Polyblind functions

Cécilia Pradic
jw.w. L& Thanh Diing (Tito) Nguyén
15/05/25 Swansea theory seminar

1/17

Meta

Talk based on a 2021 ICALP paper, but
Actual goals

e Introduce you to some very restricted models of computations {0,1}* — {0,1}".

e Motivate those somewhat by theoretical results.

Some practical applications: think verification of extended regexps/sed programs

e Give you an idea of what hard problems people look at in this space.

If you have questions, please interrupt and ask!

(I don't care if | don't cover pet result #n)

2/17

Introduction: string-to-string
transducers

Automata-theoretic classes of string-to-string functions

In contrast with languages (string to booleans), many sensible notions:

e Arrows are strict inclusions, no path = incomparable
e | can make this picture worse if you desire

regular STLC w/ Church encodings
| i |

rational ; polyregular 4% compositiojof HDTOLs
T i 1

sequential 1 ponLind § HDTOL
Mjaly
Growth rate: O(n) § kUN(’)(nk) i possibly (2")
€

3/17

Automata-theoretic classes of string-to-string functions

In contrast with languages (string to booleans), many sensible notions:

e Arrows are strict inclusions, no path = incomparable
e | can make this picture worse if you desire

regular STLC w/ Church encodings
| i |

rational ; polyregular 4% compositiojof HDTOLs
T i 1

sequential 1 ponLind § HDTOL
Mjaly
Growth rate: O(n) § kUN(’)(nk) i possibly (2")
€

Today: regular, polyregular and polyblind
3/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—>

Output:

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€f{a b)) i 4
—

Output:

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€f{a b)) i 4
—
EEN

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€f{a b)) i 4
—

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abc

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abc

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—
Output:
abcc
4
(> Jalofcl#]blalcl#]c]als<]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccb

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—> x|x
dle
#,d|e M Output:
abccba

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i o
—

Output:
abccba

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i o
—
Output:
abccba
4
(> Jalofcl#]blalcl#]c]als<]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i o
—

Output:
abccba

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccba

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€f{a b)) i 4
—
Output:
abccba#t
(> Jalofcl#]blalcl#]c]als<]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€f{a b)) i 4
—

Output:
abccba#b

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€f{a b)) i 4
—

Output:
abccbattba

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccbattbac

!
(> lafbofel#]blafcl#]c]als<]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccbattbac

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccbattbacc

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—
Output:
abccbattbacca
(> lalbefcf#]blalecl#]c]als<]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—> x|x
dle
#,d|e M Output:
abccbattbaccab

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i o
—
Output:
abccbattbaccab
(> lalbefcf#]blalecl#]c]als<]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i o
—

Output:
abccbattbaccab

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i o
—

Output:
abccbattbaccab

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccbattbaccab

!

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€f{a b)) i 4
—

Output:
abccbattbaccab#

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€f{a b)) i 4
—

Output:
abccbattbaccab#c

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccba#tbaccab#ca

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccba#tbaccab#ca

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccbat#tbaccab#caa

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—> x|x
dle
#,d|e M Output:
abccbat#tbaccab#caac

!
(> lafbofel#]blafcl#]c]als<]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i o
—

Output:
abccbat#tbaccab#caac

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i o
—

Output:
abccbat#tbaccab#caac

(> lalofecf#]ofafc]#]cfalq]

4/17

Deterministic two-way transducers (2DFT)

Two—way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a, b,c,#}* — {a b,c,#}"
wiF# ... #w, —> wi-reverse(wy)F# ... #w, reverse(w,)
(x€{abc}) i 4
—

Output:
abccbat#tbaccab#caac

(> lalofecf#]ofafc]#]cfalq]

4/17

Regular functions

Functions ©* — I'* definable by 2DFTs are called regular functions
Properties of regular functions
e Linear growth: |f(w)| = O(|w|)
e Closed under composition (if f:T* — X* and g : £* — I* are regular then so is g o f)
o L regular = (L) regular

Alternative characterizations
Via Monadic Second-Order logic (MSO transductions)
Copyless streaming string transducers

