Polyblind functions

<u>Cécilia Pradic</u> j.w.w. Lê Thành Dũng (Tito) Nguyễn 15/05/25 Swansea theory seminar Talk based on a 2021 ICALP paper, but

Actual goals

- Introduce you to some very restricted models of computations $\{0,1\}^* \to \{0,1\}^*.$
- Motivate those **somewhat** by theoretical results.

Some practical applications: think verification of extended regexps/sed programs

• Give you an idea of what hard problems people look at in this space.

If you have questions, please interrupt and ask!

(I don't care if I don't cover pet result #n)

Introduction: string-to-string transducers

Automata-theoretic classes of string-to-string functions

In contrast with languages (string to booleans), many sensible notions:

- Arrows are strict inclusions, no path = incomparable
- I can make this picture worse if you desire

Automata-theoretic classes of string-to-string functions

In contrast with languages (string to booleans), many sensible notions:

- Arrows are strict inclusions, no path = incomparable
- I can make this picture worse if you desire

Today: regular, polyregular and polyblind

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

$$\begin{array}{rcl} \texttt{mapPalin}: & \{a, b, c, \#\}^* & \longrightarrow & \{a, b, c, \#\}^* \\ & w_1 \# \dots \# w_n & \longmapsto & w_1 \cdot \texttt{reverse}(w_1) \# \dots \# w_n \cdot \texttt{reverse}(w_n) \end{array}$$

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

d

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:

d

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:

Regular functions

Functions $\Sigma^* \to \Gamma^*$ definable by 2DFTs are called regular functions

Properties of regular functions

- Linear growth: |f(w)| = O(|w|)
- Closed under composition
- L regular $\implies f^{-1}(L)$ regular

Alternative characterizations

- Via Monadic Second-Order logic (MSO transductions)
- Copyless streaming string transducers
- Various functional programming or regexp-like (declarative) formalisms
- Minimal linear λ -calculus and Church encodings

[Nguyễn, Noûs, P. 2020]

(if $f: \Gamma^* \to \Sigma^*$ and $g: \Sigma^* \to \Pi^*$ are regular then so is $g \circ f$)

Polyregular functions

Polyregular functions:

- A larger class of string-to-string transductions
- Garnered significant attention recently, starting with [Bojańczyk 2018]

Properties

- Polynomial growth: $|f(w)| = O(|w|^k)$
- L regular $\implies f^{-1}(L)$ regular
- Closed under composition

Characterizations [Bojańczyk 2018; Bojańczyk, Kiefer & Lhote 2019]

- Multidimensional MSO interpretations
- Imperative nested loop programs
- Simply typed λ -calculus augmented with a list type and some list manipulation primitives
- Composition closure of [regular functions ∪ "squaring with underlining"]

Polyregular functions

Polyregular functions:

- A larger class of string-to-string transductions
- Garnered significant attention recently, starting with [Bojańczyk 2018]

Properties

- Polynomial growth: $|f(w)| = O(|w|^k)$
- L regular $\implies f^{-1}(L)$ regular
- Closed under composition

Characterizations [Bojańczyk 2018; Bojańczyk, Kiefer & Lhote 2019]

- Multidimensional MSO interpretations
- Imperative nested loop programs
- Simply typed λ -calculus augmented with a list type and some list manipulation primitives
- Composition closure of [regular functions ∪ "squaring with underlining"]
- k-pebble string-to-string transducers

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

 $output = \underline{a}$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

output = <u>a</u>a

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $output = \underline{a}ab$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

output = $\underline{a}abc$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

output = $\underline{a}abc$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

output = $\underline{a}abc$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

 $output = \underline{a}abc\underline{b}$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

 $output = \underline{a}abc\underline{b}a$
Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $output = \underline{a}abc\underline{b}ab$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $output = \underline{a}abc\underline{b}abc$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

 $output = \underline{a}abc\underline{b}abc$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

 $output = \underline{a}abc\underline{b}abc$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

 $output = \underline{a}abc\underline{b}abc\underline{c}$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

 $output = \underline{a}abc\underline{b}abc\underline{c}a$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

cfsquaring(*abb*) = <u>a</u>abb<u>b</u>abb<u>b</u>abb

 $output = \underline{a}abc\underline{b}abc\underline{c}ab$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $output = \underline{a}abc\underline{b}abc\underline{c}abc$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

 $output = \underline{a}abc\underline{b}abc\underline{c}abc$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

