Implicit automata in typed λ -calculi: regular functions

Cécilia Pradic (Swansea University) j.w.w. Lê Thành Dũng (a.k.a. Tito) Nguyễn (ÉNS Lyon)

June 28th 2023

Defined inductively, with *x* ranging over variables

 $t, u ::= x \mid \lambda x.t \mid t u$

Defined inductively, with *x* ranging over variables

$$t, u ::= x \mid \lambda x.t \mid t u$$

• Introduced by Alonzo Church in the 30s

Defined inductively, with *x* ranging over variables

 $t, u ::= x \mid \lambda x.t \mid t u$

- Introduced by Alonzo Church in the 30s
- An algebra for anonymous *functions*

 $\lambda x.t \simeq x \mapsto t$

• The core functional programming language

Real-world examples of extensions: Scheme, ML, Haskell...

Defined inductively, with *x* ranging over variables

 $t, u ::= x \mid \lambda x.t \mid t u$

- Introduced by Alonzo Church in the 30s
- An algebra for anonymous *functions*

 $\lambda x.t \simeq x \mapsto t$

• The core functional programming language

Real-world examples of extensions: Scheme, ML, Haskell...

• Turing-complete

Examples

• The identity function	$\lambda x. x$
Composition	$\lambda f g x. f (g x)$
Church numeral	$\underline{2} = \lambda s z. s (s z)$
• Stranger things	$\lambda x. x x$

Some technical details:

• Equality up to renaming of bound variables

• Notations: $\lambda x y \cdot t = \lambda x \cdot \lambda y \cdot t$

• Capture-avoiding subsitution t[u/x]

 $x[t/x] = t \qquad (t u)[v/x] = t[v/x] u[v/x] \qquad (\lambda y.t)[u/x] = \lambda y.t[u/x] \quad (x \neq y, y \notin FV(u))$

and t u v = (t u) v

 α -conversion

One-step β **-reduction**

 \rightarrow_{β} is the closure under congruence of

 $(\lambda x.t) \ u \rightarrow_{\beta} t[u/x]$

One-step β **-reduction**

 \rightarrow_β is the closure under congruence of

 $(\lambda x.t) \ u \rightarrow_{\beta} t[u/x]$

• \rightarrow_{β} non-deterministic

One-step β **-reduction**

 \rightarrow_β is the closure under congruence of

 $(\lambda x.t) \ u \rightarrow_{\beta} t[u/x]$

- \rightarrow_{β} non-deterministic
- Call \rightarrow^* its reflexive transitive closure
- Call a λ -term *t* **normal** if $t \not\rightarrow_{\beta}$

One-step β **-reduction**

 \rightarrow_β is the closure under congruence of

 $(\lambda x.t) u \rightarrow_{\beta} t[u/x]$

- \rightarrow_{β} non-deterministic
- Call \rightarrow^* its reflexive transitive closure
- Call a λ -term *t* **normal** if $t \not\rightarrow_{\beta}$

One-step β **-reduction**

 \rightarrow_{β} is the closure under congruence of

 $(\lambda x.t) \ u \rightarrow_{\beta} t[u/x]$

- \rightarrow_{β} non-deterministic
- Call \rightarrow^* its reflexive transitive closure
- Call a λ -term *t* **normal** if $t \not\rightarrow_{\beta}$

 \rightsquigarrow Well-behaved notion of computation

- Each term reduce to ≤ 1 normal form
- Independent of the evaluation strategy
- Example:

$$\begin{split} \lambda s.\underline{1} \ s \ (\underline{1} \ s) & \longrightarrow_{\beta} \quad \lambda s.(\lambda z.s \ z) \ (\underline{1} \ s) \\ & \longrightarrow_{\beta} \quad \lambda s.(\lambda z.s \ z \ (\underline{1} \ s) \\ & \longrightarrow_{\beta} \quad \lambda s.(\lambda z.s \ z) (\lambda z.s \ z) \\ & \longrightarrow_{\beta} \quad \lambda s.(s \ z) \end{split}$$

Type systems

Rationale

Classify well-behaved sets of programs

- Practical motivations
- Proof-theoretical motivations

Crash-free programs Curry-Howard correspondence

Type systems

Rationale

Classify well-behaved sets of programs

- Practical motivations
- Proof-theoretical motivations

Crash-free programs

Curry-Howard correspondence

All type systems for λ -calculus **here**after will satisfy the following

Subject reduction (SR)

If $t \rightarrow_{\beta} u$ and t has type A(t : A), then so does u

"Types are invariant under computation"

Type systems

Rationale

Classify well-behaved sets of programs

- Practical motivations
- Proof-theoretical motivations

Crash-free programs

Curry-Howard correspondence

All type systems for λ -calculus **here**after will satisfy the following

Subject reduction (SR)

If $t \rightarrow_{\beta} u$ and t has type A(t : A), then so does u

"Types are invariant under computation"

Strong normalization (SN)

If t : A, then t will always reduce to a normal form.

