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The untyped λ-calculus

Syntax
Defined inductively, with x ranging over variables

t, u ::= x | λx.t | t u

• Introduced by Alonzo Church in the 30s
• An algebra for anonymous functions

λx.t ' x 7→ t

• The core functional programming language
Real-world examples of extensions: Scheme, ML, Haskell…

• Turing-complete
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Some λ-terms

Examples

• The identity function λx. x
• Composition λf g x. f (g x)
• Church numeral 2 = λs z. s (s z)
• Stranger things… λx. x x

Some technical details:

• Equality up to renaming of bound variables α-conversion

• Notations: λx y.t = λx.λy.t and t u v = (t u) v
• Capture-avoiding subsitution t[u/x]

x[t/x] = t (t u)[v/x] = t[v/x] u[v/x] (λy.t)[u/x] = λy.t[u/x] (x ̸= y, y /∈ FV(u))
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Computing with the pure λ-calculus

One-step β-reduction
→β is the closure under congruence of

(λx.t) u →β t[u/x]

• →β non-deterministic
• Call→∗ its reflexive transitive closure
• Call a λ-term t normal if t 6→β

Theorem
→∗ is confluent

t1
∗

MMM

&&t

∗sssss

99

∗
KKK

KK
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t′

t2

∗qqq

88

⇝Well-behaved notion of computation
• Each term reduce to ≤ 1 normal form

• Independent of the evaluation strategy

• Example:
λs.1 s (1 s) →β λs.(λz.s z) (1 s)

→β λs.(λz.s z (1 s)
→β λs.(λz.s z)(λz.s z)
→β λs.s (s z)
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Type systems

Rationale
Classify well-behaved sets of programs

• Practical motivations Crash-free programs

• Proof-theoretical motivations Curry-Howard correspondence

All type systems for λ-calculus hereafter will satisfy the following

Subject reduction (SR)
If t→β u and t has type A (t : A), then so does u

“Types are invariant under computation”

Strong normalization (SN)
If t : A, then t will always reduce to a normal form.

“All typed programs terminate (no matter what is the evaluation strategy)”
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Simply-typed λ-calculus

Simple types

A,B ::= o | A→ B

o is a fixed ground type

Typing rules

• Variable

Γ, x : A,Γ′ ` x : A
• λ-abstraction

Γ, x : A ` t : B
Γ ` λx.t : A

• Application
Γ ` t : A→ B Γ ` u : A

Γ ` t u : A
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System F
Simple types

A,B ::= X | ∀X.A | A→ B

X is a type variable

Typing rules
STLC rules with

• ∀-intro (X free in Γ)
Γ ` t : A

Γ ` t : ∀X.A
• ∀-elim

Γ ` t : ∀X.A
Γ ` t : A[B/X]

• SN much harder to prove
Requires impredicativity

• Convenient for programming
7/34



Church encoding of strings

Impredicative encodings
• The type of booleans Bool

∀X.X → X → X
true = λx y.x false = λx y.y

• The type of natural numbers N
∀X.(X → X) → X → X

• The type of binary strings Str
∀X.(X → X) → (X → X) → X → X

Church encoding w 7→ w of strings {a, b}∗ into Str

abba 7→ λa b e. a (b (b (a e)))

Consequence of SN
For every t : Str, there is w ∈ {a, b}∗ s.t. t→∗ w
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Affine/Linear λ-calculus

Resource-aware decomposition of STLC/System F.
Affine/Linear types

A,B ::= !A | A⊗ B | A⊸ B | . . .

• Terms of type A⊸ B use their arguments at most/exactly once

x : A ` x : A
Γ ` t : A⊸ B ∆ ` u : A

Γ,∆ ` t u : B

• ! allows duplication and discarding

!A⊸ !A⊗ !A !A⊗ B⊸ B

⇝ Encode A → B as !A⊸ B

Example
Str is isomorphic to

StrL = ∀X.!(X⊸ X)⊸ !(X⊸ X)⊸ X⊸ X

but certainly not to ∀X.(X⊸ X)⊸ (X⊸ X)⊸ X⊸ X
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Implicit computational complexity

Problems
Fix a programming language and a type Str→ Bool

⇝ class of functions implemented by terms t : Str→ Bool?