Various functional programming or regexp-like (declarative) formalisms

Minimal linear A-calculus and Church encodings [Nguyén,Noiis,P. 2020]

5/17

Polyregular functions

Polyregular functions:

e A larger class of string-to-string transductions

e Garnered significant attention recently, starting with [Bojanczyk 2018]
Properties

e Polynomial growth: |f(w)| = O(|w|*)

o L regular = f~*(L) regular

e Closed under composition

Characterizations [Bojarniczyk 2018; Bojanczyk, Kiefer & Lhote 2019]
Multidimensional MSO interpretations
Imperative nested loop programs
Simply typed A-calculus augmented with a list type and some list manipulation primitives

Composition closure of [regular functions U “squaring with underlining’]

6/17

Polyregular functions

Polyregular functions:

e A larger class of string-to-string transductions

e Garnered significant attention recently, starting with [Bojanczyk 2018]

Properties
e Polynomial growth: |f(w)| = O(|w|*)
o L regular = (L) regular

e Closed under composition

Characterizations [Bojarniczyk 2018; Bojanczyk, Kiefer & Lhote 2019]
Multidimensional MSO interpretations
Imperative nested loop programs
Simply typed A-calculus augmented with a list type and some list manipulation primitives
Composition closure of [regular functions U “squaring with underlining’]

k-pebble string-to-string transducers

6/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"

aab + aabaabaab
p'l.lSh <]|pop

X|push

Q'ﬁ"f’/@ijlx (> lafofecla]

=, x|x output =

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

push <]|pop
X|push 1
> lafbofec]s]
, X|x |
QB"P/@U .
=0, x|x output =

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

push <]|pop
4

X|push
1

>Jalbofec]a]
, X|x |
QB"P/@U .

1=0, x|x output =

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

push <lpop
4
X|push 1
N N
V\q'iop/@gwéu,xx
=, x|x output = a

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

EUEL <lpop
4
X|push !
N N
W#“’”
=4, x|x output = ab

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

push <lpop
4
X|push
A
2 G0 R R
, X|x |

VQE’V@U o

=, x|x output = abc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

push <]|pop
X|push 1
>l a]b]cfa]
L x|x |
QB"P/@U .
=, x|x output = abc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"

aab + aabaabaab
push <lpop

X|push
1

Q'ﬁ"f’/@ijlx (> lafofecla]

=, x|x output = abc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

EUEL <lpop
4
X|push !
N N
W#“’”
=, x|x output = abc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

Y

push <lpop

X|push

o CTEDTELS

=1, x|x output = abca

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

4

push <lpop

X|push
1

W#uw (> lalbfe]]

=, x|x output = abcab

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

push <|pop
3
X|push
1
> [alblc]<]
L x|x |

VQE’V@U e

=1, x|x output = abcabc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"

aab + aabaabaab
push <lpop

X|push
1

Q'ﬁ"f’/@ijlx (> lafofecla]

=, x|x output = abcabc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"

aab + aabaabaab
push <lpop

X|push
1

Q'ﬁ"f’/@ijlx (> lafofecla]

=, x|x output = abcabc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

EUEL <lpop
4
X|push 1
(> [albo]cfa]
V\q'iop/@gwéu,xx
=, x|x output = abcabc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

Y

push <lpop

X|push

'\“'i"f’/@%ﬂ,xx (> lalbfe]]

=1, x|x output = abcabca

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

4

X|push
1

push <lpop

o CTEDTELS

=1, x|x output = abcabcab

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

push <|pop
U
X|push
1
(> lafbp]c]<]
@V@U#“’X'X
=1, x|x output = abcabcabc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"

aab + aabaabaab
push <lpop

X|push
1

Q'ﬁ"f’/@ijlx (> lafofecla]

=1, x|x output = abcabcabc

7/17

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
o Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: ¥* — (XUX)"
aab + aabaabaab

push <|p0p
X|push
1
> [albfc]<]
, x|x |
QB"P/@U .
=1, x|x output = abcabcabc

7/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

EUER <lpop

x|, push

x|x
[pop output =

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

push <lpop

x|, push

x|x
[pop output =

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <]|pop ‘U’
d
h
vt [eJaJe]e]]