"All typed programs terminate (no matter what is the evaluation strategy)"

Simple types

$$A, B ::= o \mid A \rightarrow B$$

o is a fixed ground type

Typing rules

• Variable

• λ -abstraction

• Application

$$\overline{\Gamma, x : A, \Gamma' \vdash x : A}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A}$$

$$\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A$$

$$\Gamma \vdash t \ u : A$$

6/34

System F

Simple types		
	$A,B ::= X \mid \forall X.A \mid A \to B$	
		X is a type variable
Typing rules		
STLC rules with		
• \forall -intro (<i>X</i> free in Γ)	$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall X.A}$	
● ∀-elim	$\frac{\Gamma \vdash t : \forall X.A}{\Gamma \vdash t : A[B/X]}$	

• SN much harder to prove

Requires impredicativity

• Convenient for programming

Church encoding of strings

Impredicative encodings

• The type of booleans Bool

- The type of natural numbers $\mathbb N$
- The type of binary strings Str

 $\forall X.X \to X \to X$ <u>true</u> = $\lambda x \ y.x$ <u>false</u> = $\lambda x \ y.y$ $\forall X.(X \to X) \to X \to X$ $\forall X.(X \to X) \to (X \to X) \to X \to X$

Church encoding $w \mapsto \underline{w}$ of strings $\{a, b\}^*$ into Str

 $abba \qquad \mapsto \qquad \lambda a \ b \ e. \ a \ (b \ (b \ (a \ e)))$

Church encoding of strings

Impredicative encodings

• The type of booleans Bool

- The type of natural numbers \mathbb{N}
- The type of binary strings Str

 $\forall X.X \to X \to X$ <u>true</u> = $\lambda x \ y.x$ <u>false</u> = $\lambda x \ y.y$ $\forall X.(X \to X) \to X \to X$ $\forall X.(X \to X) \to (X \to X) \to X \to X$

Church encoding $w \mapsto \underline{w}$ of strings $\{a, b\}^*$ into Str

 $abba \mapsto \lambda a \ b \ e. \ a \ (b \ (a \ e)))$

Consequence of SN

For every *t* : Str, there is $w \in \{a, b\}^*$ s.t. $t \to^* \underline{w}$

Affine/Linear λ **-calculus**

Resource-aware decomposition of STLC/System F.

Affine/Linear types

$$A,B ::= !A | A \otimes B | A \multimap B | \dots$$

• Terms of type $A \multimap B$ use their arguments at most/exactly once

$$\frac{\Gamma \vdash t : A \multimap B \qquad \Delta \vdash u : A}{\Gamma, \Delta \vdash t \; u : B}$$

Affine/Linear λ **-calculus**

Resource-aware decomposition of STLC/System F.

Affine/Linear types

$$A,B ::= !A | A \otimes B | A \multimap B | \dots$$

• Terms of type $A \multimap B$ use their arguments at most/exactly once

	$\Gamma \vdash t : A \multimap B$	$\Delta \vdash u : A$
$\overline{x:A \vdash x:A}$	$\Gamma, \Delta \vdash t$	u : B

• ! allows duplication and discarding

$$!A \multimap !A \otimes !A \qquad \qquad !A \otimes B \multimap B$$

 \rightsquigarrow Encode $A \rightarrow B$ as $!A \multimap B$

Affine/Linear λ **-calculus**

Resource-aware decomposition of STLC/System F.

Affine/Linear types

$$A,B ::= !A | A \otimes B | A \multimap B | \dots$$

• Terms of type $A \multimap B$ use their arguments at most/exactly once

$$\frac{\Gamma \vdash t : A \multimap B}{\Gamma, \Delta \vdash t u : B} \xrightarrow{\Delta \vdash u : A}$$

• ! allows duplication and discarding

$$!A \multimap !A \otimes !A \qquad \qquad !A \otimes B \multimap B$$

 \rightsquigarrow Encode $A \rightarrow B$ as $!A \multimap B$

Example

Str is isomorphic to

$$\mathsf{Str}^L = \forall X.!(X \multimap X) \multimap !(X \multimap X) \multimap X \multimap X$$

but certainly not to $\forall X.(X \multimap X) \multimap (X \multimap X) \multimap X \multimap X$

Implicit computational complexity

Problems

Fix a programming language and a type $\mathsf{Str} \to \mathsf{Bool}$

 \rightsquigarrow class of functions implemented by terms $t : \mathsf{Str} \to \mathsf{Bool}$?

