
Polyblind functions

Cécilia Pradic
j.w.w. Lê Thành Dũng (Tito) Nguyễn

15/05/25 Swansea theory seminar

1/17

Meta

Talk based on a 2021 ICALP paper, but

Actual goals

• Introduce you to some very restricted models of computations {0, 1}∗ → {0, 1}∗.

• Motivate those somewhat by theoretical results.
Some practical applications: think verification of extended regexps/sed programs

• Give you an idea of what hard problems people look at in this space.

If you have questions, please interrupt and ask!

(I don’t care if I don’t cover pet result #n)

2/17

Introduction: string-to-string
transducers

Automata-theoretic classes of string-to-string functions

In contrast with languages (string to booleans), many sensible notions:

• Arrows are strict inclusions, no path = incomparable
• I can make this picture worse if you desire

regular STLC w/ Church encodings

rational polyregular composition of HDT0Ls

sequential polyblind HDT0L

Mealy

Growth rate: O(n)
⋃
k∈N
O(nk) possibly Ω(2n)

Today: regular, polyregular and polyblind

3/17

Automata-theoretic classes of string-to-string functions

In contrast with languages (string to booleans), many sensible notions:

• Arrows are strict inclusions, no path = incomparable
• I can make this picture worse if you desire

regular STLC w/ Church encodings

rational polyregular composition of HDT0Ls

sequential polyblind HDT0L

Mealy

Growth rate: O(n)
⋃
k∈N
O(nk) possibly Ω(2n)

Today: regular, polyregular and polyblind
3/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:

abccba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:

abccba#baccab#caac

▷ a b c # b a c # c a ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
a

bccba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
ab

ccba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abc

cba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abc

cba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abcc

ba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccb

a#baccab#caac

▷ a b c # b a c # c a ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba

#baccab#caac

▷ a b c # b a c # c a ◁

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba

#baccab#caac

▷ a b c # b a c # c a ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba

#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba

#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba

#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#

baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#b

accab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#ba

ccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#bac

cab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#bac

cab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#bacc

ab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#bacca

b#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab

#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab

#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab

#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab

#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab

#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab#

caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab#c

aac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab#ca

ac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab#ca

ac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab#caa

c

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

4/17

Deterministic two-way transducers (2DFT)

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗

w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x |x

x |x

#, ◁|ε

#, ◁|ε

x |x

x |x

#, ▷|ε

#, ▷|ε

x |ε

x |ε

#|#

#|#

◁|ε

◁|ε

Output:
abccba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

4/17

Regular functions

Functions Σ∗ → Γ∗ definable by 2DFTs are called regular functions

Properties of regular functions

• Linear growth: |f (w)| = O(|w |)

• Closed under composition (if f : Γ∗ → Σ∗ and g : Σ∗ → Π∗ are regular then so is g ◦ f)

• L regular =⇒ f −1(L) regular

Alternative characterizations

• Via Monadic Second-Order logic (MSO transductions)

• Copyless streaming string transducers

• Various functional programming or regexp-like (declarative) formalisms

• Minimal linear λ-calculus and Church encodings [Nguyễn,Noûs,P. 2020]

5/17

Polyregular functions

Polyregular functions:

• A larger class of string-to-string transductions

• Garnered significant attention recently, starting with [Bojańczyk 2018]

Properties

• Polynomial growth: |f (w)| = O(|w |k)

• L regular =⇒ f −1(L) regular

• Closed under composition

Characterizations [Bojańczyk 2018; Bojańczyk, Kiefer & Lhote 2019]

• Multidimensional MSO interpretations

• Imperative nested loop programs

• Simply typed λ-calculus augmented with a list type and some list manipulation primitives

• Composition closure of [regular functions ∪ “squaring with underlining”]

• k-pebble string-to-string transducers

6/17

Polyregular functions

Polyregular functions:

• A larger class of string-to-string transductions

• Garnered significant attention recently, starting with [Bojańczyk 2018]

Properties

• Polynomial growth: |f (w)| = O(|w |k)

• L regular =⇒ f −1(L) regular

• Closed under composition

Characterizations [Bojańczyk 2018; Bojańczyk, Kiefer & Lhote 2019]

• Multidimensional MSO interpretations

• Imperative nested loop programs

• Simply typed λ-calculus augmented with a list type and some list manipulation primitives

• Composition closure of [regular functions ∪ “squaring with underlining”]

