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The untyped \-calculus

Syntax

Defined inductively, with x ranging over variables

tbus=x | A\t | tu

Introduced by Alonzo Church in the 30s

An algebra for anonymous functions
At >~ x>t

e The core functional programming language

Real-world examples of extensions: Scheme, ML, Haskell...

Turing-complete
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Some \-terms

Examples
o The identity function
o Composition
e Church numeral

e Stranger things...

Some technical details:

e Equality up to renaming of bound variables
e Notations: \x y.t = Ax.\y.t and
e Capture-avoiding subsitution #[u/x]

x[t/x] =t (tu)v/x] = to/x] ulv/x]

AX. X

Mg x.f(gx)
2=Xsz.s (s2)

AX. X X

a-conversion

tuov = (tu)v

Ay-D[u/x] = Mytlu/x] (x#y,y & FV(u))
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One-step S-reduction

— 5 is the closure under congruence of
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(Mt)u —pg tHu/x]

e Call —* its reflexive transitive closure

e Calla A-term t normal if t /44

Theorem
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~+ Well-behaved notion of computation

e Each term reduce to < 1 normal form

e Independent of the evaluation strategy

e Example:
As.1s (1)

As.(Az.s z) (15)
As.(Az.sz (1s)
As.(Az.s z)(Az.s z)

As.s (s z)
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Classify well-behaved sets of programs

e Practical motivations Crash-free programs

e Proof-theoretical motivations Curry-Howard correspondence

All type systems for A-calculus hereafter will satisfy the following

If t -5 uand t has type A (¢ : A), then so does u

“Types are invariant under computation”

Ift : A, then t will always reduce to a normal form.

“All typed programs terminate (no matter what is the evaluation strategy)”
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AB:=0| A—B

0 is a fixed ground type

e Variable

Fx:ATVEx: A
e \-abstraction
I'Nx:AFt:B
I'FXxt:A

e Application
'-t:A—B 'tu:A

'tu:A
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AB =X | VXA | A>B

X is a type variable
STLC rules with
e V-intro (X freeinT")
I'Ft: A
'Et: VXA
e V-elim
FHt: VXA
T'kt:A[B/X]

e SN much harder to prove
Requires impredicativity
e Convenient for programming
7/34



Church encoding of strings

Impredicative encodings

o The type of booleans Bool
VXX —>X—>X
true = \xy.x  false = Axy.y

o The type of natural numbers N
VX.X—X) > X—X

o The type of binary strings Str
VX X—=X) > (X—=X) - X—=>X

Church encoding w — w of strings {a,b}* into Str

abba — Xabe.a(b(b(ae)))
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Church encoding of strings

Impredicative encodings

o The type of booleans Bool
VXX —>X—>X
true = \xy.x  false = Axy.y

o The type of natural numbers N
VX.X—X) > X—X

o The type of binary strings Str
VX X—=X) > (X—=X) - X—=>X

Church encoding w — w of strings {a,b}* into Str

abba — Xabe.a(b(b(ae)))

Consequence of SN
For every ¢t : Str, thereisw € {a,b}* s.t. t =" w

8/34



Resource-aware decomposition of STLC/System F.

AB:=1A| A®B | A—B | ...

e Terms of type A —o B use their arguments at most/exactly once

T'Ht:A—-B AtFu:A
x:AFx: A I'A+Ftu:B
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Resource-aware decomposition of STLC/System F.

AB:=1A| A®B | A—B | ...

e Terms of type A —o B use their arguments at most/exactly once

't:A—B AlFu:A
x:AFx: A I'A+Ftu:B
o !allows duplication and discarding
IA—-!A®!A A B—B

~» Encode A —+ Bas!A — B

Str is isomorphic to
St = VXX —oX)—o!(X—oX)—oX—oX

but certainly not to VX.(X — X) — (X = X) X — X
9/34



Implicit computational complexity

Problems
Fix a programming language and a type Str — Bool

~> class of functions implemented by terms ¢ : Str — Bool?

e Landmark paper: safe recursion
PTIME [Bellantoni-Cook, 1992]

e A few characterizations based on linear A-calculi
LLL/pELL2 for PTIME for instance [Girard 1996, Baillot 2005