• Landmark paper: safe recursion

PTIME [Bellantoni-Cook, 1992]

• A few characterizations based on linear λ -calculi

LLL/ μ ELL2 for **PTIME** for instance [Girard 1996, Baillot 2005]

Implicit computational complexity

Problems

Fix a programming language and a type $\mathsf{Str} \to \mathsf{Bool}$

 \rightsquigarrow class of functions implemented by terms $t : \mathsf{Str} \to \mathsf{Bool}$?

• Landmark paper: safe recursion

PTIME [Bellantoni-Cook, 1992]

• A few characterizations based on linear λ -calculi

LLL/ μ ELL2 for **PTIME** for instance [Girard 1996, Baillot 2005]

Remark			
	Un(i)typed λ -calculus	\simeq	recursive functions
	System F	\simeq	PA2-definable recursive functions

Implicit computational complexity

Problems

Fix a programming language and a type $\mathsf{Str} \to \mathsf{Bool}$

 \rightsquigarrow class of functions implemented by terms $t : \mathsf{Str} \to \mathsf{Bool}$?

• Landmark paper: safe recursion

PTIME [Bellantoni-Cook, 1992]

• A few characterizations based on linear λ -calculi

LLL/µELL2 for PTIME for instance [Girard 1996, Baillot 2005]

Remark			
	Un(i)typed λ -calculus	≃	recursive functions
	System F	≃	PA2-definable recursive functions

 \rightsquigarrow What about STLC?

Impredicative encodings in STLC

A slight wrinkle: quantification unavailable

• Define
$$Str[A] = (A \to A) \to (A \to A) \to A \to A$$

 $Bool[A] = A \to A \to A$

Definition

We call a language $L \subseteq \{a, b\}^*$ definable in STLC iff there exists

- a simple type *A*
- a simply-typed λ -term $t : Str[A] \rightarrow Bool[o]$

such that for every $w \in \{a, b\}^*$,

$$t \underline{w} \to^* \underline{\text{true}} \quad \text{iff} \quad w \in L$$

• Note that if $t : Str[A] \rightarrow Bool[o]$, then $t : Str \rightarrow Bool$ in System F

 $\rightsquigarrow \text{SN guarantees } t \ \underline{w} \rightarrow^* \underline{\text{true}} \quad \text{or} \quad t \ \underline{w} \rightarrow^* \underline{\text{false}} \text{ for every } w \in \{a, b\}^*$

Theorem [Hillebrand and Kanellakis, 1996]

The STLC definable languages are the regular languages.

Theorem [Hillebrand and Kanellakis, 1996]

The STLC definable languages are the regular languages.

 (\Leftarrow) The encoding of DFAs in System F goes through

• I.e., impredicative quantification are spurious

Theorem [Hillebrand and Kanellakis, 1996]

The STLC definable languages are the regular languages.

 (\Leftarrow) The encoding of DFAs in System F goes through

• I.e., impredicative quantification are spurious

 (\Rightarrow) Semantic evaluation of $t : Str[A] \rightarrow Bool[o]$

Theorem [Hillebrand and Kanellakis, 1996]

The STLC definable languages are the regular languages.

 (\Leftarrow) The encoding of DFAs in System F goes through

• I.e., impredicative quantification are spurious

 (\Rightarrow) Semantic evaluation of $t : Str[A] \rightarrow Bool[o]$

• Interpret types as finite sets with $[\![o]\!] = \{$ true, false $\}$

Set inductively $\llbracket A \to B \rrbracket = \llbracket B \rrbracket^{\llbracket A \rrbracket}$

• At the level of λ -terms, t : A yields $\llbracket t \rrbracket \in \llbracket A \rrbracket$

Theorem [Hillebrand and Kanellakis, 1996]

The STLC definable languages are the regular languages.

 (\Leftarrow) The encoding of DFAs in System F goes through

• I.e., impredicative quantification are spurious

 (\Rightarrow) Semantic evaluation of $t : Str[A] \rightarrow Bool[o]$

• Interpret types as finite sets with $[\![o]\!] = \{$ true, false $\}$

Set inductively $\llbracket A \to B \rrbracket = \llbracket B \rrbracket^{\llbracket A \rrbracket}$

- At the level of λ -terms, t : A yields $\llbracket t \rrbracket \in \llbracket A \rrbracket$
- Note that $w \mapsto wa$ is definable by a term $c_a : \operatorname{Str}[A] \to \operatorname{Str}[A]$

Theorem [Hillebrand and Kanellakis, 1996]

The STLC definable languages are the regular languages.