• k-pebble string-to-string transducers

6/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→

→

→

push

push ◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓ ↓ ↓
⇓ ⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output =

abcabcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→

→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓
⇓ ⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output =

abcabcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓

⇓

⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output =

abcabcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓
⇓

⇓

⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = a

bcabcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓
⇓ ⇓

⇓

⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = ab

cabcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop
▷ a b c ◁

↓

↓ ↓ ↓
⇓ ⇓ ⇓

⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abc

abcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓
⇓ ⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abc

abcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→

→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓
⇓ ⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abc

abcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓

⇓

⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abc

abcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓
⇓

⇓

⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abca

bcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓
⇓ ⇓

⇓

⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcab

cabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop
▷ a b c ◁

↓

↓

↓ ↓
⇓ ⇓ ⇓

⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcabc

abc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓
⇓ ⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcabc

abc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→

→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓
⇓ ⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcabc

abc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓

⇓

⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcabc

abc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓
⇓

⇓

⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcabca

bc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓
⇓ ⇓

⇓

⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcabcab

c

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop
▷ a b c ◁

↓ ↓

↓

↓
⇓ ⇓ ⇓

⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcabcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→→

→

push

push

◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓
⇓ ⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcabcabc

7/17

Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→

→

→

push

push ◁|pop

◁|pop

↓≠⇓, x |x

↓̸=⇓, x |x

↓=⇓, x |x

↓=⇓, x |x

x |push

x |push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓ ↓

↓

⇓ ⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output = abcabcabc

7/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→

→

→

push

push ◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓ ↓ ↓
⇓ ⇓ ⇓ ⇓

output =

aabcbabccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→

→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓
⇓ ⇓ ⇓ ⇓

output =

aabcbabccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓

⇓

⇓ ⇓ ⇓

output = a

abcbabccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓
⇓

⇓

⇓ ⇓

output = aa

bcbabccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓
⇓ ⇓

⇓

⇓

output = aab

cbabccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓
⇓ ⇓ ⇓

⇓

output = aabc

babccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓ ↓ ↓
⇓ ⇓ ⇓ ⇓

output = aabc

babccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→

→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓
⇓ ⇓ ⇓ ⇓

output = aabc

babccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓

⇓

⇓ ⇓ ⇓

output = aabcb

abccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓
⇓

⇓

⇓ ⇓

output = aabcba

bccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓
⇓ ⇓

⇓

⇓

output = aabcbab

ccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓
⇓ ⇓ ⇓

⇓

output = aabcbabc

cabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓

↓

↓ ↓
⇓ ⇓ ⇓ ⇓

output = aabcbabc

cabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→

→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓
⇓ ⇓ ⇓ ⇓

output = aabcbabc

cabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓

⇓

⇓ ⇓ ⇓

output = aabcbabcc

abc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓
⇓

⇓

⇓ ⇓

output = aabcbabcca

bc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓
⇓ ⇓

⇓

⇓

output = aabcbabccab

c

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓
⇓ ⇓ ⇓

⇓

output = aabcbabccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓

↓

↓
⇓ ⇓ ⇓ ⇓

output = aabcbabccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→

→

→

push

push ◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓ ↓

↓

⇓ ⇓ ⇓ ⇓

output = aabcbabccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Polyblind/comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

→

→

→

→

push

push

◁|pop

◁|pop

x |x

x |x

x |x , push

x |x , push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓ ↓ ↓
⇓ ⇓ ⇓ ⇓

output = aabcbabccabc

Contributions

• Alternative characterizations

• Separation results

• Along the way: closure by composition, pebble minimization

8/17

Some alternative characterizations

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
Let Γ, Σ and I be finite alphabets and f : Γ∗ → I ∗, gi : Γ∗ → Σ∗ and w ∈ Γ∗.
Define CbS(f , (gi)i∈I)(w) so that, if f (w) = i1 . . . ik , then

CbS(f , (gi)i∈I)(w) = gi1(w) . . . gik (w)

E.g. for cfsquaring, we take f : Σ∗ → (Σ ∪ {X})∗, gX , ga : Σ∗ → (Σ ∪ Σ)∗ (for a ∈ Σ) so that

f (abc) = aXbXcX ga(w) = a and gX (w) = w

• Note: both polyblind and polyregular functions are closed under CbS

Alternative definition of polyblind functions
Smallest class such that

• Every regular function is polyblind

• If f is regular and gi is polyblind for every i ∈ I then CbS(f , (gi)i∈I) is polyblind

• More convenient to manipulate formally
• Tight link between the number of pebbles and the nesting of the CbS operator

9/17

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
Let Γ, Σ and I be finite alphabets and f : Γ∗ → I ∗, gi : Γ∗ → Σ∗ and w ∈ Γ∗.
Define CbS(f , (gi)i∈I)(w) so that, if f (w) = i1 . . . ik , then

