Represented spaces of represented spaces

Johanna Franklin, Eike Neumann, Arno Pauly, <u>Cécilia Pradic</u> and Manlio Valenti

CiE25 – Computable Analysis and Topology special session Room 6.1.36 16/07/2025

Motivation

Let $X \in \{\text{Polish, coPolish, quasi-Polish, compact Polish, ...}\}.$ We want spaces of X spaces to ask, for some X space **S**:

- when is **S uniformly** computably categorical?
- when is **S** generic?
- and many other questions...

Motivation

Let $X \in \{\text{Polish, coPolish, quasi-Polish, compact Polish, ...}\}$. We want spaces of X spaces to ask, for some X space **S**:

- when is **S uniformly** computably categorical?
- when is **S** generic?
- and many other questions...

Theorem

(for X =compact Polish)

Cantor space is uniformly categorical and Π_2^0 -generic.

Motivation

Let $X \in \{\text{Polish, coPolish, quasi-Polish, compact Polish, ...}\}$. We want spaces of X spaces to ask, for some X space **S**:

- when is **S uniformly** computably categorical?
- when is **S** generic?
- and many other questions...

(for $X = $ compact Polish)
rical and Π_2^0 -generic.
(for $X = $ compact Polish)
a categoricity of S_1 is lim

What is a represented space of represented spaces?

(fighting with definitions)

The category of represented spaces ReprSp

Definition

A represented space **X** is a partial surjection $\delta_{\mathbf{X}} \subseteq : \mathbb{N}^{\mathbb{N}} \twoheadrightarrow S$

Idea: $c \in \operatorname{dom}(\delta_{\mathbf{X}})$ is a *name* for $\delta_{\mathbf{X}}(c) \in S$

Computable maps $f : \mathbf{X} \to \mathbf{Y}$

Type 2 computable maps $\ulcorner f \urcorner :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

- Standard coding of $\mathbb{R},$ $\mathbb{S},$ subspaces, function spaces. . .
- Includes (quasi-/co) Polish spaces

The category of represented spaces ReprSp

Definition

A represented space **X** is a partial surjection $\delta_{\mathbf{X}} \subseteq : \mathbb{N}^{\mathbb{N}} \twoheadrightarrow S$

Idea: $c \in \operatorname{dom}(\delta_{\mathbf{X}})$ is a *name* for $\delta_{\mathbf{X}}(c) \in S$

Computable maps $f : \mathbf{X} \to \mathbf{Y}$

Type 2 computable maps $\ulcorner f \urcorner :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

- Standard coding of $\mathbb{R},$ $\mathbb{S},$ subspaces, function spaces. . .
- Includes (quasi-/co) Polish spaces
- Nice (lcc) category: pullbacks, enough regular projectives

What to put in a space of spaces?

Simpler motivating example (†)

What to put in a space of spaces?

Simpler motivating example (†)

- 1. A represented space ${\bf A}$ of ${\bf codes}$
 - ▲ Meaning of codes/names compared to the previous slide

What to put in a space of spaces?

Simpler motivating example (\dagger)

- 1. A represented space ${\bf A}$ of ${\bf codes}$
 - \checkmark Meaning of codes/names compared to the previous slide
 - (†) build a computable $e: \mathbf{A}^2 \to \mathbf{A}$ such that...

Simpler motivating example (\dagger)

- 1. A represented space ${\bf A}$ of ${\bf codes}$
 - ▲ Meaning of codes/names compared to the previous slide (†) build a computable $e : \mathbf{A}^2 \to \mathbf{A}$ such that...
- 2. For each point $a \in \mathbf{A}$, an interpretation $\llbracket a \rrbracket \in \mathsf{Repr}\mathsf{Sp}_0$ (†) ... s.t. $\forall c \ d \text{ points of } \mathbf{A}, \llbracket e(c, d) \rrbracket \cong \llbracket c \rrbracket \times \llbracket d \rrbracket$ in $\mathsf{Repr}\mathsf{Sp}$

Simpler motivating example (\dagger)