 (\Leftarrow) The encoding of DFAs in System F goes through

• I.e., impredicative quantification are spurious

 (\Rightarrow) Semantic evaluation of $t : Str[A] \rightarrow Bool[o]$

• Interpret types as finite sets with $\llbracket o \rrbracket = \{ true, false \}$

Set inductively $\llbracket A \to B \rrbracket = \llbracket B \rrbracket^{\llbracket A \rrbracket}$

- At the level of λ -terms, t : A yields $\llbracket t \rrbracket \in \llbracket A \rrbracket$
- Note that $w \mapsto wa$ is definable by a term $c_a : Str[A] \to Str[A]$
- Build a DFA $(Q, \llbracket \epsilon \rrbracket, \delta, F)$

 $Q = \llbracket \mathsf{Str}[A] \rrbracket \qquad \qquad \delta(q, a) = \llbracket c_a \rrbracket(q) \qquad \qquad q \in F \Leftrightarrow \llbracket t \rrbracket(q) = \llbracket \underline{\mathsf{true}} \rrbracket$

Definition

We call a function $f: \{a, b\}^* \to \{a, b\}^*$ **definable in STLC** iff there is

- a simple type *A*
- a simply-typed λ -term $t : Str[A] \rightarrow Str[o]$

such that for every $w \in \{a, b\}^*$,

 $t \underline{u} \to^* \underline{v}$ iff f(u) = v

Definition

We call a function $f : \{a, b\}^* \to \{a, b\}^*$ **definable in STLC** iff there is

- a simple type *A*
- a simply-typed λ -term $t : Str[A] \rightarrow Str[o]$

such that for every $w \in \{a, b\}^*$,

$$t \underline{u} \to^* \underline{v} \quad \text{iff} \quad f(u) = v$$

• Closed under composition

Definition

We call a function $f: \{a, b\}^* \to \{a, b\}^*$ **definable in STLC** iff there is

- a simple type *A*
- a simply-typed λ -term $t : Str[A] \rightarrow Str[o]$

such that for every $w \in \{a, b\}^*$,

$$t \underline{u} \to^* \underline{v}$$
 iff $f(u) = v$

- Closed under composition
- By Hillebrand and Kanellakis' theorem

f STLC-definable \land L regular \Rightarrow $f^{-1}(L)$ regular

Definition

We call a function $f: \{a, b\}^* \to \{a, b\}^*$ **definable in STLC** iff there is

- a simple type *A*
- a simply-typed λ -term $t : Str[A] \rightarrow Str[o]$

such that for every $w \in \{a, b\}^*$,

$$t \underline{u} \to^* \underline{v}$$
 iff $f(u) = v$

- Closed under composition
- By Hillebrand and Kanellakis' theorem

f STLC-definable \land L regular \Rightarrow $f^{-1}(L)$ regular

• Contains HDT0L-transduction

 \equiv copyful streaming string transducers, a kind of register automata

Definition

We call a function $f : \{a, b\}^* \to \{a, b\}^*$ **definable in STLC** iff there is

- a simple type *A*
- a simply-typed λ -term $t : Str[A] \rightarrow Str[o]$

such that for every $w \in \{a, b\}^*$,

$$t \underline{u} \to^* \underline{v}$$
 iff $f(u) = v$

- Closed under composition
- By Hillebrand and Kanellakis' theorem

f STLC-definable \land L regular \Rightarrow $f^{-1}(L)$ regular

• Contains HDT0L-transduction

 \equiv copyful streaming string transducers, a kind of register automata

• But we do not know more at the moment
Simplification: the affine case

We now turn to affine $\lambda\text{-calculus}$ and set

$$\mathsf{Str}^{L}[A] = !(A \multimap A) \multimap !(A \multimap A) \multimap A \multimap A$$

Simplification: the affine case

We now turn to affine λ -calculus and set

$$\mathsf{Str}^{L}[A] = !(A \multimap A) \multimap !(A \multimap A) \multimap A \multimap A$$

Definition

We call $f: \{a, b\}^* \to \{a, b\}^*$ definable in affine STLC iff there is

• a !-free linear type A

(i.e., $!o \text{ or } \mathsf{Str}^L[o] \text{ unavailable}$)

• a simply-typed **affine** λ -term $t : \mathsf{Str}^{L}[A] \to \mathsf{Str}^{L}[o]$

such that for every $u, v \in \{a, b\}^*$,

$$t \underline{u} \to^* \underline{v}$$
 iff $f(u) = v$

Simplification: the affine case

We now turn to affine $\lambda\text{-calculus}$ and set

$$\mathsf{Str}^{L}[A] = !(A \multimap A) \multimap !(A \multimap A) \multimap A \multimap A$$