CbS(f , (gi)i∈I)(w) = gi1(w) . . . gik (w)

E.g. for cfsquaring, we take f : Σ∗ → (Σ ∪ {X})∗, gX , ga : Σ∗ → (Σ ∪ Σ)∗ (for a ∈ Σ) so that

f (abc) = aXbXcX ga(w) = a and gX (w) = w

• Note: both polyblind and polyregular functions are closed under CbS

Alternative definition of polyblind functions
Smallest class such that

• Every regular function is polyblind

• If f is regular and gi is polyblind for every i ∈ I then CbS(f , (gi)i∈I) is polyblind

• More convenient to manipulate formally
• Tight link between the number of pebbles and the nesting of the CbS operator

9/17

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
Let Γ, Σ and I be finite alphabets and f : Γ∗ → I ∗, gi : Γ∗ → Σ∗ and w ∈ Γ∗.
Define CbS(f , (gi)i∈I)(w) so that, if f (w) = i1 . . . ik , then

CbS(f , (gi)i∈I)(w) = gi1(w) . . . gik (w)

E.g. for cfsquaring, we take f : Σ∗ → (Σ ∪ {X})∗, gX , ga : Σ∗ → (Σ ∪ Σ)∗ (for a ∈ Σ) so that

f (abc) = aXbXcX ga(w) = a and gX (w) = w

• Note: both polyblind and polyregular functions are closed under CbS

Alternative definition of polyblind functions
Smallest class such that

• Every regular function is polyblind

• If f is regular and gi is polyblind for every i ∈ I then CbS(f , (gi)i∈I) is polyblind

• More convenient to manipulate formally
• Tight link between the number of pebbles and the nesting of the CbS operator

9/17

Alternative characterization (2/2): composition and basic combinators

We have an alternative characterization based on linear the λ-calculus

• Not presented in the paper, mostly based on [Nguyễn,Noûs,P. 2020]

• Hints at the following non-trivial theorem
(reproven with automata-theoretic tools in the paper with no references to the λ-calculus)

Closure under composition
If f : Σ∗ → Γ∗ and g : Γ∗ → ∆∗ are both polyblind, so is g ◦ f .

Leads to a combinator-based definition.

Alternative definition of polyblind functions
Least class containing the regular functions, cfsquaring and closed under composition.

• Analogous to the case of general polyregular functions
cfsquaring replaced by “squaring with underlining” in the above → all polyregular functions

• Regular functions can also themselves be decomposed

10/17

Alternative characterization (2/2): composition and basic combinators

We have an alternative characterization based on linear the λ-calculus

• Not presented in the paper, mostly based on [Nguyễn,Noûs,P. 2020]

• Hints at the following non-trivial theorem
(reproven with automata-theoretic tools in the paper with no references to the λ-calculus)

Closure under composition
If f : Σ∗ → Γ∗ and g : Γ∗ → ∆∗ are both polyblind, so is g ◦ f .

Leads to a combinator-based definition.

Alternative definition of polyblind functions
Least class containing the regular functions, cfsquaring and closed under composition.

• Analogous to the case of general polyregular functions
cfsquaring replaced by “squaring with underlining” in the above → all polyregular functions

• Regular functions can also themselves be decomposed

10/17

Not all polyregular functions are
polyblind

Separation results

Theorem
The function f : an ∈ {a}∗ 7→ a#aa# . . .#an is polyregular but not polyblind.

Corollary: “squaring with underlining” is not CF.

Observation: f (an) has the n maximal a-factors

a aa . . . an

Lemma
For any polyblind g : {a}∗ → Σ∗, there are O(1) possible lengths for maximal a-factors in g(an).

In fact, ∃S ⊆ Q[X] finite such that {P(n) | P ∈ S} contains {lengths of maximal a-factors of g(an)}.

Why? → characterization on the next slide

11/17

Separation results

Theorem
The function f : an ∈ {a}∗ 7→ a#aa# . . .#an is polyregular but not polyblind.

Corollary: “squaring with underlining” is not CF.

Observation: f (an) has the n maximal a-factors

a aa . . . an

Lemma
For any polyblind g : {a}∗ → Σ∗, there are O(1) possible lengths for maximal a-factors in g(an).

In fact, ∃S ⊆ Q[X] finite such that {P(n) | P ∈ S} contains {lengths of maximal a-factors of g(an)}.

Why? → characterization on the next slide

11/17

Separation results

Theorem
The function f : an ∈ {a}∗ 7→ a#aa# . . .#an is polyregular but not polyblind.

Corollary: “squaring with underlining” is not CF.