- 1. A represented space \mathbf{A} of **codes**
 - ▲ Meaning of codes/names compared to the previous slide (†) build a computable $e: \mathbf{A}^2 \to \mathbf{A}$ such that...
- 2. For each point $a \in \mathbf{A}$, an interpretation $\llbracket a \rrbracket \in \mathsf{Repr}\mathsf{Sp}_0$ (†) ... s.t. $\forall c \ d \ \text{points of } \mathbf{A}$, $\llbracket e(c, d) \rrbracket \cong \llbracket c \rrbracket \times \llbracket d \rrbracket$ in $\mathsf{Repr}\mathsf{Sp}$
- 3. Additional coherence data for uniformity??(†) compute the iso computably in c and d

Taking a leaf from category theorists/type theorists:

- Spaces of spaces are uniform families $(\llbracket c \rrbracket)_{c \in \mathbf{A}}$
- internal families to a category \mathcal{C} are simply morphisms
 - *I*-indexed \cong with codomain *I*

External/internal families in Set			
(I-indexed) families	\longleftrightarrow	functions (to I)	
$(A_i)_{i\in I}$	\mapsto	$\sum_{i \in I} A_i \xrightarrow{\text{projection}} I$	
$\left(f^{-1}(i)\right)_{i\in I}$	i	$f: X \to I$	

Official definition

A repr. space of repr. spaces is a morphism in ReprSp

Conventions for spaces $\operatorname{El}_{\mathbf{A}}: \mathbf{A}_{\bullet} \to \mathbf{A}$

- Call $\operatorname{El}_{\mathbf{A}}$ a **bundle**
- Write $\llbracket a \rrbracket_{\mathbf{A}}$ for $\mathrm{El}^{-1}(a)$
- A is the base of the bundle
- \mathbf{A}_{\bullet} is the total space

Application (†) continued (uniform cartesian products)

Simpler motivating example (†)

In Polish spaces, $(X, Y) \mapsto X \times Y$ is uniformly computable.

Assuming a space of Polish spaces $\operatorname{El}_{\mathbf{P}} : \mathbf{P}_{\bullet} \to \mathbf{P}$, we want

• a morphism $e: \mathbf{P}^2 \to \mathbf{P}$ and a uniform family

$$\prod_{c,d \in \mathbf{P}} \operatorname{El}_{\mathbf{P}}^{-1}(c) \times \operatorname{El}_{\mathbf{P}}^{-1}(d) \cong \operatorname{El}_{\mathbf{P}}^{-1}(e(c,d))$$

- makes sense b/c ReprSp is locally cartesian closed
- intuition: that's a subspace of $\mathbf{P}^2 \to (\mathbf{P}_{\bullet} \rightharpoonup \mathbf{P}_{\bullet})^2$

Application (†) continued (uniform cartesian products)

Simpler motivating example (\dagger)

0

In Polish spaces, $(X, Y) \mapsto X \times Y$ is uniformly computable.

Assuming a space of Polish spaces $\operatorname{El}_{\mathbf{P}} : \mathbf{P}_{\bullet} \to \mathbf{P}$, we want

• a morphism $e: \mathbf{P}^2 \to \mathbf{P}$ and a uniform family

$$\prod_{c,d\in\mathbf{P}} \operatorname{El}_{\mathbf{P}}^{-1}(c) \times \operatorname{El}_{\mathbf{P}}^{-1}(d) \cong \operatorname{El}_{\mathbf{P}}^{-1}(e(c,d))$$

- makes sense b/c ReprSp is locally cartesian closed
- intuition: that's a subspace of $\mathbf{P}^2 \to (\mathbf{P}_{\bullet} \rightharpoonup \mathbf{P}_{\bullet})^2$
- low-level version: $\exists e_{\bullet}: \mathbf{P}_{\bullet}^2 \to \mathbf{P}_{\bullet}$ s.t. we have a pullback

Polish spaces = completely metrisable + dense sequence

The bundle $\mathsf{PM}_{\bullet} \to \mathsf{PM}$

 $\bullet~\mathsf{PM}\subseteq \mathbb{R}^{\mathbb{N}^2}$ consists of the pseudometrics over $\mathbb N$

$$d(x,x) = 0 \qquad d(x,y) = d(y,x) \qquad d(x,y) \le (x,y) + d(y,z)$$

- PM_• ⊆ ℝ^{N²} × N^N/~ consists of pairs (d, s) where s is a fast converging Cauchy sequence for d
- the map is the first projection