Definition

We call $f: \{a, b\}^* \to \{a, b\}^*$ definable in affine STLC iff there is

• a !-free linear type A

(i.e., $!o \text{ or } \mathsf{Str}^L[o] \text{ unavailable}$)

• a simply-typed **affine** λ -term $t : Str^{L}[A] \rightarrow Str^{L}[o]$

such that for every $u, v \in \{a, b\}^*$,

$$t \underline{u} \to^* \underline{v}$$
 iff $f(u) = v$

• Same niceness properties as for STLC-definable

Regular functions are a classical topic, many equivalent definitions... One of them: **copyless** *streaming string transducers* [Alur & Černý 2010] ~> sounds suspiciously like affine types!

Definition

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$

Definition

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \epsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$

Execution over abaa: start with

$$X = \varepsilon \qquad Y = \varepsilon$$

Definition

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$

$$X = a$$
 $Y = a$

Definition

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$

$$X = ab$$
 $Y = ba$

Definition

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$

$$X = aba$$
 $Y = aba$

Definition

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$

$$X = abaa$$
 $Y = aaba$

Definition

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$

• "output function" e.g. **out** = *XY*

Execution over *abaa*: f(abaa) = abaaaaba

$$X = abaa \qquad Y = aaba$$

Definition

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$

Execution over *abaa*: f(abaa) = abaaaaba

$$X = abaa \qquad Y = aaba$$

f restricted to $\{a, b\}^*$: corresponds to $w \mapsto w \cdot reverse(w)$

Stateful streaming string transducers

SSTs can also have *states*: their memory is $Q \times (\Sigma^*)^R$ (with $|Q| < \infty$)

Stateful streaming string transducers

SSTs can also have *states*: their memory is $Q \times (\Sigma^*)^R$ (with $|Q| < \infty$)

Copylessness restriction

Each register appears *at most once* on RHS of \leftarrow

(for each fixed input letter, at most once among all the associated \leftarrow)

Intuition: memory $M = Q \otimes \Sigma^* \otimes \ldots \otimes \Sigma^*$, transitions $M \multimap M$

 $(Q \cong 1 \oplus \ldots \oplus 1, \operatorname{concat} : \Sigma^* \otimes \Sigma^* \multimap \Sigma^*)$

Categorical automata

A framework for "single-pass" automata [Colcombet & Petrişan 2017]

- internal memory = object of a *category* C
- transitions = morphisms (and [letter \mapsto transition] = functor $\mathcal{T}_{\Sigma} \rightarrow \mathcal{C}$)

$$\mathcal{T}_{\Sigma} = \bullet \xrightarrow{a \in \Sigma} \bullet \longrightarrow \bullet \mathcal{C}$$

Categorical automata

A framework for "single-pass" automata [Colcombet & Petrişan 2017]

- internal memory = object of a *category* C
- transitions = morphisms (and [letter \mapsto transition] = functor $\mathcal{T}_{\Sigma} \rightarrow \mathcal{C}$)

$$\mathcal{T}_{\Sigma} = \bullet \longrightarrow \bullet \longrightarrow \bullet \qquad \longrightarrow \quad \mathcal{C}$$

Formally

A streaming setting \mathfrak{C} with output *X* is a tuple $(\mathcal{C}, \mathbb{T}, \mathbb{L}, out)$ with

- *C* a category
- \mathbb{T} and \mathbb{L} objects of \mathcal{C}
- $out : Hom_{\mathcal{C}}(\mathbb{T}, \mathbb{L}) \to X$ a set-theoretic-map

Notion of C-automaton

(abusively called C-automata in the sequel)

Formally

A streaming setting \mathfrak{C} with output *X* is a tuple (\mathcal{C} , \mathbb{T} , \mathbb{L} , *out*) with

- C a category
- \mathbb{T} and \mathbb{L} objects of \mathcal{C}
- *out* : Hom_C (\mathbb{T} , \mathbb{L}) \rightarrow *X* a set-theoretic-map

Notion of C-automaton

(abusively called *C*-automata in the sequel)

Some examples in the wild:

- DFAs: C = Finset, T = 1, \bot = 2
- Hom_C $(n,k) = \mathbb{Q}[X_1, \dots, X_n]^k$ = polynomial automata
- Exercise: C = the Lawvere theory of the string, T = 1, L = t