Observation: f (an) has the n maximal a-factors

a aa . . . an

Lemma
For any polyblind g : {a}∗ → Σ∗, there are O(1) possible lengths for maximal a-factors in g(an).

In fact, ∃S ⊆ Q[X] finite such that {P(n) | P ∈ S} contains {lengths of maximal a-factors of g(an)}.

Why? → characterization on the next slide

11/17

Separation results

Theorem
The function f : an ∈ {a}∗ 7→ a#aa# . . .#an is polyregular but not polyblind.

Corollary: “squaring with underlining” is not CF.

Observation: f (an) has the n maximal a-factors

a aa . . . an

Lemma
For any polyblind g : {a}∗ → Σ∗, there are O(1) possible lengths for maximal a-factors in g(an).

In fact, ∃S ⊆ Q[X] finite such that {P(n) | P ∈ S} contains {lengths of maximal a-factors of g(an)}.

Why? → characterization on the next slide

11/17

Characterizing polyblind sequences

Definition (Poly-pumping sequence of words)

Smallest subclass of (Σ∗)N

• Containing the constant sequences αn = w

• Closed under concatenation αn = βn · γn
• Closed under “iteration” αn = (βn)

n

Theorem (polyblind with unary input)

f : {a}∗ → Σ∗ is polyblind iff ∃p ∈ N∀m ∈ N. (f (a(n+1)p+m))n∈N is poly-pumping

(meaning of the ∃∀: “ultimately periodic combinations”)

12/17

Another polyregular non-polyblind function

Theorem

g : an1# . . .#ank ∈ {a,#}∗ 7→ an1×n1# . . .#ank×nk is polyregular but not polyblind.

([Douéneau-Tabot 2021] proves a stronger result)

Definition
For h : Γ∗ → Σ∗, w1, . . . ,wn ∈ Γ∗ with # /∈ Γ,
map(h)(w1# . . .#wn) = f (w1)# . . .#f (wn).

g = map(w 7→ w |w|) therefore polyblind functions are not closed under map, unlike regular and
polyreg functions
→ obstruction to characterizing polyblind fn

by list-processing functional programs
(à la [Bojańczyk, Daviaud & Krishna 2018])

13/17

Another polyregular non-polyblind function

Theorem

g : an1# . . .#ank ∈ {a,#}∗ 7→ an1×n1# . . .#ank×nk is polyregular but not polyblind.

([Douéneau-Tabot 2021] proves a stronger result)

Definition
For h : Γ∗ → Σ∗, w1, . . . ,wn ∈ Γ∗ with # /∈ Γ,
map(h)(w1# . . .#wn) = f (w1)# . . .#f (wn).

g = map(w 7→ w |w|) therefore polyblind functions are not closed under map, unlike regular and
polyreg functions
→ obstruction to characterizing polyblind fn

by list-processing functional programs
(à la [Bojańczyk, Daviaud & Krishna 2018])

13/17

Another polyregular non-polyblind function

Theorem

g : an1# . . .#ank ∈ {a,#}∗ 7→ an1×n1# . . .#ank×nk is polyregular but not polyblind.

([Douéneau-Tabot 2021] proves a stronger result)

Definition
For h : Γ∗ → Σ∗, w1, . . . ,wn ∈ Γ∗ with # /∈ Γ,
map(h)(w1# . . .#wn) = f (w1)# . . .#f (wn).

g = map(w 7→ w |w|) therefore polyblind functions are not closed under map, unlike regular and
polyreg functions
→ obstruction to characterizing polyblind fn

by list-processing functional programs
(à la [Bojańczyk, Daviaud & Krishna 2018])

13/17

Separation proof idea for “map unary square” via pebble minimization

Pebble minimization

If f is polyblind and |f (w)| = O(|w |k) then some polyblind k-pebble transducer computes f .

Technical proof adapted from a false result for pebble transducers [Lhote 2020].

Theorem

g(an1# . . .#ank) = an1×n1# . . .#ank×nk is not polyblind.

Proof by contradiction: assume g is polyblind.

First, |g(w)| = O(|w |2) therefore g is computed by some 2-cf-pebble transducer. Equivalently,
for some finite I and regular functions f and hi ,

g = CbS(f , (hi)i∈I) i.e. f (w) = i1 . . . im =⇒ g(w) = hi1(w) . . . him (w)

To conclude:
pumping argument + pigeonhole principle, exploiting the linear asymptotic growth

Might be doable without pebble minimization, but convenient and of independent interest

14/17

Further topics

Going first-order

First-order (FO)-regular functions
Robust subclass of regular functions; several characterizations:

• Logic: replace MSO by first-order logic

• 2DFT with aperiodic monoid of behaviors

• Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

⇝ Analogous class of FO-polyregular.