10/34



Implicit computational complexity

Problems
Fix a programming language and a type Str — Bool

~> class of functions implemented by terms ¢ : Str — Bool?

e Landmark paper: safe recursion
PTIME [Bellantoni-Cook, 1992]

e A few characterizations based on linear \-calculi
LLL/pELL2 for PTIME for instance [Girard 1996, Baillot 2005

Remark

12

Un(i)typed A-calculus recursive functions

System F = PA2-definable recursive functions

10/34



Implicit computational complexity

Problems
Fix a programming language and a type Str — Bool

~> class of functions implemented by terms ¢ : Str — Bool?

e Landmark paper: safe recursion
PTIME [Bellantoni-Cook, 1992]

e A few characterizations based on linear \-calculi
LLL/pELL2 for PTIME for instance [Girard 1996, Baillot 2005

Remark
Un(i)typed A-calculus = recursive functions
System F ~ PA2-definable recursive functions
~» What about STLC?
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Impredicative encodings in STLC

A slight wrinkle: quantification unavailable

e Define Str[A] = A-2A)->A—-A)-A-A
Booll[A] = A—-A—A

Definition
We call a language L C {a,b}* definable in STLC iff there exists

e asimple type A
e asimply-typed A-term ¢ : Str[A] — Bool[o]

such that for every w € {a,b}*,

tw —* true iff weL

e Note that if ¢ : Str[A] — Bool[o], then ¢ : Str — Bool in System F

~» SN guarantees t w —* true or tw —* false for every w € {a,b}*
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The STLC definable languages are the regular languages.
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Hillebrand and Kanellakis' result

Theorem [Hillebrand and Kanellakis, 1996]

The STLC definable languages are the regular languages.

(<=) The encoding of DFAs in System F goes through

e le., impredicative quantification are spurious
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Hillebrand and Kanellakis' result

Theorem [Hillebrand and Kanellakis, 1996]
The STLC definable languages are the regular languages.
(<=) The encoding of DFAs in System F goes through

e le., impredicative quantification are spurious

(=) Semantic evaluation of ¢ : Str[A] — Bool|o]

e Interpret types as finite sets with [o] = {true, false}
Set inductively [A — B] = [B]I1]

o At the level of MA-terms, t : A yields [t] € [A]
e Note that w — wa is definable by a term ¢, : Str[A] — Str[A]
e Build a DFA (Q, [€], 6, F)
Q= [Str[A]] 5(q,a) = [ca](9) qeF e [f(g) = [true]

12/34



We call a function f: {a,b}* — {a,b}* definable in STLC iff there is

e asimple type A
e asimply-typed A-term f : Str[A] — Str|o]

such that for every w € {a,b}*,

tu —*v  iff  flu)=v
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What about Str — Str?

Definition
We call a function f: {a,b}* — {a,b}* definable in STLC iff there is

e asimple type A
e asimply-typed A-term f : Str[A] — Stro]

such that for every w € {a,b}*,

tu —"v ifft  flu)=vo

Closed under composition
By Hillebrand and Kanellakis' theorem

fSTLC-definable A L regular = (L) regular

Contains HDTOL-transduction

= copyful streaming string transducers, a kind of register automata

But we do not know more at the moment
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We now turn to affine \-calculus and set

Strl[A] =1(A — A) o (A —-A) <A —A
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Simplification: the affine case

We now turn to affine A-calculus and set
Str[A] =1(A — A) —= (A —oA) oA —A
Definition
We call f: {a,b}* — {a,b}* definable in affine STLC iff there is

e a!-free linear type A (ice., lo or Str*[o] unavailable)

e asimply-typed affine \-term ¢ : Str“[A] — Str"[0]
such that for every u,v € {a,b}*,
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Simplification: the affine case

We now turn to affine A-calculus and set
Str[A] =1(A — A) —= (A —oA) oA —A
Definition
We call f: {a,b}* — {a,b}* definable in affine STLC iff there is

e a!-free linear type A (ice., lo or Str*[o] unavailable)

e asimply-typed affine \-term ¢ : Str“[A] — Str"[0]
such that for every u,v € {a,b}*,

tu —"v iff flu)=v

e Same niceness properties as for STLC-definable
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Regular functions: main theorem for string

fis regular a regular function
=
fis definable in the affine STLC
—
fis definable in the linear STLC with additives &, &
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Regular functions: main theorem for string