 $output = \underline{a}abc\underline{b}abc\underline{c}abc$

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "polyblind squaring"

\triangleright	а	b	С	\bigtriangledown
------------------	---	---	---	--------------------

 $output = \underline{a}abc\underline{b}abc\underline{c}abc$

Contributions

- Alternative characterizations
- Separation results
- Along the way: closure by composition, pebble minimization

Some alternative characterizations

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)

Let Γ , Σ and I be finite alphabets and $f : \Gamma^* \to I^*$, $g_i : \Gamma^* \to \Sigma^*$ and $w \in \Gamma^*$. Define $\operatorname{CbS}(f, (g_i)_{i \in I})(w)$ so that, if $f(w) = i_1 \dots i_k$, then

 $\operatorname{CbS}(f,(g_i)_{i\in I})(w) = g_{i_1}(w) \dots g_{i_k}(w)$

E.g. for cfsquaring, we take $f : \Sigma^* \to (\Sigma \cup \{X\})^*$, $g_X, g_a : \Sigma^* \to (\Sigma \cup \underline{\Sigma})^*$ (for $a \in \Sigma$) so that $f(abc) = aXbXcX \qquad g_a(w) = \underline{a} \text{ and } g_X(w) = w$

 $\bullet\,$ Note: both polyblind and polyregular functions are closed under ${\rm CbS}$

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)

Let Γ , Σ and I be finite alphabets and $f : \Gamma^* \to I^*$, $g_i : \Gamma^* \to \Sigma^*$ and $w \in \Gamma^*$. Define $\operatorname{CbS}(f, (g_i)_{i \in I})(w)$ so that, if $f(w) = i_1 \dots i_k$, then

 $\operatorname{CbS}(f,(g_i)_{i\in I})(w) = g_{i_1}(w) \dots g_{i_k}(w)$

E.g. for cfsquaring, we take $f : \Sigma^* \to (\Sigma \cup \{X\})^*$, $g_X, g_a : \Sigma^* \to (\Sigma \cup \underline{\Sigma})^*$ (for $a \in \Sigma$) so that $f(abc) = aXbXcX \qquad g_a(w) = \underline{a}$ and $g_X(w) = w$

 $\bullet\,$ Note: both polyblind and polyregular functions are closed under ${\rm CbS}$

Alternative definition of polyblind functions

Smallest class such that

- Every regular function is polyblind
- If f is regular and g_i is polyblind for every $i \in I$ then $CbS(f, (g_i)_{i \in I})$ is polyblind

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)

Let Γ , Σ and I be finite alphabets and $f : \Gamma^* \to I^*$, $g_i : \Gamma^* \to \Sigma^*$ and $w \in \Gamma^*$. Define $\operatorname{CbS}(f, (g_i)_{i \in I})(w)$ so that, if $f(w) = i_1 \dots i_k$, then

 $\operatorname{CbS}(f,(g_i)_{i\in I})(w) = g_{i_1}(w) \dots g_{i_k}(w)$

E.g. for cfsquaring, we take $f : \Sigma^* \to (\Sigma \cup \{X\})^*$, $g_X, g_a : \Sigma^* \to (\Sigma \cup \underline{\Sigma})^*$ (for $a \in \Sigma$) so that $f(abc) = aXbXcX \qquad g_a(w) = \underline{a}$ and $g_X(w) = w$

 $\bullet\,$ Note: both polyblind and polyregular functions are closed under ${\rm CbS}$

Alternative definition of polyblind functions

Smallest class such that

- Every regular function is polyblind
- If f is regular and g_i is polyblind for every $i \in I$ then $CbS(f, (g_i)_{i \in I})$ is polyblind
- More convenient to manipulate formally
- $\bullet\,$ Tight link between the number of pebbles and the nesting of the ${\rm CbS}$ operator

We have an alternative characterization based on linear the $\lambda\text{-calculus}$

- Not presented in the paper, mostly based on [Nguyễn,Noûs,P. 2020]
- Hints at the following non-trivial theorem

(reproven with automata-theoretic tools in the paper with no references to the λ -calculus)

Closure under composition

If $f: \Sigma^* \to \Gamma^*$ and $g: \Gamma^* \to \Delta^*$ are both polyblind, so is $g \circ f$.