• Landmark paper: safe recursion
PTIME [Bellantoni-Cook, 1992]

• A few characterizations based on linear λ-calculi
LLL/µELL2 for PTIME for instance [Girard 1996, Baillot 2005]

Remark

Un(i)typed λ-calculus ' recursive functions
System F ' PA2-definable recursive functions

⇝What about STLC?
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Impredicative encodings in STLC

A slight wrinkle: quantification unavailable

• Define Str[A] = (A→ A)→ (A→ A)→ A→ A
Bool[A] = A→ A→ A

Definition
We call a language L ⊆ {a, b}∗ definable in STLC iff there exists

• a simple type A
• a simply-typed λ-term t : Str[A]→ Bool[o]

such that for every w ∈ {a, b}∗,

t w →∗ true iff w ∈ L

• Note that if t : Str[A]→ Bool[o], then t : Str→ Bool in System F
⇝ SN guarantees t w→∗ true or t w→∗ false for every w ∈ {a, b}∗
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Hillebrand and Kanellakis' result

Theorem [Hillebrand and Kanellakis, 1996]
The STLC definable languages are the regular languages.

(⇐) The encoding of DFAs in System F goes through

• I.e., impredicative quantification are spurious

(⇒) Semantic evaluation of t : Str[A] → Bool[o]

• Interpret types as finite sets with JoK = {true, false}
Set inductively JA→ BK = JBKJAK

• At the level of λ-terms, t : A yields JtK ∈ JAK
• Note that w 7→ wa is definable by a term ca : Str[A] → Str[A]

• Build a DFA (Q, JϵK, δ, F)
Q = JStr[A]K δ(q, a) = JcaK(q) q ∈ F ⇔ JtK(q) = JtrueK
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What about Str→ Str?
Definition
We call a function f : {a, b}∗ → {a, b}∗ definable in STLC iff there is

• a simple type A
• a simply-typed λ-term t : Str[A]→ Str[o]

such that for every w ∈ {a, b}∗,

t u →∗ v iff f(u) = v

• Closed under composition
• By Hillebrand and Kanellakis' theorem

f STLC-definable ∧ L regular ⇒ f−1(L) regular

• Contains HDT0L-transduction
≡ copyful streaming string transducers, a kind of register automata

• But we do not know more at the moment
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Simplification: the affine case

We now turn to affine λ-calculus and set

StrL[A] = !(A⊸ A)⊸ !(A⊸ A)⊸ A⊸ A

Definition
We call f : {a, b}∗ → {a, b}∗ definable in affine STLC iff there is

• a !-free linear type A (i.e., !o or StrL[o] unavailable)

• a simply-typed affine λ-term t : StrL[A]→ StrL[o]

such that for every u, v ∈ {a, b}∗,

t u →∗ v iff f(u) = v

• Same niceness properties as for STLC-definable

14/34



Simplification: the affine case

We now turn to affine λ-calculus and set

StrL[A] = !(A⊸ A)⊸ !(A⊸ A)⊸ A⊸ A

Definition
We call f : {a, b}∗ → {a, b}∗ definable in affine STLC iff there is

• a !-free linear type A (i.e., !o or StrL[o] unavailable)

• a simply-typed affine λ-term t : StrL[A]→ StrL[o]

such that for every u, v ∈ {a, b}∗,

t u →∗ v iff f(u) = v

• Same niceness properties as for STLC-definable

14/34



Simplification: the affine case

We now turn to affine λ-calculus and set

StrL[A] = !(A⊸ A)⊸ !(A⊸ A)⊸ A⊸ A

Definition
We call f : {a, b}∗ → {a, b}∗ definable in affine STLC iff there is

• a !-free linear type A (i.e., !o or StrL[o] unavailable)

• a simply-typed affine λ-term t : StrL[A]→ StrL[o]

such that for every u, v ∈ {a, b}∗,

t u →∗ v iff f(u) = v

• Same niceness properties as for STLC-definable

14/34



Regular functions: main theorem for string

Theorem [Nguyễn & P.]

f is regular a regular function
⇐⇒

f is definable in the affine STLC
⇐⇒

f is definable in the linear STLC with additives ⊕,&

Regular functions are a classical topic, many equivalent definitions…
One of them: copyless streaming string transducers [Alur & Černý 2010]
⇝ sounds suspiciously like affine types!