Theorem [Nguyén & P.]

fis regular a regular function
—
fis definable in the affine STLC
=
fis definable in the linear STLC with additives &, &

Regular functions are a classical topic, many equivalent definitions...
One of them: copyless streaming string transducers [ Alur & Cerny 2010]
~+ sounds suspiciously like affine types!
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Single-state streaming string transducers

o Finite set of ¥*-valued registers e.g. R = {X, Y}
e Initial values R — X" e.g. Xinit = Yinit = €
) ) X :=Xa X:=Xb X :=aba
o Register update function e.g. a— b— C
Y :=aY Y := YabaX

e “output function” e.g. out = XY
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o Regqister update function e.g. a
5 / f . {Y =aY Y := YabaX

e “output function” e.g. out = XY

Execution over abaa:
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Single-state streaming string transducers

o Finite set of ¥*-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €

X := Xa {X:: Xb {X:: aba
b cr

o Regqister update function e.g. a
5 / f . {Y =aY Y := YabaX

e “output function” e.g. out = XY

Execution over abaa: f(abaa) = abaaaaba

X = abaa Y = aaba
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Single-state streaming string transducers

o Finite set of ¥*-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €

X := Xa {X:: Xb {X:: aba
b cr

o Regqister update function e.g. a
5 s f B {Y =aY Y :=bY Y := YabaX

e “output function” e.g. out = XY

Execution over abaa: f(abaa) = abaaaaba

X = abaa Y = aaba

frestricted to {a,b}*: corresponds to w — w - reverse(w)

16/34



Stateful streaming string transducers

SSTs can also have states: their memory is Q x (X*)R (with |Q| < o0)

I X< e
— yx
out <y yy out < ¢
X 4 xa X < ax
aeEX aex
y<=y Yy
X<¢€
y<e¢ I X<+ ¢
yxy

17/34



Stateful streaming string transducers

SSTs can also have states: their memory is Q x (X*)R (with |Q| < o0)

” X< €
— yx
out <—y yey out <— ¢
X 4 xa X < ax
aeX aex
y<y y<y
X< €
Yy<¢€ I X<+ ¢
yxy

Each register appears at most once on RHS of <

(for each fixed input letter, at most once among all the associated <)

Intuition: memory M = Q ® ¥* ® ... ® ¥*, transitions M — M
(Q1®...01,concat : * ® X* — X*)
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Categorical automata

o internal memory = object of a category C

e transitions = morphisms (and [letter — transition] = functor 75, — C)

aey

T = e——>e0——>o — C
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Categorical automata

A framework for “single-pass” automata [Colcombet & Petrisan 2017]

internal memory = object of a category C

transitions = morphisms (and [letter — transition]| = functor 75, — C)

aex
N
\ /

Ts = e—>0——>o0 — C

Formally

A streaming setting ¢ with output X is a tuple (C, T, 1L, out) with
e C a category
e T and I objects of C
e out : Home (T, L) — X a set-theoretic-map

Notion of €-automaton (abusively called C-automata in the sequel)
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Categorical automata: simple examples

Formally

A streaming setting ¢ with output X is a tuple (C, T, 1L, out) with
e (C a category
e T and 1L objects of C
e out : Home (T, 1) — X a set-theoretic-map

Notion of €-automaton (abusively called C-automata in the sequel)

Some examples in the wild:

e DFAs: C =Finset, T =1, 1. =2
e Hom¢ (n,k) = Q[Xy, ..., X,]f = polynomial automata

o Exercise: C = the Lawvere theory of the string, T =1, Il =t
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SSTs as categorical automata

The register category with output alphabet X
Objects: finite sets R, S think register variables

Morphisms: Homz (R, S) = maps S — (R + X)* corresponding to copyless register
affectations
ZSES [f(s)lr <1

e Monoidal with ® = +

o Free affine monoidal category over an object ¥* = {e}, morphisms ¢,a : I — X* for
a€Yandcat: ¥ @Y — X*

e For the streaming setting, take T =I=0and 1L = X* = {e}
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SSTs as categorical automata