Hyperspaces \mathcal{H} over $\mathbf{X} \in \mathsf{ReprSp}_0$

A map $\partial_{\mathcal{H}} : R \to \mathcal{P}(\mathbf{X})$ for some $\mathbf{R} = (R, \delta_{\mathbf{R}}) \in \mathsf{Repr}\mathsf{Sp}_0$

Given such an hyperspace, build the bundle

- whose base is \mathbf{R}
- $\bullet\,$ whose total space \mathcal{H}_{\bullet} is the subspace of $\mathbf{R}\times\mathbf{X}$ with

 $(r, x) \in \mathcal{H}_{\bullet}$ iff $x \in \partial_{\mathcal{H}}(r)$

 $\bullet\,$ which projects onto the ${\bf R}$ component

Examples of hyperspaces

Hyperspaces \mathcal{H} over $\mathbf{X} \in \mathsf{ReprSp}_0$

A map $\partial_{\mathcal{H}} : R \to \mathcal{P}(\mathbf{X})$ for some $\mathbf{R} = (R, \delta_{\mathbf{R}}) \in \mathsf{Repr}\mathsf{Sp}_0$

Examples:

• the hyperspace $\mathcal{A}(\mathbf{X})$ of closed subsets of \mathbf{X}

$$\partial_{\mathcal{A}(\mathbf{X})}: \quad p: \mathbf{X} \to \mathbb{S} \quad \longmapsto \quad p^{-1}(\bot)$$

- similarly: opens, Π_2^0 -subsets, ...
- the hyperspace $\mathcal{V}(\mathbf{X})$ of *overt* subsets of \mathbf{X}

(interprets maps $\exists_{\mathbf{X}} : \mathbf{X}^{\mathbb{S}} \to \mathbb{S}$)

• combined hyperspace $\mathcal{H}_1 \wedge \mathcal{H}_2$

 $\partial_{\mathcal{H}_1 \wedge \mathcal{H}_2}(r_1, r_2)) = A \quad \text{iff} \quad \partial_{\mathcal{H}_i}(r_i) = A \text{ for } i \in \{1, 2\}$

Polish spaces as hyperspaces

Convention: \mathcal{H}_+ = restrict to non-empty subspaces

Characterizations and matching hyperspaces

Polish spaces are

- G_{δ} subsets of the Hilbert cube \rightsquigarrow $(\Pi_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+$
- closed subsets of $\mathbb{R}^{\mathbb{N}} \longrightarrow$

 $\begin{array}{l} \left(\mathbf{\Pi}_2^0 \wedge \mathcal{V} \right) \left([0,1]^{\mathbb{N}} \right)_+ \\ \left(\mathcal{A} \wedge \mathcal{V} \right) \left(\mathbb{R}^{\mathbb{N}} \right)_+ \end{array}$

Polish spaces as hyperspaces

Convention: \mathcal{H}_+ = restrict to non-empty subspaces

Characterizations and matching hyperspaces

Polish spaces are

- G_{δ} subsets of the Hilbert cube \rightsquigarrow $(\Pi_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+$
- closed subsets of $\mathbb{R}^{\mathbb{N}} \longrightarrow$

 $\begin{array}{c} \left(\mathbf{\Pi}_{2}^{0} \wedge \mathcal{V} \right) \left([0,1]^{\mathbb{N}} \right)_{+} \\ \left(\mathcal{A} \wedge \mathcal{V} \right) \left(\mathbb{R}^{\mathbb{N}} \right)_{+} \end{array}$

Recall that $\mathsf{PM}_{\bullet} \to \mathsf{PM}$ is another Polish bundle

Three different definitions

Are they **equivalent**? In which sense?

Embedding and equivalence of spaces of spaces

An embedding of
$$\mathbf{A}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{A}}} \mathbf{A}$$
 into $\mathbf{B}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{B}}} \mathbf{B}$ is a pair

 $\begin{array}{ll} e & : & \mathbf{A} \to \mathbf{B} & \text{translates } \mathbf{A}\text{-codes into } \mathbf{B}\text{-codes...} \\ E & : & \prod_{a \in \mathbf{A}} \operatorname{El}_{\mathbf{A}}^{-1}(a) \cong \operatorname{El}_{\mathbf{B}}^{-1}(e(a)) & \dots \text{w/o modifying the spaces} \end{array}$

Embedding and equivalence of spaces of spaces

An embedding of
$$\mathbf{A}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{A}}} \mathbf{A}$$
 into $\mathbf{B}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{B}}} \mathbf{B}$ is a pair