We have an alternative characterization based on linear the $\lambda\text{-calculus}$

- Not presented in the paper, mostly based on [Nguyễn,Noûs,P. 2020]
- Hints at the following non-trivial theorem

(reproven with automata-theoretic tools in the paper with no references to the λ -calculus)

Closure under composition

If $f: \Sigma^* \to \Gamma^*$ and $g: \Gamma^* \to \Delta^*$ are both polyblind, so is $g \circ f$.

Leads to a combinator-based definition.

Alternative definition of polyblind functions

Least class containing the regular functions, cfsquaring and closed under composition.

• Analogous to the case of general polyregular functions

<code>cfsquaring</code> replaced by "squaring with underlining" in the above \rightarrow all polyregular functions

• Regular functions can also themselves be decomposed

Not all polyregular functions are polyblind

The function $f : a^n \in \{a\}^* \mapsto a \# aa \# \dots \# a^n$ is polyregular but not polyblind.

Corollary: "squaring with underlining" is not CF.

The function $f : a^n \in \{a\}^* \mapsto a \# aa \# \dots \# a^n$ is polyregular but not polyblind.

Corollary: "squaring with underlining" is not CF.

Observation: $f(a^n)$ has the *n* maximal *a*-factors

a aa ... aⁿ

The function $f : a^n \in \{a\}^* \mapsto a \# aa \# \dots \# a^n$ is polyregular but not polyblind.

Corollary: "squaring with underlining" is not CF.

Observation: $f(a^n)$ has the *n* maximal *a*-factors

a aa ... aⁿ

Lemma

For any polyblind $g : \{a\}^* \to \Sigma^*$, there are O(1) possible lengths for maximal a-factors in $g(a^n)$.

The function $f : a^n \in \{a\}^* \mapsto a \# aa \# \dots \# a^n$ is polyregular but not polyblind.

Corollary: "squaring with underlining" is not CF.

Observation: $f(a^n)$ has the *n* maximal *a*-factors

a aa ... aⁿ

Lemma

For any polyblind $g : \{a\}^* \to \Sigma^*$, there are O(1) possible lengths for maximal a-factors in $g(a^n)$.

In fact, $\exists S \subseteq \mathbb{Q}[X]$ finite such that $\{P(n) \mid P \in S\}$ contains {lengths of maximal *a*-factors of $g(a^n)$ }. Why? \rightarrow characterization on the next slide

Definition (Poly-pumping sequence of words)

Smallest subclass of $(\Sigma^*)^{\mathbb{N}}$

- Containing the constant sequences $\alpha_n = w$
- Closed under concatenation $\alpha_n = \beta_n \cdot \gamma_n$
- Closed under "iteration" $\alpha_n = (\beta_n)^n$

Theorem (polyblind with unary input)

 $f: \{a\}^* \to \Sigma^*$ is polyblind iff $\exists p \in \mathbb{N} \forall m \in \mathbb{N}$. $(f(a^{(n+1)p+m}))_{n \in \mathbb{N}}$ is poly-pumping

(meaning of the $\exists \forall$: "ultimately periodic combinations")

 $g: a^{n_1} \# \dots \# a^{n_k} \in \{a, \#\}^* \mapsto a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k}$ is polyregular but not polyblind.

([Douéneau-Tabot 2021] proves a stronger result)

 $g: a^{n_1} \# \dots \# a^{n_k} \in \{a, \#\}^* \mapsto a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k}$ is polyregular but not polyblind.

([Douéneau-Tabot 2021] proves a stronger result)

 $g: a^{n_1} \# \dots \# a^{n_k} \in \{a, \#\}^* \mapsto a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k}$ is polyregular but not polyblind.

([Douéneau-Tabot 2021] proves a stronger result)

Definition

For
$$h: \Gamma^* \to \Sigma^*$$
, $w_1, \ldots, w_n \in \Gamma^*$ with $\# \notin \Gamma$,
map $(h)(w_1 \# \ldots \# w_n) = f(w_1) \# \ldots \# f(w_n)$.

 $g = \max(w \mapsto w^{|w|})$ therefore polyblind functions are *not* closed under map, unlike regular and polyreg functions

- \rightarrow obstruction to characterizing polyblind fn
 - by list-processing functional programs
 - (à la [Bojańczyk, Daviaud & Krishna 2018])

Pebble minimization

If f is polyblind and $|f(w)| = O(|w|^k)$ then some polyblind k-pebble transducer computes f.

Technical proof adapted from a false result for pebble transducers [Lhote 2020].

