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Extracting programs from specifications

and proofs

The general setting
Input: a logical input-output specification φ(i, o)

(+ some additional certificate)

Output: a program f obeying the specification

Reasonable to constrain specifications:

• Totality: at least one output per input ∀i.∃o.φ(i, o)

• Functionality: at most one output per input
∀i.∀o.∀o′.φ(i, o) ∧ φ(i, o′) ⇒ o = o′

Certificates can help produce programs f:
Automatic synthesis: no additional data
Curry-Howard approaches: a proof of totality of φ

▶ produce a refinement f s.t. ∀i. φ(i, f(i))
Implicit definitions: a proof of functionality of φ

▶ produce an extension f s.t. ∀i.∀o. φ(i, o) ⇒ f(i) = o

Goal
Go from implicit definitions to transformations of nested sets
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Plan of the talk

Goal
Go from implicit definitions to transformations of nested sets

• Nested relations, set-theoretic specifications and the language (NRC)
• Our work generalizes Beth's theorem for usual ``flat'' relational queries

• Main result: implicit → explicit NRC definitions
• One easy method for intuitionistic definitions
• One harder method for classical definitions
• Linear-time on cut-free focused proofs

• WIP: generalization to effective rigid categoricity

3 / 25



Plan of the talk

Goal
Go from implicit definitions to transformations of nested sets

• Nested relations, set-theoretic specifications and the language (NRC)
• Our work generalizes Beth's theorem for usual ``flat'' relational queries

• Main result: implicit → explicit NRC definitions
• One easy method for intuitionistic definitions
• One harder method for classical definitions
• Linear-time on cut-free focused proofs

• WIP: generalization to effective rigid categoricity

3 / 25



Plan of the talk

Goal
Go from implicit definitions to transformations of nested sets

• Nested relations, set-theoretic specifications and the language (NRC)
• Our work generalizes Beth's theorem for usual ``flat'' relational queries

• Main result: implicit → explicit NRC definitions
• One easy method for intuitionistic definitions
• One harder method for classical definitions
• Linear-time on cut-free focused proofs

• WIP: generalization to effective rigid categoricity

3 / 25



The nested relational model, logic and
NRC



The nested relational model

We work with typed objects

Types for nested collections

T,U ::= U | Set(T) | 1 | T×U

Anonymous base type U
Semantics T 7→ JTK determined inductively by JUK:

• Set(T): sets of elements of type T
• finite cartesian products −× . . .×−

Examples
Taking JUK = string, we have

{(``snake'', ``slange''), (``pencil'', ``blyant''), . . .} ∈ JSet(U × U)K
{({``snake'', ``serpent''}, {``slange'', ``snog''}), . . .} ∈ JSet(Set(U) × Set(U))K
((), ∅, ``snake'', {``slange'', ``snog''}) ∈ J1 × Set(Set(1)) × U × Set(U)K

Usual relational model: only tuples of relations (sets of tuples)
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Nested collection transformations

Types for nested collections

T,U ::= U | Set(T) | 1 | T×U

A transformation of nested sets is a function T → U
→ is not part of the type system

A transformation of flat relations
Pre-image of a relation R

fib : Set(U) × Set(U × U) → Set(U)

(A,R) 7→ R−1(A) = {x | ∃y ∈ A.(x, y) ∈ R}

A transformation of nested collections
Collect all pre-images of individual elements

fibs : Set(U × U) → Set(U × Set(U))

R 7→ {(a, fib({a},R)) | a ∈ cod(R)}
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Logical specfications

Queries can be specified in multi-sorted first-order logic:

• variables explicitly typed x : T
• basic predicates x ∈T z and x =T y x, y : T and z : Set(T)

• terms for tupling and projections e.g., π1(((x, z), ()), x)) : (T × Set(T)) × 1

Consider formulas with only bounded quantifications

∆0 formulas

φ,ψ ::= t =T u | t ∈T u | ∃x ∈ t φ | ∀x ∈ t φ | φ ∧ ψ | φ ∨ ψ | ¬φ

Example of functional and total specifications:

φfib(A,R,X) for X = R−1(A)
• Every x ∈ X is related to some a ∈ A ∀x ∈ X.∃a ∈ A. (x, a) ∈ R

• For every (x, y) ∈ R, if y ∈ A, then x ∈ X ∀p ∈ R. π2(p) ∈ A ⇒ π1(p) ∈ X

φfibs(R,O) for O = {(a,R−1({a})) | a ∈ cod(R)}
• For every (x, a) ∈ R, there is some (a,X) ∈ O s.t. x ∈ X

