
[0, 1]N

)
.

Idea: given a code for X ∈ (K ∧ V)
(
[0, 1]N

)
:

• look for a cover of X by two opens U0, U1 (compactness)

• such that both are non-empty (overtness)

• and U0 ∩ U1 = ∅ (compactness)

For the iso h : X→ 2N, then set

h(x)0 = i ⇐⇒ x ∈ Ui

Iterate for the other bits

(find a cover U00 ∪ U01 ⊇ U0 such that. . . )
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The circle (still among compact Polish spaces)

Theorem

The Weihrauch degree of uniform categoricity of S1 is lim.

lim computes an iso X→ S1 (assuming X ∼= S1 non-effectively):

• We attempt to cover X by finer and finer circular chains

• Use lim to pick refinements without backtrackings
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The circle (lim-hardness)

For the converse, first note lim ≡W
̂UpperBound.

• For each input p ∈ NN to Upperbound, fix two balls and a

tube approximating our would-be circle locally

• When asked for a better precision 2−k−1, shrink the tube

and add max(0, pk+1 −max
i≤k

pi) backtracks

p0 = 2maxi<0 pi = 0

1

1
2

By the iso S1 → X ⊆ [0, 1]N, bound the # of backtracks
19/28



Genericity



The big question

Let El : A• → A be a space of spaces.

We need some definitions

What does it mean for a space to be generic?

Here: adapt notions from computability/topology

• Concern #1: stability under bundle equivalence

• Concern #2: homeomorphism invariance

• Concern #3: the right notion of pointclass
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Concerns #1 and #2

Let El : A• → A be a space of spaces.

Equivalence and density: one issue

If a ∈ A is computable, the following is equivalent to El:

!X + El : El−1(a) +A• −→ 1 +A

But now every dense set in 1 +A contains a copy of El−1(a)!!

Solution:

• Consider the quotient π∼= : A↠ A∼= that identify codes for

isomorphic spaces

• π∼= ◦ El is intensionally equivalent to El
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Concern #3: pointclasses

• Recall we have El : A• → A and π∼= : A↠ A∼= around

• Let Ã ⊆ NN the space of names of A and δA : Ã↠ A

Standard convention for non-Polish spaces for pointclasses

[Pauly & de Brecht 15, Callard & Hoyrup 20, Hoyrup 20]

Essential caveat

A Π2
0 subset of A∼= is given

• by a morphism A∼= → SΠ0
2

• SΠ0
2
= 2N/“both finite or not”

• equivalently: a Π2
0 set of Ã that respects π∼= ◦ δA

• not necessarily by
⋂

n∈N Un with Un ∈ O (A∼=)!

• The Uns do not need to respect the quotients
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The definition

Recall we have El : A• → A and π∼= : A↠ A∼= around

Let C be a pointclass

C-genericity
S is C-generic in El if for every dense set D ∈ C(A∼=)

∃a ∈ D. El−1(a) ∼= S

• Note: El−1(a) ∼= El−1(a′) and a ∈ D imply a′ ∈ D

Sanity check

Intensionally equivalent bundles ⇒ same C-generic spaces
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Genericity in compact Polish spaces

Proposition

All infinite compact Polish spaces are Σ0
1-generic.

Theorem

2N is the only Π0
2-generic compact Polish space.

Proof idea: being isomorphic to 2N is a Π0
2 property

∀n ∈ N.∀r ∈ Q>0.∃m ∈ N.∃s ∈ Q>0.∃m′ ∈ N.∃s ∈ Q>0.

B(xn, r) ∩X ̸= ∅ =⇒ B(xn, r) ∩X ⊆ B(xm, s) ∪B(xm′ , s′)

∧ B(xm, s) ∩X ̸= ∅
∧ B(xm′ , s′) ∩X ̸= ∅
∧ B(xm, s) ∩B(xm′ , s′) ∩X = ∅
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Conclusion



What happened

• The notion of spaces of spaces as bundles

• As type-theoretic universes

• (but typically we like them somewhere in the middle

between discrete and indiscrete)

• Equivalent presentations for (compact) Polish spaces

⇝ effectivizes equivalent characterizations

• Notions of uniform computable categoricity and genericity

• Some results for compact Polish spaces
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What could happen: coPolish and quasiPolish spaces

Some groundwork for quasiPolish spaces in [dB21]

• A space of spaces based on ideal presentations

• Effective closure under countable products & more. . .

QPN
• QP•

QPN QP

⌟

∏
N

Further things to determine

Different equivalent bundles for different characterization?

Same thing for coPolish spaces?

Effectivize Y coPolish ∧ X quasiPolish =⇒ XY quasiPolish?
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What could happen: categoricity

Obvious questions

What is the degree of categoricity of [0, 1[? NN? R? . . .

Beyond that:

• What happens if we restrict isomorphisms to be

• uniformly continuous

• isometries

• . . .

• Links with other notions of computable categoricity

• in computable structure theory

• for Banach spaces

• . . .

27/28



What could happen: genericity

Obvious question

What are Π0
2-generic Polish spaces?

Beyond that, what link with genericity in other settings?

Thanks for listening! Questions?

28/28



What could happen: genericity

Obvious question

What are Π0
2-generic Polish spaces?

Beyond that, what link with genericity in other settings?

Thanks for listening! Questions?

28/28


	What is a represented space of represented spaces?  (fighting with definitions)
	Uniform computable categoricity  (fun!)
	Genericity
	Conclusion