 $\begin{array}{ll} e & : & \mathbf{A} \to \mathbf{B} & \text{translates } \mathbf{A}\text{-codes into } \mathbf{B}\text{-codes...} \\ E & : & \prod_{a \in \mathbf{A}} \operatorname{El}_{\mathbf{A}}^{-1}(a) \cong \operatorname{El}_{\mathbf{B}}^{-1}(e(a)) & \dots \text{ w/o modifying the spaces} \end{array}$

Elementary characterization: \exists a pullback

Embedding and equivalence of spaces of spaces

An embedding of
$$\mathbf{A}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{A}}} \mathbf{A}$$
 into $\mathbf{B}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{B}}} \mathbf{B}$ is a pair

 $\begin{array}{ll} e & : & \mathbf{A} \to \mathbf{B} & \text{translates } \mathbf{A}\text{-codes into } \mathbf{B}\text{-codes...} \\ E & : & \prod_{a \in \mathbf{A}} \mathrm{El}_{\mathbf{A}}^{-1}(a) \cong \mathrm{El}_{\mathbf{B}}^{-1}(e(a)) & \dots \text{w/o modifying the spaces} \end{array}$

Elementary characterization: \exists a pullback

Equivalence

When there are embedding both ways

Turn $d \in \mathsf{PM}$ with $d \leq 1$ (wlog) into

$$X_d = \left\{ x \in [0,1]^{\mathbb{N}} \mid \forall k \; \exists m_k \; \forall i \le k \; |x_i - d(i,m)| < 2^{-k} \right\}$$

Obvious Π_2^0 , easy to see it is overt \rightsquigarrow code $\lceil X_d \rceil$

Turn $d \in \mathsf{PM}$ with $d \leq 1$ (wlog) into

$$X_d = \left\{ x \in [0,1]^{\mathbb{N}} \mid \forall k \; \exists m_k \; \forall i \le k \; |x_i - d(i,m)| < 2^{-k} \right\}$$

Obvious Π_2^0 , easy to see it is overt \rightsquigarrow code $\lceil X_d \rceil$

Map between total spaces

For the other way around, $(\mathbf{\Pi}_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+ \to \mathsf{PM}$

• By overt choice, pick a dense sequence in $\mathbf{X} \in \mathcal{V}\left([0,1]^{\mathbb{N}}\right)_+$

For the other way around, $(\mathbf{\Pi}_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+ \to \mathsf{PM}$

- By overt choice, pick a dense sequence in $\mathbf{X} \in \mathcal{V}\left([0,1]^{\mathbb{N}}\right)_+$
- **Problem**: this only gives us a multivalued map $(\mathbf{\Pi}_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+ \rightrightarrows \mathsf{PM}$
- Multivaluedness does not play well at all with other defs

For the other way around, $\left(\mathbf{\Pi}_{2}^{0} \wedge \mathcal{V}\right) \left([0,1]^{\mathbb{N}}\right)_{+} \to \mathsf{PM}$

- By overt choice, pick a dense sequence in $\mathbf{X} \in \mathcal{V}\left([0,1]^{\mathbb{N}}\right)_+$
- **Problem:** this only gives us a multivalued map $(\mathbf{\Pi}_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+ \rightrightarrows \mathsf{PM}$
- Multivaluedness does not play well at all with other defs

Solution

Considering bundles $\mathbf{A}_{\bullet} \to \mathbf{A}$ up to reindexing along

$$\left(\mathbb{N}^{\mathbb{N}}\supseteq\right)$$
 dom $(\delta_{\mathbf{A}})$ \longrightarrow **A**

Intensional equivalence: equivalence up to that reindexing

For the other way around, $\left(\mathbf{\Pi}_{2}^{0} \wedge \mathcal{V}\right) \left([0,1]^{\mathbb{N}}\right)_{+} \to \mathsf{PM}$

- By overt choice, pick a dense sequence in $\mathbf{X} \in \mathcal{V}\left([0,1]^{\mathbb{N}}\right)_+$
- **Problem:** this only gives us a multivalued map $(\mathbf{\Pi}_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+ \rightrightarrows \mathsf{PM}$
- Multivaluedness does not play well at all with other defs