<dlpo x|
pop output = a

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <]|pop ‘U’
d
h
vt [eJaJe]e]]

<dlpo x|
pop output = aa

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <]|pop ‘U’
d
h
vt [eJaJe]e]]

dlpo x|x
pop output = aab

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

push <]|P0p U

x|, push

EEN IR EN

x|x
output = aabc

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

push <lpop

x|, push

EEN IR EN

x|x
V\<‘|£°P/@:> output = aabc

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

push <lpop

x|, push

x|x
V\<‘|£°P/@:> output = aabc

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop (8

x|, push

x|x
V\“W output = aabch

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <]|pop ‘U’
i
X|x, push
'*P (> lalbofec]a]

x|x
V\“W output = aabcba

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <]|pop ‘U’
,push
vt [eJaJe]e]]

x|x
V\<‘|£°P/C_DQ output = aabchab

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

push <]|P0p U

x|, push

x|x
output = aabcbabc

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

push <lpop

x|, push

x|x
V\<‘|£°P/@:> output = aabcbabc

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <lpop
1
s h
vt [plele]e]<]

x|x
V\<‘|£°P/@:> output = aabcbabc

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <]|pop ‘U’
1
h
vt [eJaJe]e]]

x|x
v\<l|£°P/C_DQ output = aabchabcc

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <]|pop ‘U’
1
h
vt [eJaJe]e]]

x|x
v\<l|£°P/C_DQ output = aabchabcca

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <]|pop ‘U’
1

X|x, push
= [= e =N

x|x
V\<‘|£°P/C_DQ output = aabcbabccab

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb

push <]|P0p U

x|, push |

> Jafbofec]a]

x|x
output = aabcbabccabc

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <lpop
1
s h
vt e el fe]e]

x|x
V\<‘|£°P/@:> output = aabcbabccabc

8/17

Polyblind/comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring” cfsquaring(abb) = aabbbabbbabb
push <lpop
1
h
vt e el fe]e]

x|x
V\<‘|£°P/@:> output = aabcbabccabc

8/17

Polyblind/comparison-free pebble transducers

Main question

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “polyblind squaring”

push <1|pop

X|x, push

\pOP

Contributions
e Alternative characterizations

e Separation results

cfsquaring(abb) = aabbbabbbabb

EEN IR EN

output = aabcbabccabc

e Along the way: closure by composition, pebble minimization

8/17

Some alternative characterizations

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
Let I', X and / be finite alphabets and f : " — [*, g : " = Y" and w € T'".
Define CbS(f, (gi)ier)(w) so that, if f(w) = i1 ...k, then

CbS(f, (gi)ier)(w) = gi(w) ... g (w)

E.g. for cfsquaring, we take f : X* — (T U{X})", gx, g : £* = (X UX)" (for a € X) so that
f(abc) = aXbXcX g(w)=a and gx(w)=w

e Note: both polyblind and polyregular functions are closed under CbS

9/17

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
Let I', X and / be finite alphabets and f : " — [*, g : " = Y" and w € T'".
Define CbS(f, (gi)ier)(w) so that, if f(w) = i1 ...k, then

CbS(f, (gi)ier)(w) = gi(w) ... g (w)

E.g. for cfsquaring, we take f : X* — (T U{X})", gx, g : £* = (X UX)" (for a € X) so that
f(abc) = aXbXcX g(w)=a and gx(w)=w

e Note: both polyblind and polyregular functions are closed under CbS

Alternative definition of polyblind functions

Smallest class such that

Every regular function is polyblind

If f is regular and g; is polyblind for every i € | then CbS(f, (gi)ie1) is polyblind

9/17

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
Let I', X and / be finite alphabets and f : " — [*, g : " = Y" and w € T'".
Define CbS(f, (gi)ier)(w) so that, if f(w) = i1 ...k, then

CbS(f, (gi)ier)(w) = gi(w) ... g (w)

E.g. for cfsquaring, we take f : X* — (T U{X})", gx, g : £* = (X UX)" (for a € X) so that
f(abc) = aXbXcX g(w)=a and gx(w)=w

e Note: both polyblind and polyregular functions are closed under CbS

Alternative definition of polyblind functions

Smallest class such that
Every regular function is polyblind

If f is regular and g; is polyblind for every i € | then CbS(f, (gi)ie1) is polyblind

e More convenient to manipulate formally
e Tight link between the number of pebbles and the nesting of the CbS operator