SSTs as categorical automata

The register category with output alphabet Σ

• **Objects:** finite sets *R*, *S*

think register variables

Morphisms: Hom_R (R, S) = maps S → (R + Σ)* corresponding to copyless register affectations

 $\sum_{s\in S} |f(s)|_r \le 1$

- Monoidal with $\otimes = +$
- Free affine monoidal category over an object $\Sigma^* = \{\bullet\}$, morphisms $\varepsilon, a : \mathbf{I} \to \Sigma^*$ for $a \in \Sigma$ and $cat : \Sigma^* \otimes \Sigma^* \to \Sigma^*$
- For the streaming setting, take $\mathbb{T} = \mathbf{I} = 0$ and $\mathbb{L} = \Sigma^* = \{\bullet\}$

SSTs as categorical automata

The register category with output alphabet Σ

• **Objects:** finite sets *R*, *S*

think register variables

Morphisms: Hom_R (R, S) = maps S → (R + Σ)* corresponding to copyless register affectations

 $\sum_{s\in S} |f(s)|_r \le 1$

- Monoidal with $\otimes = +$
- Free affine monoidal category over an object $\Sigma^* = \{\bullet\}$, morphisms $\varepsilon, a : \mathbf{I} \to \Sigma^*$ for $a \in \Sigma$ and $cat : \Sigma^* \otimes \Sigma^* \to \Sigma^*$
- For the streaming setting, take $\mathbb{T} = \mathbf{I} = 0$ and $\mathbb{L} = \Sigma^* = \{\bullet\}$

Definition of the free finite coproduct completion \mathcal{C}_\oplus

- **Objects:** formal finite sums $\bigoplus_{u \in U} C_u$ of objects of C
- Morphisms: $\operatorname{Hom}_{\mathcal{C}_{\oplus}}\left(\bigoplus_{u} C_{u}, \bigoplus_{v} D_{v}\right) = \prod_{u} \sum_{v} \operatorname{Hom}_{\mathcal{C}}\left(C_{u}, D_{v}\right)$
- Morphisms $\bigoplus_{q \in Q} R \rightarrow \bigoplus_{q \in Q} R$ correspond to transitions in a SST
- Canonical embedding $\mathcal{C} \to \mathcal{C}_\oplus$ allows to lift streaming settings

Compiling into higher-order transducers

Transductions definable in linear λ -calculus can be turned into automata over a category \mathcal{L} of purely linear λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)

Claim

 \mathcal{L} -automata compute the same string functions as λ -terms.

Proof: syntactic analysis of normal forms

Compiling into higher-order transducers

Transductions definable in linear λ -calculus can be turned into automata over a category \mathcal{L} of purely linear λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)

Claim

 \mathcal{L} -automata compute the same string functions as λ -terms.

Proof: syntactic analysis of normal forms

Compiling into higher-order transducers

Transductions definable in linear λ -calculus can be turned into automata over a category \mathcal{L} of purely linear λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)

Claim

 \mathcal{L} -automata compute the same string functions as λ -terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear λ **-definable** \implies **regular function**

Define a *functor* $\mathcal{L} \to \mathcal{R}_{\oplus}$ preserving enough structure

Useful fact: there is a canonical functor from \mathcal{L} to any *symmetric monoidal closed category* with (co)products

Unfortunately \mathcal{R}_{\oplus} is **not** monoidal closed...

So far, we encountered:

- \mathcal{L} : category of purely linear λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)
- \mathcal{R} : category of finite sets of registers and copyless assignments
- \mathcal{R}_{\oplus} : free finite coproduct completion of the latter (add states)

Now consider:

• the free finite *product* completion: $\mathcal{C} \mapsto \mathcal{C}_{\&} = ((\mathcal{C}^{op})_{\oplus})^{op}$

Objects: formal products $\&_x C_x$

• the composite completion $\mathcal{C} \mapsto \mathcal{C}_{\&} \mapsto (\mathcal{C}_{\&})_{\oplus}$

Objects: formal sums of products $\bigoplus_{u} \&_{x} C_{u,x}$

similar to de Paiva's *Dialectica* categories **DC**, think $\exists u. \forall x. \varphi(u, x)$

Goals toward our main theorem

- Structure: $(\mathcal{R}_{\&})_{\oplus}$ has finite products and is monoidal closed
- Conservativity: $(\mathcal{R}_{\&})_{\oplus}$ -automata and \mathcal{R}_{\oplus} -automata are equivalent

Structure (1): generic remarks $(\mathcal{C}_{\&})_{\oplus}$

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

 $A \otimes (B \& C) \equiv (A \otimes B) \& (A \otimes C) \qquad A \otimes (B \oplus C) \equiv (A \otimes B) \oplus (A \otimes C)$