∀p ∈ R.∃q ∈ O. π1(p) ∈ π2(O)

• Every element of (a,X) ∈ O satisfies φfib({a},R,X)
∀q ∈ O. (∀x ∈ π2(q).(x, π1(q)) ∈ R) ∧ (∀p ∈ R. π2(p) = π1(q) ⇒ π1(p) ∈ π2(q))
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Our target for synthesis: the nested relational calculus (NRC)

+ Get

Our programming language for nested transformations Γ → T

Γ, x : T, Γ′ ` x : T

Γ ` () : 1
Γ ` e1 : T1 Γ ` e2 : T2

Γ ` 〈e1, e2〉 : T1 × T2

Γ ` e : T1 × T2 i ∈ {1, 2}
Γ ` πi(e) : Ti

Γ ` e : T
Γ ` {e} : Set(T)

Γ ` e1 : Set(T1) Γ, x : T1 ` e2 : Set(T2)

Γ `
∪

{e2 | x ∈ e1} : Set(T2)

Γ ` ∅T : Set(T)
Γ ` e1 : Set(T) Γ ` e2 : Set(T)

Γ ` e1 ∪ e2 : Set(T)
Γ ` e1 : Set(T) Γ ` e2 : Set(T)

Γ ` e1 \ e2 : Set(T)

Γ ` e : Set(T)
Γ ` Get(e) : T
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Expressiveness of NRC

Our running examples

• (A,R) 7→
⋃
{case(π2(p) ∈U A, {π1(p)}, ∅) | p ∈ R}

• R 7→
⋃
{{fib(x,R)} | x ∈ {π1(p) | p ∈ R}}

Derivable constructs:

• maps {e1(x) | x ∈ e2}
• at type-level, Bool := Set(1)
• basic predicates =T: T× T → Bool, ∈T: T× Set(T) → Bool
• case analyses

• ∆0-separation {x ∈ e | φ(x)}

Proposition
NRC terms e : T → Bool correspond exactly to ∆0 formulas φ(xT)
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Extraction from ∆0 specifications



Our effective result

Recall that φ(i, o) is an implicit definition when it is functional: φ(i, o) ∧ φ(i, o′) =⇒ o = o′

Extraction from ∆0 intuitionistic implicit definitions
For every such φ(i, o), there is a compatible NRC term e(i)

φ(i, o) =⇒ o = e(i)

Further, e(i) may be efficiently computed from a cut-free focused proof

Nota Bene
• Effectivity w/o efficiency: follows from completeness, compactness and an easy NRC/logical

interpreatation correspondence
• Efficiency is the ultimate goal

• Extension of Beth definability for flat queries Set(Uk)× . . .× Set(Um) → Set(Un)

• Can give some ideas for lower bounds
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Potential use-cases for implicit→explicit

Use-case #1: inverting a transformation
Consider an injective NRC term such as fibs

fibs : Set(U × U) → Set(U × Set(U))

R 7→ {(a,R−1(a)) | a ∈ cod(f)}

• can be converted to an implicit φ(R,G)
• φ(R,G) defines a partial function G 7→ R
⇝ a NRC-definable inverse of fibs

Use-case #2: views
Assume an imperative extension and a program

x := e1(i); . . . ; y := e2(i)

When e2 is functional in terms of e1:
• Compute e′2(x) from a proof
⇝ Potential optimization if e1(i) is costly?

Caveat: automation for functionality proofs?
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Toward a proof system for nested sets

Wlog, we restrict to the following syntax

t, u ::= x | (t, u) | π1(t) | π2(t) | ()
φ,ψ ::= t =U u | t 6=U u | ∃x ∈T t φ | ∀x ∈T t φ | φ ∧ ψ | φ ∨ ψ

Derived formulas
t ∈T u := ∃x ∈ u. t =T u t ⊆T u := ∀x ∈ t. x ∈T u

t =Set(T) u := t ⊆T u ∧ u ⊆T t . . .