The register category with output alphabet X
Objects: finite sets R, S think register variables

Morphisms: Homz (R, S) = maps S — (R + X)* corresponding to copyless register
affectations
ZSES [f(s)lr <1

e Monoidal with ® = +

o Free affine monoidal category over an object ¥* = {e}, morphisms ¢,a : I — X* for
a€Yandcat: ¥ @Y — X*

e For the streaming setting, take T =I=0and 1L = X* = {e}

Definition of the free finite coproduct completion Cg

e Objects: formal finite sums P, ., Cu of objects of C

e Morphisms: Home,, (P, Cu, @, D.) =[], >, Home (Cu, D)

e Morphisms @,.oR — &,cq R correspond to transitions in a SST
e Canonical embedding C — Cqg, allows to lift streaming settings
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Compiling into higher-order transducers

Transductions definable in linear A-calculus can be turned into automata over a category £
of purely linear A\-terms (w/ constf. : 0 — o forc € X)

Claim

L-automata compute the same string functions as A-terms.

Proof: syntactic analysis of normal forms
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Compiling into higher-order transducers

Transductions definable in linear A-calculus can be turned into automata over a category £
of purely linear A\-terms (w/ constf. : 0 — o forc € X)

Claim

L-automata compute the same string functions as A-terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear A\-definable — regular function
Define a functor L — R preserving enough structure

Useful fact: there is a canonical functor from £ to any symmetric monoidal closed category
with (co)products

Unfortunately Rg, is not monoidal closed...
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Toward a monoidal closed category

So far, we encountered:

e [: category of purely linear A-terms (w/ constf. : 0 — o for c € %)
e R: category of finite sets of registers and copyless assignments
® Rg: free finite coproduct completion of the latter (add states)

Now consider:
o the free finite product completion: C — Cg = ((C°P)g)°P
Objects: formal products &, Cx
e the composite completion C — Cg — (Cg)a
Objects: formal sums of products @, &, Cux

similar to de Paiva's Dialectica categories DC, think Ju. Vx. ¢(u, x)

Goals toward our main theorem

Structure: (Rg )q has finite products and is monoidal closed

Conservativity: (Rg )g-automata and Rg-automata are equivalent
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Structure (1): generic remarks (Cg,)s

Tensorial products can be lifted to the completions
e The new tensorial products satisfy the additional laws
AR (B&C)=(A®B)& (A®C) A®B®C)=(A®B)®(Ax®C()
e In particular, (Cg )e has distributive cartesian products
A& (BaC)=(A&B)@ (A&C)

When embedded in (co)presheafs = Day convolution
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Structure (1): generic remarks (Cg,)s

Tensorial products can be lifted to the completions
e The new tensorial products satisfy the additional laws
AR (B&C)=(A®B)& (A®C) A®B®C)=(A®B)®(Ax®C()
e In particular, (Cg )e has distributive cartesian products
A& (BaC)=(A&B)@ (A&C)

When embedded in (co)presheafs = Day convolution

Lemma

If C is symmetric monoidal and Cg, has the internal homs A — B
forall A,B € C, then (Cg,)g is symmetric monoidal closed.

(@&AJ%(@&@) _ D& DA,

ucl x€X,y veV YEY, uel yeV yeYs xeX,
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Structure (2): combinatorics on strings

Lemma
R has the internal homs A — B forall A,B € R.

The construction appears in the original SST paper [Alur & Cerny 2010]
without the categorical vocabulary.

X = 2Z1)(252)/
Y :=ba

X :=abXcY
Y = 2Z3

copyless SST = finitely many shapes: use as states; registers for parameters

~+  shape { + parameters Z; =ab, ...
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R has the internal homs A —o B for all A, B € R.

The construction appears in the original SST paper [Alur & Cerny 2010]
without the categorical vocabulary.

X = 2Z1)<2521/
~+  shape + parameters Z; =ab, ...

Y = 253

X :=abXcY
Y := ba

copyless SST = finitely many shapes: use as states; registers for parameters

(R )e is symmetric monoidal closed (and almost affine).