9/17

Alternative characterization (2/2): composition and basic combinators

We have an alternative characterization based on linear the \-calculus

o Not presented in the paper, mostly based on [Nguy&n,Nois,P. 2020]

e Hints at the following non-trivial theorem

(reproven with automata-theoretic tools in the paper with no references to the A-calculus)

If f:¥" —T"and g: ™" — A” are both polyblind, so is g o f.

10/17

Alternative characterization (2/2): composition and basic combinators

We have an alternative characterization based on linear the A-calculus

e Not presented in the paper, mostly based on [Nguyén,Noiis,P. 2020]

e Hints at the following non-trivial theorem

(reproven with automata-theoretic tools in the paper with no references to the A-calculus)

Closure under composition
If f: X" —T"and g: ™ — A" are both polyblind, so is g o f.

Leads to a combinator-based definition.

Alternative definition of polyblind functions

Least class containing the regular functions, cfsquaring and closed under composition.

e Analogous to the case of general polyregular functions

cfsquaring replaced by “squaring with underlining” in the above — all polyregular functions

e Regular functions can also themselves be decomposed

10/17

Not all polyregular functions are
polyblind

The function f : a" € {a}” — aftaa#t...#a" is polyregular but not polyblind.

Corollary: “squaring with underlining” is not CF.

11/17

The function f : a" € {a}” — aftaa#t...#a" is polyregular but not polyblind.
Corollary: “squaring with underlining” is not CF.

Observation: f(a") has the n maximal a-factors

a aa ... a

11/17

The function f : a" € {a}” — aftaa#t...#a" is polyregular but not polyblind.

Corollary: “squaring with underlining” is not CF.

Observation: f(a") has the n maximal a-factors

a aa ... a

For any polyblind g : {a}* — ¥*, there are O(1) possible lengths for maximal a-factors in g(a").

11/17

The function f : a" € {a}” — aftaa#t...#a" is polyregular but not polyblind.

Corollary: “squaring with underlining” is not CF.

Observation: f(a") has the n maximal a-factors

a aa ... a

For any polyblind g : {a}* — ¥*, there are O(1) possible lengths for maximal a-factors in g(a").

In fact, 3§ C Q[X] finite such that {P(n) | P € S} contains {lengths of maximal a-factors of g(a")}.

Why? — characterization on the next slide

11/17

Characterizing polyblind sequences

Smallest subclass of (X*)"

e Containing the constant sequences o, = w
e Closed under concatenation o, = B - Y

e Closed under “iteration” a, = (85)"

f:{a}* — X" is polyblind iff 3p € NVm € N. (f(a"*VP*™)),y is poly-pumping

(meaning of the 3V: “ultimately periodic combinations”)

12/17

g amdt. . #a € {a, #}F s a" X" #a" X" is polyregular but not polyblind.

([Douéneau-Tabot 2021] proves a stronger result)

13/17

g amdt. . #a € {a, #}F s a" X" #a" X" is polyregular but not polyblind.

([Douéneau-Tabot 2021] proves a stronger result)

13/17

g:amn#. . #a™ € {a, #}F > a"™ "4 #a" X" s polyregular but not polyblind.

([Douéneau-Tabot 2021] proves a stronger result)

For h:T" =X wi,...,w, € " with # ¢ T,
map(h)(wa#t ... #wn) = f(wi)# . .. #F(w,).

g = map(w — w!"!) therefore polyblind functions are not closed under map, unlike regular and
polyreg functions
— obstruction to characterizing polyblind fn

by list-processing functional programs

(a la [Bojanczyk, Daviaud & Krishna 2018])

13/17

Separation proof idea for “map unary square” via pebble minimization

Pebble minimization

If £ is polyblind and |f(w)| = O(|w|¥) then some polyblind k-pebble transducer computes f.

Technical proof adapted from a false result for pebble transducers [Lhote 2020].
Theorem

g(a™#. . . #a") = am* "4 #3" X"k js not polyblind.