• Bakes the axiom of extensionality in the definition of =T

• No further set-theoretic axioms
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What is a proof

Straightforward variants of the sequent calculus

• Sequents Γ ` ∆ with Γ,∆ lists of ∆0 formulas
• Intended semantics:

∧
ϕ∈Γ ϕ =⇒

∨
ψ∈∆ ψ

• Deduction according to proof rules of the shape

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

Left and right rules for each connectives + structural rules + cut

Examples

∃-R Γ, t ∈ u ` ϕ[t/x],∆
Γ, t ∈ u ` ∃x ∈ u.ϕ,∆

CUT Γ ` ϕ,∆ Γ, ϕ ` ∆

Γ ` ∆
AXIOM

Γ, ϕ ` ϕ,∆
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Formal proofs of functionality

Certificate that φ(i, o) is an implicit definition: a derivation

·; φ(i, o), φ(i, o′) ` o = o′

Proof idea for efficient extraction: compute an explicit definition by induction over the proof
Problem: what invariant?
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Three standard restrictions

The adjectives
Cut-free, intuitionistic, focused

• All of the proofs we are going to be considering are cut-free
• We will ultimately drop the restriction to intuitionistic proofs…
• …but ultimately enforce focusing anyway
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Cut-freeness

CUT
Γ ` ϕ,∆ Γ, ϕ ` ∆

Γ ` ∆

• Intuition: allows to introduce a lemma ϕ
• Other intuition: allows to compose proofs

Cut-elimination (Gentzen)
The cut rule does not allow to prove more sequents

• Effective argument, but cut-elimination is expensive
(lower bound in G3 (Buss), i.e. above non-elementary)

• Related to computation in the λ-calculus (Curry-Howard)

• (Easier to define in the sequent calculus than in other systems)
• Cut-free proofs have a nice subformula property
• We will require cut-freeness essentially everywhere in the sequel
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Intuitionism

At the intuitive level, reject the law of excluded middle/reasoning ad absurdum

ϕ ∨ ¬ϕ ¬¬ϕ =⇒ ϕ

Technically: restrict to sequents Γ ` ∆ with |∆| ≤ 1.

Pros/cons

• Nicer to work with
• Classical logic can be embedded in it anyway

Conservativity for implicit definitions
If ϕ(i, o) is functional, then there is a formula χ(⃗x) such that the conjoined formula

ϕ¬¬(i, o) ∧ ∀x⃗. χ(⃗x) ∨ ¬χ(⃗x)

can be proved to be functional in intuitionistic logic

Actually non-trivial!! (I don't know a corresponding efficient algorithm)
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Focusing

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea
Decompose proofs by forcing saturations by certain rules in positive and negative phase.

• Initially motivated by proof-search
• Like cut-elim, does not change provable statements
• To us: restricts the shape of proofs so much it allows to use simpler inductive invariants

(probably a crutch, but we don't know how to work without it for now)

Complexity-wise (to the best of my knowledge)
A cut-free proof can be turned into a focused cut-free proof in exponential time.
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Preliminary: Craig interpolation

ϕ(c, l) ψ(c, r)

θ(c)

∃

cl r

Craig interpolation
If φ⇒ ψ, there exists θ such that

φ⇒ θ and θ ⇒ ψ

Further, θ mentions only variables/relation symbols common to φ
and ψ.

• Robust result
∆0-interpolation, intuitionistic/linear logic…

• θ linear-time computable from cut-free proofs
• Interpolation ⇒ effective Beth definability
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Our extraction procedure

l ⊆ e(c) ⊆ r

cl r

Γ(c, l), ∆(c, r) ` l ⊆ r

∃ e.

Suppose Γ(c, l),∆(c, r) ` ψ.
Then we can compute e(c) in NRC such that

Higher-type interpolation Lemma

• if ψ is l = r, then Γ,∆ |= l = e ∧ r = e
• if ψ is l ⊆ r, then Γ,∆ |= l ⊆ e ∧ e ⊆ r
• if ψ is l ∈ r, then Γ,∆ |= l ∈ e

Stronger than standard interpolation
RHS depends on l

Extraction procedure: apply with Γ := φ(i, o), ∆ := φ(i, o′) and ψ := o = o′

Proof idea
Induction over the proof-tree; at some key steps
• ∆0 interpolation
• NRC-definability of ∆0-separation

Problem: does not generalize well to sequents with multiple conclusions
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Handling classical proofs

New strategy: induction over the output type, some tedious proof theory and

(New and somewhat exciting!) NRC parameter collection theorem
Let L, R be sets of variables with C = L ∩ R and

• ϕL and λ(z) ∆0 formulas over L • ϕR and ρ(z, y) ∆0 formulas over R
• r a variable of R and c a variable of C.