24/34



(Cs.) e automata are equivalent to non-deterministic Cq, automata.

A uniformization (~ determinization) theorem is enough to conclude

(Rg)e-automata are equivalent to standard SSTs.

e Uniformization already known [Alur & Deshmuk 2011]
e Argument implicitly based on monoidal closure!

H@%
‘Theorem

For any monoidal category C, if Cg has all the internal homsets A —o B for A,B € C, then
(Cg.) @-automata and Cg-automata are equivalent.
equivalently: ND Cg-automata can be uniformized 75/34



Characterization of string-to-string regular functions

Just discussed:
Today's main theorem [Nguyén & P.]

definable by some ¢ : Strp[A] —o Stry

lar string function <=
regtiat string tunction in ILL with A purely linear

Some thoughts:

e Non-trivial technical arguments, for good reasons A-terms compose easily
e More conceptual POV on the uniformization argument? Is — overkill?

o The category of register: an affine clone of the PROP of the string
— linear clone + ©& = smcc
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Regular tree-to-tree functions

Over ranked alphabets suchase.g. ¥ = {b:2,u:1,¢:0}

b(b(e, u(e)), €)
Mue. b(be(ue))e: Trees

Treey, = (0 <0 —0) > (0—~0)>0—0

Main theorem for trees [Nguyén & P.]

. definable by some t : Treep[A] — Treex,
regular tree function <= ] .
in ILL with A purely linear
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Regular tree-to-tree functions

Over ranked alphabets suchase.g. ¥ = {b:2,u:1,¢:0}

b(b(e, u(e)), €)
Mue. b(be(ue))e: Trees

Treey, = (0 <0 —0) > (0—~0)>0—0

Main theorem for trees [Nguyén & P.]

. definable by some t : Treep[A] — Treex,
regular tree function <= ] .
in ILL with A purely linear

Important: additive connectives need to be included!

27/34



Why are we including additive connectives?

Additives are required for trees
Copyless streaming tree transducers C regular tree functions; conjectured to be strict.
To recover an equality: ad-hoc relaxation called “single use restriction”.
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Categorical tree transducers

e Streaming settings: now symmetric monoidal categories, no T, bottom-up processing
e R is built using the same conceptual recipe as for strings:

Affine clone of the free PROP generated by the output alphabet

The register category with output alphabet >: details
o Obijects: finite ranked alphabet R, S

e Morphisms: Homg (R, S) = copyless transitions, registers contain trees with leaf
holes, constructors of ¥ usable

Example: a morphism {r:0,s:2} to {r' : 1} with X = {b:2,¢: 0}

e a \term of type (0 <0 —-0)— 0 — 0 —o(0—00-—o00)—o00—0
g 5 ~—~ ~—~ ——
b € r s r’
o A tree with order 2 holes over the ranked alphabet r,s, ', b, € subject to affineness

constraints on r, s and the input of 7.
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Composition of the corresponding multicategory in action

e Hasier to describe as a multicategory, i.e. a variant of categories with multiple inputs
and a single output

()
foo Apar} - (tvl'u}) (=3 0
T @ O o
2 O, (7 ®
(a7 © * {w:2,y:0} > {p,q} _ B0
® 0O : & OO
© © O © © © ©
{t:2,u:1} > {} {2:3} > {r}

{2:2,y:0,2:3} > {*}

e Moving to a category R = freely complete by saying that each morphisms partition
the output according to the output

30/34



Rge ~ macro tree transducers = characterizes regular functions

Mostly bureaucratic details: multi-hole registers vs single-hole, single-use restriction vs &.
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To bottom-up ranked tree transducers

Easy observation

Rag ~ macro tree transducers = characterizes regular functions

Mostly bureaucratic details: multi-hole registers vs single-hole, single-use restriction vs &.

What's left: how to interpret —o?
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Rge ~ macro tree transducers = characterizes regular functions

Mostly bureaucratic details: multi-hole registers vs single-hole, single-use restriction vs &.

What's left: how to interpret —o? ~+ same reasoning as for strings:

R has the internal homs A —o B for all A, B € R.