Proof by contradiction: assume g is polyblind.

First, |g(w)| = O(|w|?) therefore g is computed by some 2-cf-pebble transducer. Equivalently,
for some finite | and regular functions f and h;,

g = CbS(f, (hi)ier) ie. f(w)=i...in = g(w) = hy(w)...hi,(w)
To conclude:

pumping argument + pigeonhole principle, exploiting the linear asymptotic growth

Might be doable without pebble minimization, but convenient and of independent interest

14/17

Further topics

Going first-order

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

e Logic: replace MSO by first-order logic
e 2DFT with aperiodic monoid of behaviors

e Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

~ Analogous class of FO-polyregular.

15/17

Going first-order

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

e Logic: replace MSO by first-order logic
e 2DFT with aperiodic monoid of behaviors

e Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

~ Analogous class of FO-polyregular. What about polyblind functions?

15/17

Going first-order

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

e Logic: replace MSO by first-order logic
e 2DFT with aperiodic monoid of behaviors

e Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

~ Analogous class of FO-polyregular. What about polyblind functions?

Definition (First-order polyblind functions)
FO-polyblind = smallest class such that

e Every FO-regular function is FO-polyblind
e If f is FO-regular and g; is FO-polyblind (Vi € I), then CbS(f, (gi)ici) is FO-polyblind

15/17

A few relevant directions:

e Extending this class to tree-to-tree functions and look for characterizations

A linear A-calculus characterization matches an analogue of the CbS definition

16/17

Further topics

A few relevant directions:
e Extending this class to tree-to-tree functions and look for characterizations
A linear A-calculus characterization matches an analogue of the CbS definition
e Equivalence, separation and membership problems, in the spirit of:
Theorem [Douéneau-Tabot 2021]
There is an algorithm with

e Input: a pebble transducer implementing a function f with quadratic growth
e Output: a polyblind transducer implementing f, or an error if there is none

16/17

Further topics

A few relevant directions:

e Extending this class to tree-to-tree functions and look for characterizations
A linear A-calculus characterization matches an analogue of the CbS definition
e Equivalence, separation and membership problems, in the spirit of:
Theorem [Douéneau-Tabot 2021]
There is an algorithm with
e Input: a pebble transducer implementing a function f with quadratic growth

e Output: a polyblind transducer implementing f, or an error if there is none

e Non-commutative linear A-calculus characterization for the FO case

16/17

Conclusion

Summary

A class of string-to-string functions: polyblind functions.

Equivalent definitions

By polyblind pebble transducers
Inductively (composition by substitution)

As the composition closure of regular functions + cfsquaring(abc) = aabcbabccabc

L regular language =—> f~*(L) also regular
Polynomial growth: |f(w)| = O(|w|*)
e pebble minimization theorem: k = number of heads necessary to compute f
Strictly included in polyregular functions
e a" > affaa#t ... #a" and "map unary square” are polyregular but not polyblind
e for {a}* — {a}* polyblind = polyreg
Incomparable with polynomial HDTOL transductions
e 3"+ a#aa#t ...#a" not polyblind but HDTOL
e w— w!"lis polyblind but not HDTOL

Well-behaved first-order counterpart

17/17

Summary

A class of string-to-string functions: polyblind functions.
Equivalent definitions

e By polyblind pebble transducers

Inductively (composition by substitution)

As the composition closure of regular functions + cfsquaring(abc) = aabcbabccabc

L regular language =—> f~*(L) also regular
Polynomial growth: |f(w)| = O(|w|*)
e pebble minimization theorem: k = number of heads necessary to compute f

Strictly included in polyregular functions
e a" > affaa#t ... #a" and "map unary square” are polyregular but not polyblind
e for {a}* — {a}* polyblind = polyreg

Incomparable with polynomial HDTOL transductions

e 3"+ a#aa#t ...#a" not polyblind but HDTOL
e w— w!"lis polyblind but not HDTOL

e Well-behaved first-order counterpart

Thanks for your attention! Questions?

17/17

	Introduction: string-to-string transducers
	Some alternative characterizations
	Not all polyregular functions are polyblind
	Further topics
	Conclusion