What about polyblind functions?

Definition (First-order polyblind functions)
FO-polyblind = smallest class such that

• Every FO-regular function is FO-polyblind

• If f is FO-regular and gi is FO-polyblind (∀i ∈ I), then CbS(f , (gi)i∈I) is FO-polyblind

15/17

Going first-order

First-order (FO)-regular functions
Robust subclass of regular functions; several characterizations:

• Logic: replace MSO by first-order logic

• 2DFT with aperiodic monoid of behaviors

• Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

⇝ Analogous class of FO-polyregular. What about polyblind functions?

Definition (First-order polyblind functions)
FO-polyblind = smallest class such that

• Every FO-regular function is FO-polyblind

• If f is FO-regular and gi is FO-polyblind (∀i ∈ I), then CbS(f , (gi)i∈I) is FO-polyblind

15/17

Going first-order

First-order (FO)-regular functions
Robust subclass of regular functions; several characterizations:

• Logic: replace MSO by first-order logic

• 2DFT with aperiodic monoid of behaviors

• Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

⇝ Analogous class of FO-polyregular. What about polyblind functions?

Definition (First-order polyblind functions)
FO-polyblind = smallest class such that

• Every FO-regular function is FO-polyblind

• If f is FO-regular and gi is FO-polyblind (∀i ∈ I), then CbS(f , (gi)i∈I) is FO-polyblind

15/17

Further topics

A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations
A linear λ-calculus characterization matches an analogue of the CbS definition

• Equivalence, separation and membership problems, in the spirit of:

Theorem [Douéneau-Tabot 2021]
There is an algorithm with

• Input: a pebble transducer implementing a function f with quadratic growth
• Output: a polyblind transducer implementing f , or an error if there is none

• Non-commutative linear λ-calculus characterization for the FO case

16/17

Further topics

A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations
A linear λ-calculus characterization matches an analogue of the CbS definition

• Equivalence, separation and membership problems, in the spirit of:

Theorem [Douéneau-Tabot 2021]
There is an algorithm with

• Input: a pebble transducer implementing a function f with quadratic growth
• Output: a polyblind transducer implementing f , or an error if there is none

• Non-commutative linear λ-calculus characterization for the FO case

16/17

Further topics

A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations
A linear λ-calculus characterization matches an analogue of the CbS definition

• Equivalence, separation and membership problems, in the spirit of:

Theorem [Douéneau-Tabot 2021]
There is an algorithm with

• Input: a pebble transducer implementing a function f with quadratic growth
• Output: a polyblind transducer implementing f , or an error if there is none

• Non-commutative linear λ-calculus characterization for the FO case

16/17

Conclusion

Summary

A class of string-to-string functions: polyblind functions.

Equivalent definitions

• By polyblind pebble transducers

• Inductively (composition by substitution)

• As the composition closure of regular functions + cfsquaring(abc) = aabcbabccabc

• L regular language =⇒ f −1(L) also regular
• Polynomial growth: |f (w)| = O(|w |k)

• pebble minimization theorem: k = number of heads necessary to compute f

• Strictly included in polyregular functions
• an 7→ a#aa# . . .#an and “map unary square” are polyregular but not polyblind
• for {a}∗ → {a}∗ polyblind = polyreg

• Incomparable with polynomial HDT0L transductions
• an 7→ a#aa# . . .#an not polyblind but HDT0L
• w 7→ w |w| is polyblind but not HDT0L

• Well-behaved first-order counterpart

Thanks for your attention! Questions?

17/17

Summary

A class of string-to-string functions: polyblind functions.

Equivalent definitions

• By polyblind pebble transducers

• Inductively (composition by substitution)

• As the composition closure of regular functions + cfsquaring(abc) = aabcbabccabc

• L regular language =⇒ f −1(L) also regular
• Polynomial growth: |f (w)| = O(|w |k)

• pebble minimization theorem: k = number of heads necessary to compute f

• Strictly included in polyregular functions
• an 7→ a#aa# . . .#an and “map unary square” are polyregular but not polyblind
• for {a}∗ → {a}∗ polyblind = polyreg

• Incomparable with polynomial HDT0L transductions
• an 7→ a#aa# . . .#an not polyblind but HDT0L
• w 7→ w |w| is polyblind but not HDT0L

• Well-behaved first-order counterpart

Thanks for your attention! Questions?

17/17

	Introduction: string-to-string transducers
	Some alternative characterizations
	Not all polyregular functions are polyblind
	Further topics
	Conclusion