If C is symmetric monoidal and Cg has the internal homs A — B
forall A,B € C, then (Cg, ) is symmetric monoidal closed.
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R has the internal homs A —o B for all A, B € R.

m
”:r@\:
-r@\:

[ | loyholols = O

=
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R has the internal homs A —o B for all A, B € R.

-
[h) =
T (@\:
y [ | lohilndy = O

Curiosity question: does it appear already in the literature on operads as a special case of something?

32/34



Conclusion

What happened here:

e Connections between Church encodings and automata
e Application of categorical semantics (Dialectica, geometry of interaction (Gol))

e A generic uniformization-like construction (Cg )e — Cg for monoidal C with certain
homsets

Some take-aways:

e Important ingredient in uniformization: monoidal closure

e Additive connectives are important for trees

e Links between planar Gol, two-way transducers and first-order fragments
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Conclusion

What happened here:

e Connections between Church encodings and automata
e Application of categorical semantics (Dialectica, geometry of interaction (Gol))

e A generic uniformization-like construction (Cg )e — Cg for monoidal C with certain
homsets

Some take-aways:

e Important ingredient in uniformization: monoidal closure
e Slick formalization w/o categories (using e.g. transition monoids)?
e Additive connectives are important for trees
e Links between planar Gol, two-way transducers and first-order fragments

o Further links with tree-walking automata?

33/34



Conclusion

Stry [A] — Bool with A linear (adapted as needed):

A-calculus languages || status

simply typed regular v'[Hillebrand & Kanellakis 1996 ]
linear or affine regular v

non-commutative linear or affine | star-free v

Strr[A] —o Strs with A affine (adapted as needed):

A-calculus | transducers || status
linear (without additives) weird (?) v (?)
affine regular functions v
non-commutative affine first-order regular fn. || v?
linear/affine with additives | regular functions v
parsimonious polyregular W
simply typed variant of CPDA??? 7?7
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Conclusion

Stry [A] — Bool with A linear (adapted as needed):

A-calculus languages || status

simply typed regular v'[Hillebrand & Kanellakis 1996 ]
linear or affine regular v

non-commutative linear or affine | star-free v

Strr[A] —o Strs with A affine (adapted as needed):

A-calculus | transducers || status
linear (without additives) weird (?) v (?)
affine regular functions v
non-commutative affine first-order regular fn. || v?
linear/affine with additives | regular functions v
parsimonious polyregular W
simply typed variant of CPDA??? 7?7

+ a characterization of Str[A] — Str as comparison-free polyregular functions
Thanks for listening! Questions? 34,34



Dropping the additives for string-to-string functions

String functions without additive
e Still an equivalence, but non-trivial (solution via Krohn--Rhodes)
e Allows Gol-style interpretation in categories of diagrams

~ Interpretation as bidirectional automata (w/o registers)

Planar diagrams

>

FO fragments



Dropping the additives

o Allows Gol-style interpretation in categories of diagrams (2 Int(FinPartlnj))

~ Interpretation as two-way automata [Hines 2003]

Define regular languages

o
00 S00O
0O 000O
0O S09O
00 S00O

1

o

Every linear term f : Stry;[A] —o Bool with A —-free defines a regular language.



Dropping the additives and commutativity

o Allows Gol-style interpretation in categories of planar diagrams

~+ Interpretation as two-way planar automata [Hines 2003,2006]

Define star-free languages

©
0SS0
oS 600O
0000
00000

1

()

Consequence [Nguyén, P. 2020]

Every planar linear term ¢ : Stry,[A] —o Str with A —-free defines a star-free language.



Dropping the additives and commutativity

e Allows Gol-style interpretation in categories of planar labelled diagrams

~+ Interpretation as two-way planar transducers (2DFTs; w/o registers)  [Hines 2003,2006]

Define first-order regular functions

ba a €

® o o o o *
b a b
ab () ) () L
a
© © .0 - -0  ©. — e
) e e e bbbaa e e abbaaabbaaaba e
a baa
® o o o

Consequence

Every planar linear term f : Stry;[A] —o Str with A —-free defines a FO-transduction.



