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Motivation

Let X € {Polish, coPolish, quasi-Polish, compact Polish, ... }.
We want spaces of X spaces to ask, for some X space S:

e when is S uniformly computably categorical?
e when is S generic?

e and many other questions. ..
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Motivation

Let X € {Polish, coPolish, quasi-Polish, compact Polish, ... }.

We want spaces of X spaces to ask, for some X space S:

e when is S uniformly computably categorical?
e when is S generic?

e and many other questions. ..

Cantor space is uniformly categorical and TI9-generic.

The Weihrauch degree of uniform categoricity of Sp is lim.
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What is a represented space of
represented spaces?

(fighting with definitions)




The category of represented spaces ReprSp

Definition

A represented space X is a partial surjection 6x C: N¥ — §

Idea: ¢ € dom(dx) is a name for dx(c) € S
Computable maps f: X - Y
Type 2 computable maps " f7:C NN — NN such that

NN "t NN

| Jsv

XﬁY

e Standard coding of R, S, subspaces, function spaces. . .

e Includes (quasi-/co) Polish spaces
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The category of represented spaces ReprSp

Definition

A represented space X is a partial surjection 6x C: N¥ — §

Idea: ¢ € dom(dx) is a name for dx(c) € S
Computable maps f: X - Y
Type 2 computable maps " f7:C NN — NN such that

NN "t NN

| Jsv

XﬁY

e Standard coding of R, S, subspaces, function spaces. . .
e Includes (quasi-/co) Polish spaces

e Nice (lcc) category: pullbacks, enough regular projectives
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In Polish spaces, (X,Y) +— X X Y is uniformly computable.
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What to put in a space of spaces?

Simpler motivating example (7)

In Polish spaces, (X,Y) — X x Y is uniformly computable.

1. A represented space A of codes

A Meaning of codes/names compared to the previous slide
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What to put in a space of spaces?

Simpler motivating example (7)

In Polish spaces, (X,Y) — X x Y is uniformly computable.

1. A represented space A of codes

A Meaning of codes/names compared to the previous slide
(1) build a computable e : A2 — A such that. ..

2. For each point a € A, an interpretation [a] € ReprSp,
() ...s.t. Ve d points of A, [e(c,d)] = [¢] x [d] in ReprSp

3. Additional coherence data for uniformity??

(f) compute the iso computably in ¢ and d
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Dealing with the additional coherence data (1/2)

Taking a leaf from category theorists/type theorists:
e Spaces of spaces are uniform families ([c])cea
e internal families to a category C are simply morphisms

o [-indexed = with codomain [

External/internal families in Set
(I-indexed) families — +— functions (to I)
Z Ai projection I

i€l
f: X =1

(Ai)ier
(f710) e

l

|
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Dealing with the additional coherence data (2/2)

A repr. space of repr. spaces is a morphism in ReprSp

Conventions for spaces spaces Ela : Ag — A

e Call Elap a bundle

o Write [a]a for E17%(a)

e A is the base of the bundle
e A, is the total space
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Application (f) continued (uniform cartesian products)
Simpler motivating example (7)
In Polish spaces, (X,Y) — X x Y is uniformly computable.
Assuming a space of Polish spaces Elp : Py — P, we want

e a morphism e : P2 — P and a uniform family

II El'(0) xElp'(d) = Elp'(e(c,d))
c,deP

e makes sense b/c ReprSp is locally cartesian closed
e intuition: that’s a subspace of P? — (Py — P.)2

7/28



Application (f) continued (uniform cartesian products)

Simpler motivating example (7)

In Polish spaces, (X,Y) — X x Y is uniformly computable.

Assuming a space of Polish spaces Elp : P, — P, we want

e a morphism e : P2 — P and a uniform family

II El'(0) xElp'(d) = Elp'(e(c,d))
c,deP

e makes sense b/c ReprSp is locally cartesian closed
e intuition: that’s a subspace of P? — (Py — P.)2
e low-level version: de, : P% — P, s.t. we have a pullback
P > P,

B3| : lElp

P2 P
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A represented space of represented Polish spaces

Polish spaces = completely metrisable + dense sequence

The bundle PM, — PM

e PM C RN consists of the pseudometrics over N

dr,z) =0  d(z,y) =d(y,z) d(z,y) < (z,y)+d(y,>2)

2
e PM, C RN x NN/N consists of pairs (d, s) where s is a fast

converging Cauchy sequence for d

e the map is the first projection
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Bundles from hyperspaces

A map 9y : R — P(X) for some R = (R, dr) € ReprSp,

Given such an hyperspace, build the bundle

e whose base is R

e whose total space H, is the subspace of R x X with
(r,z) € He iff oz e dy(r)

e which projects onto the R component
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Examples of hyperspaces

A map 9y : R — P(X) for some R = (R, dr) € ReprSp,
Examples:
e the hyperspace A(X) of closed subsets of X
Iaxy: p:X—=S — pi(L)

e similarly: opens, Hg—subsets,
e the hyperspace V(X) of overt subsets of X

(interprets maps Ix : X5 — S)
e combined hyperspace Hi A Ho

Oryntty (11,7m2)) = A iff Oy, () = A fori € {1,2}
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Polish spaces as hyperspaces