15/34



Regular functions: main theorem for string

Theorem [Nguyễn & P.]

f is regular a regular function
⇐⇒

f is definable in the affine STLC
⇐⇒

f is definable in the linear STLC with additives ⊕,&

Regular functions are a classical topic, many equivalent definitions…
One of them: copyless streaming string transducers [Alur & Černý 2010]
⇝ sounds suspiciously like affine types!

15/34



Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R→ Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→
{
X := Xa
Y := aY

b 7→
{
X := Xb
Y := bY

c 7→
{
X := aba
Y := YabaX

• “output function” e.g. out = XY

Execution over : start with

X = ε Y = ε

f restricted to {a, b}∗: corresponds to w 7→ w · reverse(w)
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Stateful streaming string transducers

SSTs can also have states: their memory is Q× (Σ∗)R (with |Q| <∞)

x← ε

y← ε

out← y out← ε

∥

∣∣∣∣∣ x← ε

y← yx

a ∈ Σ

∣∣∣∣∣ x← ax
y← y

∥

∣∣∣∣∣ x← ε

y← xy

a ∈ Σ

∣∣∣∣∣ x← xa
y← y

Copylessness restriction
Each register appears at most once on RHS of←

(for each fixed input letter, at most once among all the associated←)

Intuition: memory M = Q⊗ Σ∗ ⊗ . . .⊗ Σ∗, transitions M⊸M
(Q ∼= 1⊕ . . .⊕ 1, concat : Σ∗ ⊗ Σ∗ ⊸ Σ∗)
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Categorical automata

A framework for “single-pass” automata [Colcombet & Petrişan 2017]

• internal memory = object of a category C
• transitions = morphisms (and [letter 7→ transition] = functor TΣ → C)

TΣ = • // •

a∈Σ

�� // • −→ C

Formally
A streaming setting C with output X is a tuple (C,‚,‚, out) with
• C a category
• ‚ and ‚ objects of C
• out : HomC (

‚
,‚)→ X a set-theoretic-map

Notion of C-automaton (abusively called C-automata in the sequel)
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Categorical automata: simple examples

Formally
A streaming setting C with output X is a tuple (C,‚,‚, out) with
• C a category
• ‚ and ‚ objects of C
• out : HomC (

‚
,‚)→ X a set-theoretic-map

Notion of C-automaton (abusively called C-automata in the sequel)

Some examples in the wild:

• DFAs: C = Finset, ‚ = 1, ‚ = 2
• HomC (n, k) = Q[X1, . . . ,Xn]k = polynomial automata
• Exercise: C = the Lawvere theory of the string, ‚ = 1, ‚ = t
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SSTs as categorical automata

The register category with output alphabet Σ

• Objects: finite sets R, S think register variables

• Morphisms: HomR (R, S) = maps S→ (R+Σ)∗ corresponding to copyless register
affectations ∑

s∈S |f(s)|r ≤ 1

• Monoidal with ⊗ = +

• Free affine monoidal category over an object Σ∗ = {•}, morphisms ε, a : I→ Σ∗ for
a ∈ Σ and cat : Σ∗ ⊗ Σ∗ → Σ∗

• For the streaming setting, take ‚ = I = 0 and ‚ = Σ∗ = {•}

Definition of the free finite coproduct completion C⊕
• Objects: formal finite sums

⊕
u∈U Cu of objects of C

• Morphisms: HomC⊕

(⊕
u Cu,

⊕
v Dv

)
=

∏
u
∑

v HomC (Cu,Dv)

• Morphisms
⊕

q∈Q R →
⊕

q∈Q R correspond to transitions in a SST
• Canonical embedding C → C⊕ allows to lift streaming settings
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Compiling into higher-order transducers

Transductions definable in linear λ-calculus can be turned into automata over a category L
of purely linear λ-terms (w/ const fc : o⊸ o for c ∈ Σ)

Claim
L-automata compute the same string functions as λ-terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear λ-definable =⇒ regular function
Define a functor L → R⊕ preserving enough structure

Useful fact: there is a canonical functor from L to any symmetric monoidal closed category
with (co)products

UnfortunatelyR⊕ is not monoidal closed…
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Toward a monoidal closed category

So far, we encountered:

• L: category of purely linear λ-terms (w/ const fc : o⊸ o for c ∈ Σ)
• R: category of finite sets of registers and copyless assignments
• R⊕: free finite coproduct completion of the latter (add states)

Now consider:

• the free finite product completion: C 7→ C& = ((Cop)⊕)op

Objects: formal products
˘

x Cx

• the composite completion C 7→ C& 7→ (C&)⊕
Objects: formal sums of products

⊕
u
˘

x Cu,x

similar to de Paiva's Dialectica categories DC, think ∃u. ∀x. φ(u, x)

Goals toward our main theorem

• Structure: (R&)⊕ has finite products and is monoidal closed
• Conservativity: (R&)⊕-automata andR⊕-automata are equivalent
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Structure (1): generic remarks (C&)⊕

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

A⊗ (B& C) ≡ (A⊗ B) & (A⊗ C) A⊗ (B⊕ C) ≡ (A⊗ B)⊕ (A⊗ C)

• In particular, (C&)⊕ has distributive cartesian products

A& (B⊕ C) ≡ (A& B)⊕ (A& C)

When embedded in (co)presheafs ∼= Day convolution

Lemma
If C is symmetric monoidal and C⊕ has the internal homs A⊸ B
for all A,B ∈ C, then (C&)⊕ is symmetric monoidal closed.

(⊕
u∈U

¯
x∈Xu

Ax

)
⊸
(⊕

v∈V

¯
y∈Yv

By

)
=

¯
u∈U

⊕
v∈V

¯
y∈Yv

⊕
x∈Xu

Ax⊸ By
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Structure (2): combinatorics on strings

Lemma
R⊕ has the internal homs A⊸ B for all A,B ∈ R.

The construction appears in the original SST paper [Alur & Černý 2010]
without the categorical vocabulary.{

X := abXcY
Y := ba

⇝ shape
{
X := Z1XZ2Y
Y := Z3

+ parameters Z1 = ab, . . .

copyless SST =⇒ finitely many shapes: use as states; registers for parameters

Conclusion
(R&)⊕ is symmetric monoidal closed (and almost affine).
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Conservativity

Lemma
(C&)⊕ automata are equivalent to non-deterministic C⊕ automata.

A uniformization (∼ determinization) theorem is enough to conclude
Conservativity
(R&)⊕-automata are equivalent to standard SSTs.

• Uniformization already known [Alur & Deshmuk 2011]
• Argument implicitly based on monoidal closure!

C0

U C2

C3

C1

V

C4

T

S

C0

C2

C3

C1

C4

D0

D2

D1

D3

D4

Theorem
For any monoidal category C, if C⊕ has all the internal homsets A⊸ B for A,B ∈ C, then
(C&)⊕-automata and C⊕-automata are equivalent.

equivalently: ND C⊕-automata can be uniformized 25/34



Characterization of string-to-string regular functions

Just discussed:

Today's main theorem [Nguyễn & P.]

regular string function ⇐⇒ definable by some t : StrΓ[A]⊸ StrΣ
in ILL with A purely linear

Some thoughts:

• Non-trivial technical arguments, for good reasons λ-terms compose easily

• More conceptual POV on the uniformization argument? Is⊸ overkill?

• The category of register: an affine clone of the PROP of the string
→ linear clone + ⊕&⇒ smcc
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Regular tree-to-tree functions

Over ranked alphabets such as e.g. Σ = {b : 2, u : 1, ε : 0}

b

b ε

uε

ε

0

0

0

1

1 b(b(ε, u(ε)), ε)

λb u ε. b (b ε (u ε)) ε ∶ TreeΣ

TreeΣ = (o⊸ o⊸ o)→ (o⊸ o)→ o→ o

Main theorem for trees [Nguyễn & P.]

regular tree function ⇐⇒ definable by some t : TreeΓ[A]⊸ TreeΣ
in ILL with A purely linear

Important: additive connectives need to be included!
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Why are we including additive connectives?

Additives are required for trees
Copyless streaming tree transducers ⊂ regular tree functions; conjectured to be strict.
To recover an equality: ad-hoc relaxation called “single use restriction”.