Theorem $g(a^{n_1} \# \dots \# a^{n_k}) = a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k} \text{ is not polyblind.}$

Proof by contradiction: assume g is polyblind.

First, $|g(w)| = O(|w|^2)$ therefore g is computed by some 2-cf-pebble transducer. Equivalently, for some *finite I* and *regular* functions f and h_i ,

$$g = \operatorname{CbS}(f, (h_i)_{i \in I})$$
 i.e. $f(w) = i_1 \dots i_m \implies g(w) = h_{i_1}(w) \dots h_{i_m}(w)$

To conclude:

pumping argument + pigeonhole principle, exploiting the linear asymptotic growth

Might be doable without pebble minimization, but convenient and of independent interest

Further topics

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

- Logic: replace MSO by first-order logic
- 2DFT with aperiodic monoid of behaviors
- Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

 \rightsquigarrow Analogous class of FO-polyregular.

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

- Logic: replace MSO by first-order logic
- 2DFT with aperiodic monoid of behaviors
- Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

 \rightsquigarrow Analogous class of FO-polyregular. What about polyblind functions?

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

- Logic: replace MSO by first-order logic
- 2DFT with aperiodic monoid of behaviors
- Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

 \rightsquigarrow Analogous class of FO-polyregular. What about polyblind functions?

Definition (First-order polyblind functions)

FO-polyblind = smallest class such that

- Every FO-regular function is FO-polyblind
- If f is FO-regular and g_i is FO-polyblind $(\forall i \in I)$, then $CbS(f, (g_i)_{i \in I})$ is FO-polyblind

A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations

A linear $\lambda\text{-calculus characterization}$ matches an analogue of the CbS definition

A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations

A linear $\lambda\text{-calculus}$ characterization matches an analogue of the CbS definition

• Equivalence, separation and membership problems, in the spirit of:

Theorem [Douéneau-Tabot 2021]

There is an algorithm with

- Input: a pebble transducer implementing a function f with quadratic growth
- Output: a polyblind transducer implementing f, or an error if there is none

A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations

A linear $\lambda\text{-calculus}$ characterization matches an analogue of the CbS definition

• Equivalence, separation and membership problems, in the spirit of:

Theorem [Douéneau-Tabot 2021]

There is an algorithm with

- Input: a pebble transducer implementing a function f with quadratic growth
- Output: a polyblind transducer implementing f, or an error if there is none
- Non-commutative linear λ -calculus characterization for the FO case

Conclusion

Summary

A class of string-to-string functions: polyblind functions.

Equivalent definitions

- By polyblind pebble transducers
- Inductively (composition by substitution)
- As the composition closure of regular functions + cfsquaring(*abc*) = <u>a</u>*abc*<u>b</u>*abc*<u>c</u>*abc*
- L regular language $\implies f^{-1}(L)$ also regular
- Polynomial growth: $|f(w)| = O(|w|^k)$
 - pebble minimization theorem: k = number of heads necessary to compute f
- Strictly included in polyregular functions
 - $a^n \mapsto a \# aa \# \dots \# a^n$ and "map unary square" are polyregular but not polyblind
 - for $\{a\}^* \to \{a\}^*$ polyblind = polyreg
- Incomparable with polynomial HDT0L transductions
 - $a^n \mapsto a \# a a \# \dots \# a^n$ not polyblind but HDT0L
 - $w \mapsto w^{|w|}$ is polyblind but not HDT0L
- Well-behaved first-order counterpart
Summary

A class of string-to-string functions: polyblind functions.

Equivalent definitions

- By polyblind pebble transducers
- Inductively (composition by substitution)
- As the composition closure of regular functions + cfsquaring(*abc*) = <u>a</u>*abc*<u>b</u>*abc*<u>c</u>*abc*
- L regular language $\implies f^{-1}(L)$ also regular
- Polynomial growth: $|f(w)| = O(|w|^k)$
 - pebble minimization theorem: k = number of heads necessary to compute f
- Strictly included in polyregular functions
 - $a^n \mapsto a \# aa \# \dots \# a^n$ and "map unary square" are polyregular but not polyblind
 - for $\{a\}^* \to \{a\}^*$ polyblind = polyreg
- Incomparable with polynomial HDT0L transductions
 - $a^n \mapsto a \# a a \# \dots \# a^n$ not polyblind but HDT0L
 - $w \mapsto w^{|w|}$ is polyblind but not HDT0L
- Well-behaved first-order counterpart

Thanks for your attention! Questions?