Convention: H = restrict to non-empty subspaces

Characterizations and matching hyperspaces

Polish spaces are

e G; subsets of the Hilbert cube ~~ (I A V) ([o, 1]N)Jr
e closed subsets of RN~ (AAV) (RY) N
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Polish spaces as hyperspaces

Convention: H = restrict to non-empty subspaces

Characterizations and matching hyperspaces

Polish spaces are

e G; subsets of the Hilbert cube ~~ (I A V) ([o, 1]N)Jr
e closed subsets of RN~ (AAV) (RY) N

Recall that PM, — PM is another Polish bundle
Three different definitions

Are they equivalent? In which sense?
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Embedding and equivalence of spaces of spaces

An embedding of A, EI—A> A into B, % B is a pair

e : A—B translates A-codes into B-codes. ..
E : ]I El}(a) 2 Elg'(e(a)) ...w/o modifying the spaces
acEA
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Embedding and equivalence of spaces of spaces

An embedding of A, EI—A> A into B, &) B is a pair

e : A—B translates A-codes into B-codes. ..
E : ]I El ' (a) 2 Elg'(e(a)) ...w/o modifying the spaces
acA

Elementary characterization: 3 a pullback

A, — B,

Elal 1Blp

A——B

When there are embedding both ways
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Pseudometrics C IT) (overt) subsets of Hilbert cube

Turn d € PM with d <1 (wlog) into
X, = {x € [0, 1N | Vk 3my Vi < k |a; — d(i,m)| < 2—k}

Obvious II9, easy to see it is overt ~ code "X "
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Pseudometrics C IT) (overt) subsets of Hilbert cube

Turn d € PM with d <1 (wlog) into
Xy = {x € [0, 1N | Vk 3my Vi < k |a; — d(i,m)| < Q—k}
Obvious II9, easy to see it is overt ~ code "X "

Map between total spaces

N
RN2 % NN/N (S[l_olzgl]N % SS[OJ] ) % [O, 1]N
Ul Ul
PM, — (I3 A V) ([0,1Y), ,
r 7 1
(d,s) — < X4, <k — nLl\rfoo d(k:,sn)>>
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Pseudometrics 2O IT) (overt) subsets of Hilbert cube

For the other way around, (II3 A V) ([0, 1]N)Jr — PM

e By overt choice, pick a dense sequence in X € V ([0, I]N ) n
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Pseudometrics 2O IT) (overt) subsets of Hilbert cube

For the other way around, (II3 A V) ([0, 1]N)Jr — PM

e By overt choice, pick a dense sequence in X € V ([0, I]N ) n

e Problem: this only gives us a multivalued map
(T3 A V) ([0,1]Y), = PM

e Multivaluedness does not play well at all with other defs

Solution
Considering bundles Ay — A up to reindexing along

(NN ;) dom(ds) — A
Intensional equivalence: equivalence up to that reindexing

(abstract nonsense: reindexing along regular projective covers)
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TL;DR natural options are intensionally equivalent

PMe, — PM is intensionally equivalent to bundles given by

(3 A V) ([0, 1]N)+ (AAV) <RN)+ and V(RN>+
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TL;DR natural options are intensionally equivalent

Bundles for Polish spaces
PM, — PM is intensionally equivalent to bundles given by

(I3 A V) ([0,1]N)+ (A/\V)(]RN>+ and V(RN)+

Call TBPM, — TBPM for the variant of PM, — PM where we
add a witness of total boundedness € NN,

Bundles for compact Polish spaces

TBPM, — TBPM is intensionally equivalent to the bundles
given by (K A V) ([0, I]N)Jr
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Uniform computable categoricity
(fun!)




The degree of (uniform) computable categoricity

Let El: Ay, — A be a space of spaces.
Computable categoricity of S € ReprSp, as a problem
Input: a,b € A such that EI"!(a) 2 EI"}(b) = S

(non-necessarily computably so)

Output: an homeomorphism El~!(a) = E171(b)

We talk about the degree of computable categoricity CCat(S)

S is computably categorical when CCat (S, El) < id
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The degree of (uniform) computable categoricity

Let El: Ay, — A be a space of spaces.
Computable categoricity of S € ReprSp, as a problem
o Input: a,b € A such that El7'(a) @ EI71(b) = S

(non-necessarily computably so)

o Output: an homeomorphism El1~!(a) = E171(b)

We talk about the degree of computable categoricity CCat(S)

S is computably categorical when CCat (S, El) < id
Sanity check: notion stable under intensional equivalence v
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Cantor space among compact Polish spaces

2N is uniformly computably categorical in (K A V) ([0, 1]V).

Idea: given a code for X € (K A V) ([0, 1]V):

e look for a cover of X by two opens Uy, Uy (compactness)
e such that both are non-empty (overtness)
e and UyNU; =0 (compactness)
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Cantor space among compact Polish spaces

2N is uniformly computably categorical in (K A V) ([0, 1]V).