Dropping the additives and commutativity

e Allows Gol-style interpretation in categories of planar labelled diagrams

~+ Interpretation as two-way planar transducers (2DFTs; w/o registers)  [Hines 2003,2006]

Define first-order regular functions

ba a €

® o o o o *
b a b
ab () ) () L
a
© © .0 - -0  ©. — e
) e e e bbbaa e e abbaaabbaaaba e
a baa
® o o o

Consequence

Every planar linear term f : Stry;[A] —o Str with A —-free defines a FO-transduction.

Alas, planar linear terms are much weaker than FO-transductions  (preserve Parikh images)



Dropping the additives and commutativity

e Allows Gol-style interpretation in categories of planar labelled diagrams

~ Interpretation as two-way planar transducers (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions

ba a €

® 6 o o o *
b a b
ab () ) () L
a
© © .0 - -0  ©. — e
) e e e bbbaa e abbaaabbaaaba e
¢ o o

Conjecture
Every planar affine term ¢t : Stry[A] — Str with A —-free defines a FO-transduction.

The converse holds (main ingredient for the proof: the Krohn-Rhodes theorem)



A category of planar diagrams

o Interpret purely linear non-commutative A-terms in a monoidal closed category
e We consider a non-commutative refinement of Geometry of Interaction

(well-known model of linear logic)
A compact closed category of planar diagrams

e Objects: words in {+, —}*
e Morphisms 1 — v : graphs over |u| + |v| with

o degree < 1 for every node

e polarity restrictions
e planarity restriction

To compute the composition of two morphisms, follow the paths (and forget the middle

o e e

component)



Compact-closure and interpretation of the \-calculus

Structure to interpret the linear A-calculus
e Monoidal product A ® B given by concatenation e =
e Duals A*: reverse and flip polarities
e Monoidal closure by setting A — B = A* ® B
e Interpretation of types [A] by induction with L)
[o] = + e| =
g

(injective interpretation of booleans)

Examples

[((0 —00) —0-—o0) —0 ((0 <0) —0) —0] = —++———++

VA f (. x) (8 (. x)] =
e © © ¢ ¢ © o ©



Aperiodicity

To conclude, we need to show that every (Hom(A, A), o) is finite and aperiodic for every A

‘R-class determined by:

R-class determined by: the internal wiring on the left

+

the internal wiring on the left positions of the input nodes
+

positions of the input nodes

VA

Therefore: planar = H-trivial

e More elementary proofs w/o Green relations possible (e.g. order+Kleene's theorem)



Aperiodicity

To conclude, we need to show that every (Hom(A, A), o) is finite and aperiodic for every A

‘R-class determined by:

R-class determined by: the internal wiring on the left

+

the internal wiring on the left positions of the input nodes
+

positions of the input nodes

VA

Therefore: planar = H-trivial

e More elementary proofs w/o Green relations possible (e.g. order+Kleene's theorem)
e Planarity restriction is essential (consider Q)



Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

) e ] () ] ]
e e e e
) () [+ ] ) — @
() © o o e -+
e e e e
e Transition functions § : ¥ — Hom(Q, Q) for some object Q Q ~ set of directed states

e (actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))
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Planarity restriction = the transition flow monoid is aperiodic
(links between Gol and planar 2DFAs already considered by (Hines 2003))



Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

) e ] () ] ]
e e e e
) () [+ ] ) — @
() © o o e -+
e e e e
e Transition functions § : ¥ — Hom(Q, Q) for some object Q Q = set of directed states

(actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))

Planarity restriction = the transition flow monoid is aperiodic
(links between Gol and planar 2DFAs already considered by (Hines 2003))

Theorem
Star-free languages are exactly those recognized by planar 2DFAs.



More generally: first-order transductions

Consider a richer category of diagrams where edges are labelled by output words
(labels of compositions given by concatenation)

ba @ &

® © o o o ¢
B a b
w/ @ () () e
a
® ©.06 .0 o. e
) e e 3 bbbaa e e abbaaabbaaaba 9
@ baa
© o o o

Much like before, corresponding notion of (planar) 2DFTs.

Theorem
First-order transduction (FO regular functions) = reversible planar 2DFTs.

e aperiodic 2DFTs = FO regular functions [Carton&Dartois 2015]
(hence reversible planar 2DFTs C FO-transductions)
e FO transduction C reversible planar 2DFTs: compose + Krohn—Rhodes
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