Solution

Considering bundles $\mathbf{A}_{\bullet} \to \mathbf{A}$ up to reindexing along

$$\left(\mathbb{N}^{\mathbb{N}}\supseteq\right)$$
 dom $(\delta_{\mathbf{A}})$ \longrightarrow **A**

Intensional equivalence: equivalence up to that reindexing

(abstract nonsense: reindexing along regular projective covers)

TL;DR natural options are intensionally equivalent

Bundles for Polish spaces

 $\mathsf{PM}_\bullet \to \mathsf{PM}$ is intensionally equivalent to bundles given by

$$\left(\mathbf{\Pi}_{2}^{0}\wedge\mathcal{V}\right)\left(\left[0,1\right]^{\mathbb{N}}\right)_{+}$$
 $\left(\mathcal{A}\wedge\mathcal{V}\right)\left(\mathbb{R}^{\mathbb{N}}\right)_{+}$ and $\mathcal{V}\left(\mathbb{R}^{\mathbb{N}}\right)_{+}$

TL;DR natural options are intensionally equivalent

Bundles for Polish spaces

 $\mathsf{PM}_\bullet \to \mathsf{PM}$ is intensionally equivalent to bundles given by

$$\left(\mathbf{\Pi}_{2}^{0}\wedge\mathcal{V}\right)\left(\left[0,1\right]^{\mathbb{N}}\right)_{+}$$
 $\left(\mathcal{A}\wedge\mathcal{V}\right)\left(\mathbb{R}^{\mathbb{N}}\right)_{+}$ and $\mathcal{V}\left(\mathbb{R}^{\mathbb{N}}\right)_{+}$

Call $\mathsf{TBPM}_{\bullet} \to \mathsf{TBPM}$ for the variant of $\mathsf{PM}_{\bullet} \to \mathsf{PM}$ where we add a witness of total boundedness $\in \mathbb{N}^{\mathbb{N}}$.

Bundles for compact Polish spaces

$$\begin{split} \mathsf{TBPM}_\bullet \to \mathsf{TBPM} \text{ is intensionally equivalent to the bundles} \\ \text{given by } \left(\mathcal{K} \wedge \mathcal{V}\right) \left([0,1]^\mathbb{N}\right)_+ \end{split}$$

Uniform computable categoricity (fun!)

The degree of (uniform) computable categoricity

Let $\operatorname{El}: \mathbf{A}_{\bullet} \to \mathbf{A}$ be a space of spaces.

Computable categoricity of $S \in \mathsf{ReprSp}_0$ as a problem

• Input: $a, b \in \mathbf{A}$ such that $\mathrm{El}^{-1}(a) \cong \mathrm{El}^{-1}(b) \cong S$

(non-necessarily computably so)

• **Output:** an homeomorphism $El^{-1}(a) \cong El^{-1}(b)$

We talk about the **degree** of computable categoricity CCat(S)S is computably categorical when $CCat(S, El) \leq id$

The degree of (uniform) computable categoricity

Let $\operatorname{El}: \mathbf{A}_{\bullet} \to \mathbf{A}$ be a space of spaces.

Computable categoricity of $S \in \mathsf{ReprSp}_0$ as a problem

• Input: $a, b \in \mathbf{A}$ such that $\mathrm{El}^{-1}(a) \cong \mathrm{El}^{-1}(b) \cong S$

(non-necessarily computably so)

• **Output:** an homeomorphism $El^{-1}(a) \cong El^{-1}(b)$

We talk about the **degree** of computable categoricity CCat(S)S is computably categorical when $CCat(S, El) \leq id$

Sanity check: notion stable under intensional equivalence \checkmark

Cantor space among compact Polish spaces

Theorem

 $2^{\mathbb{N}}$ is uniformly computably categorical in $(\mathcal{K} \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})$.

Idea: given a code for $\mathbf{X} \in (\mathcal{K} \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})$:

- look for a cover of **X** by two opens U_0, U_1 (compactness)
- such that both are non-empty

• and
$$\overline{U_0} \cap \overline{U_1} = \emptyset$$

(overtness)

(compactness)

Cantor space among compact Polish spaces

Theorem

 $2^{\mathbb{N}}$ is uniformly computably categorical in $(\mathcal{K} \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})$.