Principled explanation via linear logic:
just allow the additive conjunction in the internal memory!

e.g. M = Q⊗ Σ∗ ⊗ (Σ∗ &Σ∗) =
⊕

q∈Q Σ∗ ⊗ (Σ∗ &Σ∗)
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Categorical tree transducers

• Streaming settings: now symmetric monoidal categories, no‚, bottom-up processing
• R is built using the same conceptual recipe as for strings:

Affine clone of the free PROP generated by the output alphabet

The register category with output alphabet Σ: details

• Objects: finite ranked alphabet R, S
• Morphisms: HomR (R, S) = copyless transitions, registers contain trees with leaf

holes, constructors of Σ usable

Example: a morphism {r : 0, s : 2} to {r′ : 1}with Σ = {b : 2, ε : 0}

• a λ-term of type (o⊸ o⊸ o)︸ ︷︷ ︸
b

→ o︸︷︷︸
ε

→ o︸︷︷︸
r

⊸ (o⊸ o⊸ o)︸ ︷︷ ︸
s

⊸ o⊸ o︸ ︷︷ ︸
r′

• A tree with order 2 holes over the ranked alphabet r, s, r′, b, ε subject to affineness
constraints on r, s and the input of r′.
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Composition of the corresponding multicategory in action

• Easier to describe as a multicategory, i.e. a variant of categories with multiple inputs
and a single output

a

x y

bp

q

z

c cr

t

a c

u ∗

c

∗f

{t ∶ 2, u ∶ 1}→ {∗}

{x ∶ 2, y ∶ 0}→ {p, q}

{z ∶ 3}→ {r}

⎛
⎜
⎝

f ∶ {p, q, r} → {t, u}
p, q ↦ t
r ↦ u

⎞
⎟
⎠

a

x y

b

c

a

∗z

c cc

{x ∶ 2, y ∶ 0, z ∶ 3}→ {∗}

=

• Moving to a categoryR = freely complete by saying that each morphisms partition
the output according to the output
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To bottom-up ranked tree transducers

Easy observation
R⊕& 'macro tree transducers⇒ characterizes regular functions

Mostly bureaucratic details: multi-hole registers vs single-hole, single-use restriction vs &.

What's left: how to interpret⊸? ⇝ same reasoning as for strings:

Lemma
R⊕ has the internal homs A⊸ B for all A,B ∈ R.

Lemma
If C is symmetric monoidal and C⊕ has the internal homs A⊸ B
for all A,B ∈ C, then (C&)⊕ is symmetric monoidal closed.
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Internal homs inR⊕ in pictures

Lemma
R⊕ has the internal homs A⊸ B for all A,B ∈ R.

↦
a0 ↦

a

a

y

b

a

x c

a0

x y

l0 l1 l2 l3 l4 l5

a

x ↦
a

y ↦ l0, l1, l2, l3 ↦

l4 ↦ b

l5 ↦ c

Curiosity question: does it appear already in the literature on operads as a special case of something?
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Conclusion

What happened here:

• Connections between Church encodings and automata
• Application of categorical semantics (Dialectica, geometry of interaction (GoI))
• A generic uniformization-like construction (C&)⊕ → C⊕ for monoidal C with certain

homsets

Some take-aways:

• Important ingredient in uniformization: monoidal closure

• Slick formalization w/o categories (using e.g. transition monoids)?

• Additive connectives are important for trees
• Links between planar GoI, two-way transducers and first-order fragments

• Further links with tree-walking automata?
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Conclusion

Broader picture
StrΣ[A]⊸ Bool with A linear (adapted as needed):

λ-calculus languages status
simply typed regular ✓[Hillebrand & Kanellakis 1996]
linear or affine regular ✓
non-commutative linear or affine star-free ✓

StrΓ[A]⊸ StrΣ with A affine (adapted as needed):
λ-calculus transducers status
linear (without additives) weird (?) ✓(?)
affine regular functions ✓
non-commutative affine first-order regular fn. ✓?
linear/affine with additives regular functions ✓
parsimonious polyregular ??
simply typed variant of CPDA??? ???

+ a characterization of Str[A] → Str as comparison-free polyregular functions
Thanks for listening! Questions?
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Dropping the additives for string-to-string functions

String functions without additive

• Still an equivalence, but non-trivial (solution via Krohn--Rhodes)

• Allows GoI-style interpretation in categories of diagrams
⇝ Interpretation as bidirectional automata (w/o registers)

+

+

−−

−+ +

+ −

−

−

+ +

A

B

Planar diagrams
⇝

FO fragments



Dropping the additives

and commutativity

• Allows GoI-style interpretation in categories of diagrams (∼= Int(FinPartInj))

⇝ Interpretation as two-way automata [Hines 2003]
Define regular languages
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Consequence (not interesting)
Every linear term t : StrΣ[A]⊸ Bool with A→-free defines a regular language.