Idea: given a code for X € (K A V) ([0, 1]V):

e look for a cover of X by two opens Uy, Uy (compactness)
e such that both are non-empty (overtness)
e and UyNU; =0 (compactness)

For the iso h : X — 2N, then set
h(ﬂ?)o =% <~ x e U

Iterate for the other bits
(find a cover Upo U Up1 2 Up such that. .. )
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The circle (still among compact Polish spaces)

The Weihrauch degree of uniform categoricity of &; is lim.

lim computes an iso X — &; (assuming X = S; non-effectively):

e We attempt to cover X by finer and finer circular chains

e Use lim to pick refinements without backtrackings
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The circle (lim-hardness)

For the converse, first note lim =y UPPERBOUND.

e For each input p € NN to UPPERBOUND, fix two balls and a
tube approximating our would-be circle locally

e When asked for a better precision 27*~!, shrink the tube
and add max(0, pgy1 — max p;) backtracks

=

max;<op; =0 po =2

By the iso S; — X C [0,1]", bound the # of backtracks
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Genericity




Let El: A, — A be a space of spaces.

What does it mean for a space to be generic?

Here: adapt notions from computability /topology
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The big question

Let El: A, — A be a space of spaces.

What does it mean for a space to be generic?

Here: adapt notions from computability /topology

e Concern #1: stability under bundle equivalence
e Concern #2: homeomorphism invariance

e Concern #3: the right notion of pointclass
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Concerns #1 and #2

Let El: A — A be a space of spaces.

Equivalence and density: one issue

If a € A is computable, the following is equivalent to El:
Ix +El : El''(a)+As — 1+A
But now every dense set in 1 + A contains a copy of E11(a)!!

Solution:

e Consider the quotient 7~ : A — A~ that identify codes for
isomorphic spaces

e 7~ o El is intensionally equivalent to El
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Concern #3: pointclasses

e Recall we have El: Ay — A and m~ : A — A~ around
e Let A C NN the space of names of A and J4 : A A

Standard convention for non-Polish spaces for pointclasses
[Pauly & de Brecht 15, Callard & Hoyrup 20, Hoyrup 20]

Essential caveat
A TI2 subset of A~ is given

e by a morphism A~ — Sng
N
* Smg = 2"/ “both finite or not”
e equivalently: a IT2 set of A that respects 7~ o A
¢ not necessarily by (), Un with U, € O (Ax)!

e The U,s do not need to respect the quotients
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Recall we have El : Ay — A and 7~ : A — A~ around

Let C be a pointclass

S is C-generic in El if for every dense set D € C(Ax~)

Ja€ D. El"'(a) =S

e Note: EI"!(a) 2 El"(d/) and a € D imply ¢/ € D
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Recall we have El : Ay — A and 7~ : A — A~ around

Let C be a pointclass

S is C-generic in El if for every dense set D € C(Ax~)

Ja€ D. El"'(a) =S

e Note: EI"!(a) 2 El"(d/) and a € D imply ¢/ € D

Intensionally equivalent bundles = same C-generic spaces
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All infinite compact Polish spaces are 39-generic.

2V is the only I13-generic compact Polish space.
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All infinite compact Polish spaces are 39-generic.

2V is the only I13-generic compact Polish space.

Proof idea: being isomorphic to 2N is a IT) property

Vn € NVr € Qs9.3m € N.3s € Qs¢.3m’ € N.3s € Q.
B(zn, )N X #0 = B(zn,7)NX C B(xy,s) U B(xm,s)

A B(xm,s)NX #0

A B(xm,s)NX #£0

A B(zpm,s)NB(xy,,s)NX =10
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Conclusion




What happened

e The notion of spaces of spaces as bundles
e As type-theoretic universes
e (but typically we like them somewhere in the middle
between discrete and indiscrete)

Equivalent presentations for (compact) Polish spaces

~ effectivizes equivalent characterizations

e Notions of uniform computable categoricity and genericity

Some results for compact Polish spaces
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What could happen: coPolish and quasiPolish spaces

Some groundwork for quasiPolish spaces in [dB21]

e A space of spaces based on ideal presentations

e Effective closure under countable products & more. ..

[ l
QPY — QP

Further things to determine

Different equivalent bundles for different characterization?
Same thing for coPolish spaces?

Effectivize Y coPolish A X quasiPolish = XY quasiPolish?
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What could happen: categoricity

Obvious questions

What is the degree of categoricity of [0,1[? NN? R? ...

Beyond that:

e What happens if we restrict isomorphisms to be
e uniformly continuous
e isometries
e ...
e Links with other notions of computable categoricity

e in computable structure theory
e for Banach spaces
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What are IT3-generic Polish spaces?

Beyond that, what link with genericity in other settings?
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What could happen: genericity

Obvious question

What are II9-generic Polish spaces?

Beyond that, what link with genericity in other settings?

Thanks for listening! Questions?
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