Idea: given a code for $\mathbf{X} \in (\mathcal{K} \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})$:

- look for a cover of **X** by two opens U_0, U_1 (compactness)
- such that both are non-empty

• and
$$\overline{U_0} \cap \overline{U_1} = \emptyset$$
 (compactness)

For the iso $h: \mathbf{X} \to 2^{\mathbb{N}}$, then set

$$h(x)_0 = i \qquad \Longleftrightarrow \qquad x \in U_i$$

(overtness)

Cantor space among compact Polish spaces

Theorem

 $2^{\mathbb{N}}$ is uniformly computably categorical in $(\mathcal{K} \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})$.

Idea: given a code for $\mathbf{X} \in (\mathcal{K} \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})$:

- look for a cover of **X** by two opens U_0, U_1 (compactness)
- such that both are non-empty
- and $\overline{U_0} \cap \overline{U_1} = \emptyset$ (compactness)

For the iso $h: \mathbf{X} \to 2^{\mathbb{N}}$, then set

$$h(x)_0 = i \qquad \Longleftrightarrow \qquad x \in U_i$$

Iterate for the other bits

(find a cover $U_{00} \cup U_{01} \supseteq U_0$ such that...)

(overtness)

The circle (still among compact Polish spaces)

Theorem

The Weihrauch degree of uniform categoricity of S_1 is lim.

lim computes an iso $\mathbf{X} \to \mathcal{S}_1$ (assuming $\mathbf{X} \cong \mathcal{S}_1$ non-effectively):

 $\bullet\,$ We attempt to cover ${\bf X}$ by finer and finer circular chains

• Use lim to pick refinements without backtrackings

The circle (lim-hardness)

For the converse, first note $\lim \equiv_W UPPERBOUND$.

- For each input $p \in \mathbb{N}^{\mathbb{N}}$ to UPPERBOUND, fix two balls and a tube approximating our would-be circle locally
- When asked for a better precision 2^{-k-1} , shrink the tube and add $\max(0, p_{k+1} - \max_{i \le k} p_i)$ backtracks

By the iso $\mathcal{S}_1 \to \mathbf{X} \subseteq [0, 1]^{\mathbb{N}}$, bound the # of backtracks

Genericity

Let $\operatorname{El}: \mathbf{A}_{\bullet} \to \mathbf{A}$ be a space of spaces.

We need some definitions

What does it mean for a space to be generic?

Here: adapt notions from computability/topology

Let $\operatorname{El}: \mathbf{A}_{\bullet} \to \mathbf{A}$ be a space of spaces.

We need some definitions

What does it mean for a space to be generic?

Here: adapt notions from computability/topology

- Concern #1: stability under bundle equivalence
- Concern #2: homeomorphism invariance
- Concern #3: the right notion of point class

Concerns #1 and #2

Let $\operatorname{El}: \mathbf{A}_{\bullet} \to \mathbf{A}$ be a space of spaces.

Equivalence and density: one issue

If $a \in \mathbf{A}$ is computable, the following is equivalent to El:

$$!_X + \mathrm{El} : \mathrm{El}^{-1}(a) + \mathbf{A}_{\bullet} \longrightarrow 1 + \mathbf{A}$$

But now every dense set in $1 + \mathbf{A}$ contains a copy of $\mathrm{El}^{-1}(a)!!$

Solution:

- Consider the quotient $\pi_{\cong} : \mathbf{A} \twoheadrightarrow \mathbf{A}_{\cong}$ that identify codes for isomorphic spaces
- $\pi_{\cong} \circ \text{El}$ is intensionally equivalent to El

Concern #3: pointclasses

- Recall we have $El: A_{\bullet} \to A$ and $\pi_{\cong}: A \twoheadrightarrow A_{\cong}$ around
- Let $\widetilde{\mathbf{A}} \subseteq \mathbb{N}^{\mathbb{N}}$ the space of names of \mathbf{A} and $\delta_{\mathbf{A}} : \widetilde{\mathbf{A}} \twoheadrightarrow \mathbf{A}$

Standard convention for non-Polish spaces for pointclasses

[Pauly & de Brecht 15, Callard & Hoyrup 20, Hoyrup 20]