Dropping the additives and commutativity

• Allows GoI-style interpretation in categories of planar diagrams
⇝ Interpretation as two-way planar automata [Hines 2003,2006]

Define star-free languages
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Consequence [Nguyễn, P. 2020]
Every planar linear term t : StrΣ[A]⊸ Str with A→-free defines a star-free language.



Dropping the additives and commutativity

• Allows GoI-style interpretation in categories of planar labelled diagrams
⇝ Interpretation as two-way planar transducers (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions
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Consequence
Every planar linear term t : StrΣ[A]⊸ Str with A→-free defines a FO-transduction.



Dropping the additives and commutativity

• Allows GoI-style interpretation in categories of planar labelled diagrams
⇝ Interpretation as two-way planar transducers (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions
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Consequence
Every planar linear term t : StrΣ[A]⊸ Str with A→-free defines a FO-transduction.

Alas, planar linear terms are much weaker than FO-transductions (preserve Parikh images)



Dropping the additives and commutativity

• Allows GoI-style interpretation in categories of planar labelled diagrams
⇝ Interpretation as two-way planar transducers (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions
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Conjecture
Every planar affine term t : StrΣ[A]⊸ Str with A→-free defines a FO-transduction.

The converse holds (main ingredient for the proof: the Krohn-Rhodes theorem)



A category of planar diagrams

• Interpret purely linear non-commutative λ-terms in a monoidal closed category
• We consider a non-commutative refinement of Geometry of Interaction

(well-known model of linear logic)

A compact closed category of planar diagrams

• Objects: words in {+,−}∗

• Morphisms u→ v : graphs over |u|+ |v| with
• degree ≤ 1 for every node
• polarity restrictions
• planarity restriction
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To compute the composition of two morphisms, follow the paths (and forget the middle
component)
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Compact-closure and interpretation of the λ-calculus

Structure to interpret the linear λ-calculus
• Monoidal product A⊗ B given by concatenation
• Duals A∗: reverse and flip polarities
• Monoidal closure by setting A⊸ B = A∗ ⊗ B
• Interpretation of types JAK by induction withJoK = +

(injective interpretation of booleans)
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Jλf.λg. f (λx. x) (g (λx. x))K =
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Aperiodicity

To conclude, we need to show that every (Hom(A,A), ◦) is finite and aperiodic for every A
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Therefore: planar =⇒ H-trivial

R-class determined by:

the internal wiring on the left

+

positions of the input nodes

R-class determined by:

the internal wiring on the left

+

positions of the input nodes

• More elementary proofs w/o Green relations possible (e.g. order+Kleene's theorem)

• Planarity restriction is essential (consider
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Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!
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• Transition functions δ : Σ→ Hom(Q,Q) for some object Q Q ≈ set of directed states

• (actually, should also incorporate boundary morphisms Hom(+,Q) and Hom(Q, F))

• Planarity restriction⇒ the transition flow monoid is aperiodic
• (links between GoI and planar 2DFAs already considered by (Hines 2003))

Theorem
Star-free languages are exactly those recognized by planar 2DFAs.



Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!
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• Transition functions δ : Σ→ Hom(Q,Q) for some object Q Q ≈ set of directed states

• (actually, should also incorporate boundary morphisms Hom(+,Q) and Hom(Q, F))
• Planarity restriction⇒ the transition flow monoid is aperiodic
• (links between GoI and planar 2DFAs already considered by (Hines 2003))

Theorem
Star-free languages are exactly those recognized by planar 2DFAs.
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Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!
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• Transition functions δ : Σ→ Hom(Q,Q) for some object Q Q ≈ set of directed states

• (actually, should also incorporate boundary morphisms Hom(+,Q) and Hom(Q, F))
• Planarity restriction⇒ the transition flow monoid is aperiodic
• (links between GoI and planar 2DFAs already considered by (Hines 2003))

Theorem
Star-free languages are exactly those recognized by planar 2DFAs.



More generally: first-order transductions

Consider a richer category of diagrams where edges are labelled by output words
(labels of compositions given by concatenation)
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Much like before, corresponding notion of (planar) 2DFTs.
Theorem
First-order transduction (FO regular functions) = reversible planar 2DFTs.

• aperiodic 2DFTs = FO regular functions [Carton&Dartois 2015]
(hence reversible planar 2DFTs ⊆ FO-transductions)

• FO transduction ⊆ reversible planar 2DFTs: compose + Krohn—Rhodes


	Appendix