• In particular, $(\mathcal{C}_{\&})_{\oplus}$ has distributive cartesian products

 $A \& (B \oplus C) \equiv (A \& B) \oplus (A \& C)$

When embedded in (co)presheafs \cong Day convolution

Structure (1): generic remarks $(\mathcal{C}_{\&})_{\oplus}$

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

 $A \otimes (B \& C) \equiv (A \otimes B) \& (A \otimes C) \qquad A \otimes (B \oplus C) \equiv (A \otimes B) \oplus (A \otimes C)$

• In particular, $(\mathcal{C}_{\&})_{\oplus}$ has distributive cartesian products

$$A \& (B \oplus C) \equiv (A \& B) \oplus (A \& C)$$

When embedded in (co)presheafs \cong Day convolution

Lemma

If C *is symmetric monoidal and* C_{\oplus} *has the internal homs* $A \multimap B$ *for all* $A, B \in C$ *, then* $(C_{\&})_{\oplus}$ *is symmetric monoidal closed.*

$$\left(\bigoplus_{u\in U} \bigotimes_{x\in X_u} A_x\right) \multimap \left(\bigoplus_{v\in V} \bigotimes_{y\in Y_v} B_y\right) = \bigotimes_{u\in U} \bigoplus_{v\in V} \bigotimes_{y\in Y_v} \bigoplus_{x\in X_u} A_x \multimap B_y$$

Lemma

 \mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.

The construction appears in the original SST paper [Alur & Černý 2010] without the categorical vocabulary.

$$\begin{cases} X := abXcY \\ Y := ba \end{cases} \longrightarrow \text{ shape } \begin{cases} X := Z_1XZ_2Y \\ Y := Z_3 \end{cases} + \text{ parameters } Z_1 = ab, \dots \end{cases}$$

 $copyless SST \implies$ finitely many shapes: use as states; registers for parameters

Lemma

 \mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.

The construction appears in the original SST paper [Alur & Černý 2010] without the categorical vocabulary.

$$\begin{cases} X := abXcY \\ Y := ba \end{cases} \longrightarrow \text{ shape } \begin{cases} X := Z_1XZ_2Y \\ Y := Z_3 \end{cases} + \text{ parameters } Z_1 = ab, \dots \end{cases}$$

 $copyless SST \implies$ finitely many shapes: use as states; registers for parameters

Conclusion

 $(\mathcal{R}_\&)_\oplus$ is symmetric monoidal closed (and almost affine).

Conservativity

Lemma

 $(\mathcal{C}_{\&})_{\oplus}$ automata are equivalent to non-deterministic \mathcal{C}_{\oplus} automata.

A uniformization (\sim determinization) theorem is enough to conclude

Conservativity

 $(\mathcal{R}_{\&})_{\oplus}\text{-}automata$ are equivalent to standard SSTs.

- Uniformization already known [Alur & Deshmuk 2011]
- Argument implicitly based on monoidal closure!

Theorem

For any monoidal category C, if C_{\oplus} has all the internal homsets $A \multimap B$ for $A, B \in C$, then $(C_{\&})_{\oplus}$ -automata and C_{\oplus} -automata are equivalent.

Just discussed:

Today's main theorem [Nguyễn & P.]	
regular string function \iff	definable by some $t : \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in ILL with A purely linear

Some thoughts:

- Non-trivial technical arguments, for good reasons λ -terms comp
 - λ -terms compose easily
- More conceptual POV on the uniformization argument? Is --- overkill?
- The category of register: an **affine clone** of the PROP of the string \rightarrow linear clone + $\oplus\&\Rightarrow$ smcc

Regular tree-to-tree functions

Over ranked alphabets such as e.g. $\Sigma = \{b : 2, u : 1, \varepsilon : 0\}$

 $b(b(\varepsilon, u(\varepsilon)), \varepsilon)$

 $\lambda b \ u \ \varepsilon. \ b \ (b \ \varepsilon \ (u \ \varepsilon)) \ \varepsilon : \operatorname{Tree}_{\Sigma}$

$$\operatorname{Tree}_{\Sigma} = (o \multimap o \multimap o) \to (o \multimap o) \to o \to o$$

Main theorem for trees [Nguyễn & P.]

regular *tree* function \iff

definable by some t : $\operatorname{Tree}_{\Gamma}[A] \multimap \operatorname{Tree}_{\Sigma}$ in ILL with A purely linear

Regular tree-to-tree functions

Over ranked alphabets such as e.g. $\Sigma = \{b : 2, u : 1, \varepsilon : 0\}$

 $b(b(\varepsilon, u(\varepsilon)), \varepsilon)$

 $\lambda b \ u \ \varepsilon. \ b \ (b \ \varepsilon \ (u \ \varepsilon)) \ \varepsilon : \operatorname{Tree}_{\Sigma}$

$$\operatorname{Tree}_{\Sigma} = (o \multimap o \multimap o) \to (o \multimap o) \to o \to o$$

Main theorem for trees [Nguyễn & P.]

regular *tree* function \iff

definable by some t : $\operatorname{Tree}_{\Gamma}[A] \multimap \operatorname{Tree}_{\Sigma}$ in ILL with A purely linear

Important: additive connectives need to be included!