Suppose that we have a proof of ϕL ∧ ϕR ⇒ ∃y ∈p r ∀z ∈ c. λ(z) ⇐⇒ ρ(z, y)

Then one may compute in polynomial time a NRC expression E with free variables in C such that

ϕL ∧ ϕR =⇒ {z ∈ c | λ(z)} ∈ E

• By induction over focused proofs
• E is a set of candidate definitions for λ parameterized over the input

(reminiscent of a theorem of Chang and Makkai that yields definabilty from a proof of fewness rather than uniqueness)
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More specifically

Lemma
Let L, R be sets of variables with C = L ∩ R and

• ϕL and λ(z) ∆0 formulas over L • ϕR and ρ(z, y) ∆0 formulas over R
• r a variable of R and c a variable of C.

Suppose that we have a proof of ϕL ∧ ϕR ⇒ ∃y ∈p r ∀z ∈ c. λ(z) ⇐⇒ ρ(z, y)

Then one may compute in polynomial time a NRC expression E and a ∆0 θ over C s.t.

ϕL ∧ θ =⇒ {z ∈ c | λ(z)} ∈ E and ϕR ` θ

Intuitions:

• θ is an interpolant for a proof we are also computing on the fly
• Focusing allows to keep the invariant rather specific w.r.t. the r.h.s. formula
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Key step: existential rule introducing the ``main'' formula

With G = ∃y ∈p r.∀z ∈ c. λ(z) ⇐⇒ ρ(z, y)

ΘL,ΘR, x ∈ c ` ∆L,∆R,¬ρ(x,w), λ(x),G
∨

ΘL,ΘR, x ∈ c ` ∆L,∆R, ρ(x,w) ⇒ λ(x),G
ΘL,ΘR, x ∈ c ` ∆L,∆R,¬λ(x), ρ(x,w),G

∨
ΘL,ΘR, x ∈ c ` ∆L,∆R, λ(x) ⇒ ρ(x,w),G

∧
ΘL,ΘR, x ∈ c ` ∆L,∆R, λ(x) ⇔ ρ(x,w),G

∀
ΘL,ΘR ` ∆L,∆R, ∀z ∈ c. (λ(z) ⇔ ρ(z,w)),G

∃
ΘL,ΘR ` ∆L,∆R,G

• Shape around the root of the tree guaranteed by focusing
• Applying the induction hypothesis we have

ΘL, x ∈ c |= λ(x),∆L, θ
IH
1 ∨ Λ ∈ EIH

1 and ΘL, x ∈ c |= ¬λ(x),∆L, θ
IH
2 ∨ Λ ∈ EIH

2

and ΘR |= ¬ρ(x,w),∆R,¬θIH
1 and ΘR |= ρ(x,w),∆R,¬θIH

2

• So θ := ∃x ∈ c. θIH
1 ∧ θIH

2 and E :=
{{

x ∈ c | θIH
2
}}

∪
⋃{

EIH
1 ∪ EIH

2 | x ∈ c
}
works
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Interpretations and multi-sorted
definability



Interpretations

Nested collections can be regarded as multi-sorted structures

An object X of sort Set(U× Set(U))
Sorts: U, Set(U),U× Set(U)
Function symbols: π1, π2, 〈−,−〉
Relation symbol: ∈U

Semantics: subobjects of X

Interpretations: maps between finite structures defined by FO formulas
Can express

• product, disjoint union of structures M,N 7→ M × N,M + N

• definable substructures and quotients

NRC and interpretations
For structures corresponding to nested collections,
NRC and ∆0-interpretations coincide

Remark: efficient translation from interpretations to NRC
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From multi-sorted implicit definitions to explicit interpretations

Fix a theory Σ over two sorts τ and σ
Wlog: two sets of sorts

Multi-sorted implicit definability
σ is implicitly definable from τ when, for every M,M′ |= Σ and bijective homomorphism
M

∣∣
τ
∼= M′∣∣

τ
, there is a unique extension M ∼= M′

τ τ

σ σ

∼

∼
M M′

Reduction for implicit definition of nested transformations: single
model where

• τ contains the input and U

• σ contains the output
possibly more complex than the input

Theorem
If σ is implicitly definable from τ , there is an interpretation of Σ into Σ

∣∣
τ
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Further perspectives

Natural question
Can we make the multi-sorted theorem effective?

• There is a natural notion of implicitly definable (although non-obvious)
• Effectivity is not an issue, but efficiency is
• (the intuitionistic case is easy)

Further topics

• Coq formalization with extraction
• Curry-Howard approach to the extraction of NRC terms

``untyped NRC'' treated by Sazonov

• Other settings for extraction from implicit definitions?
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