Essential caveat

- A Π_0^2 subset of \mathbf{A}_{\cong} is given
 - by a morphism $\mathbf{A}_{\cong} \to \mathbb{S}_{\mathbf{\Pi}_2^0}$
 - $\mathbb{S}_{\Pi_2^0} = 2^{\mathbb{N}} / \text{"both finite or not"}$
 - equivalently: a Π_0^2 set of $\widetilde{\mathbf{A}}$ that respects $\pi_{\cong} \circ \delta_{\mathbf{A}}$
 - not necessarily by $\bigcap_{n \in \mathbb{N}} U_n$ with $U_n \in \mathcal{O}(\mathbf{A}_{\cong})!$
 - The U_n s do not need to respect the quotients

The definition

Recall we have $El : A_{\bullet} \to A$ and $\pi_{\cong} : A \twoheadrightarrow A_{\cong}$ around

Let \mathcal{C} be a pointclass

C-genericity

S is C-generic in El if for every dense set $D \in \mathcal{C}(\mathbf{A}_{\cong})$

 $\exists a \in D. \ \mathrm{El}^{-1}(a) \cong S$

• Note: $\operatorname{El}^{-1}(a) \cong \operatorname{El}^{-1}(a')$ and $a \in D$ imply $a' \in D$

The definition

Recall we have $El : A_{\bullet} \to A$ and $\pi_{\cong} : A \twoheadrightarrow A_{\cong}$ around

Let \mathcal{C} be a pointclass

C-genericity

S is C-generic in El if for every dense set $D \in \mathcal{C}(\mathbf{A}_{\cong})$

 $\exists a \in D. \ \mathrm{El}^{-1}(a) \cong S$

• Note: $\operatorname{El}^{-1}(a) \cong \operatorname{El}^{-1}(a')$ and $a \in D$ imply $a' \in D$

Sanity check

Intensionally equivalent bundles \Rightarrow same C-generic spaces

Genericity in compact Polish spaces

Proposition

All infinite compact Polish spaces are Σ_1^0 -generic.

Theorem

 $2^{\mathbb{N}}$ is the only $\mathbf{\Pi}_2^0$ -generic compact Polish space.

Genericity in compact Polish spaces

Proposition

All infinite compact Polish spaces are Σ_1^0 -generic.

Theorem

 $2^{\mathbb{N}}$ is the only $\mathbf{\Pi}_2^0$ -generic compact Polish space.

Proof idea: being isomorphic to $2^{\mathbb{N}}$ is a Π_2^0 property

$$\begin{aligned} \forall n \in \mathbb{N}. \forall r \in \mathbb{Q}_{>0}. \exists m \in \mathbb{N}. \exists s \in \mathbb{Q}_{>0}. \exists m' \in \mathbb{N}. \exists s \in \mathbb{Q}_{>0}. \\ B(x_n, r) \cap X \neq \emptyset & \Longrightarrow \quad \overline{B}(x_n, r) \cap X \subseteq B(x_m, s) \cup B(x_{m'}, s') \\ & \wedge \quad B(x_m, s) \cap X \neq \emptyset \\ & \wedge \quad B(x_{m'}, s') \cap X \neq \emptyset \\ & \wedge \quad \overline{B}(x_m, s) \cap \overline{B}(x_{m'}, s') \cap X = \emptyset \end{aligned}$$

Conclusion

- The notion of spaces of spaces as bundles
 - As type-theoretic universes
 - (but typically we like them somewhere in the middle between discrete and indiscrete)
- Equivalent presentations for (compact) Polish spaces
 → effectivizes equivalent characterizations
- Notions of uniform computable categoricity and genericity
- Some results for compact Polish spaces

What could happen: coPolish and quasiPolish spaces

Some groundwork for quasiPolish spaces in [dB21]

- A space of spaces based on ideal presentations
- Effective closure under countable products & more...

Further things to determine

Different equivalent bundles for different characterization?

Same thing for coPolish spaces?

Effectivize Y coPolish \wedge X quasiPolish \Longrightarrow X^Y quasiPolish?

What could happen: categoricity

Obvious questions

What is the degree of categoricity of [0, 1]? $\mathbb{N}^{\mathbb{N}}$? \mathbb{R} ? ...

Beyond that:

- What happens if we restrict isomorphisms to be
 - uniformly continuous
 - isometries
 - ...
- Links with other notions of computable categoricity
 - in computable structure theory
 - for Banach spaces
 - ...

Obvious question

What are Π_2^0 -generic Polish spaces?

Beyond that, what link with genericity in other settings?

Obvious question

What are Π_2^0 -generic Polish spaces?

Beyond that, what link with genericity in other settings?

Thanks for listening! Questions?