Additives are required for trees

Copyless streaming *tree* transducers \subset regular *tree* functions; conjectured to be *strict*. To recover an equality: ad-hoc relaxation called "single use restriction".

Additives are required for trees

Copyless streaming *tree* transducers \subset regular *tree* functions; conjectured to be *strict*. To recover an equality: ad-hoc relaxation called "single use restriction".

Principled explanation via linear logic: just allow the *additive conjunction* in the internal memory!

e.g.
$$M = Q \otimes \Sigma^* \otimes (\Sigma^* \& \Sigma^*) = \bigoplus_{q \in Q} \Sigma^* \otimes (\Sigma^* \& \Sigma^*)$$

Additives are required for trees

Copyless streaming *tree* transducers \subset regular *tree* functions; conjectured to be *strict*. To recover an equality: ad-hoc relaxation called "single use restriction".

Principled explanation via linear logic: just allow the *additive conjunction* in the internal memory!

e.g.
$$M = Q \otimes \Sigma^* \otimes (\Sigma^* \& \Sigma^*) = \bigoplus_{q \in Q} \Sigma^* \otimes (\Sigma^* \& \Sigma^*)$$

Categorical tree transducers

- Streaming settings: now symmetric monoidal categories, no T, bottom-up processing
- *R* is built using the same conceptual recipe as for strings:

Affine clone of the free PROP generated by the output alphabet

The register category with output alphabet Σ : details

- **Objects:** finite ranked alphabet *R*, *S*
- Morphisms: Hom_R (R, S) = copyless transitions, registers contain trees with leaf holes, constructors of Σ usable

Example: a morphism $\{r : 0, s : 2\}$ to $\{r' : 1\}$ with $\Sigma = \{b : 2, \varepsilon : 0\}$

• a
$$\lambda$$
-term of type $\underbrace{(o \multimap o \multimap o)}_{b} \to \underbrace{o}_{\varepsilon} \to \underbrace{o}_{r} \to \underbrace{(o \multimap o \multimap o)}_{s} \to \underbrace{o \multimap o}_{r'}$

A tree with order 2 holes over the ranked alphabet *r*, *s*, *r'*, *b*, *ε* subject to affineness constraints on *r*, *s* and the input of *r'*.
Composition of the corresponding multicategory in action

• Easier to describe as a multicategory, i.e. a variant of categories with multiple inputs and a single output

• Moving to a category \mathcal{R} = freely complete by saying that each morphisms partition the output according to the output

Easy observation

 $\mathcal{R}_{\oplus\&} \simeq$ macro tree transducers \Rightarrow characterizes regular functions

Mostly bureaucratic details: multi-hole registers vs single-hole, single-use restriction vs &.

Easy observation

 $\mathcal{R}_{\oplus\&} \simeq$ macro tree transducers \Rightarrow characterizes regular functions

Mostly bureaucratic details: multi-hole registers vs single-hole, single-use restriction vs &. What's left: how to interpret $-\circ$?

Easy observation

 $\mathcal{R}_{\oplus\&} \simeq$ macro tree transducers \Rightarrow characterizes regular functions

Mostly bureaucratic details: multi-hole registers vs single-hole, single-use restriction vs &.

What's left: how to interpret $-\circ$?

 \rightsquigarrow same reasoning as for strings:

Lemma

 \mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.

Lemma

If C *is symmetric monoidal and* C_{\oplus} *has the internal homs* $A \multimap B$ *for all* $A, B \in C$ *, then* $(C_{\&})_{\oplus}$ *is symmetric monoidal closed.*

Internal homs in \mathcal{R}_{\oplus} in pictures

Lemma

 \mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.

Internal homs in \mathcal{R}_{\oplus} in pictures

Lemma

 \mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.

Curiosity question: does it appear already in the literature on operads as a special case of something?

What happened here:

- Connections between Church encodings and automata
- Application of categorical semantics (Dialectica, geometry of interaction (GoI))
- A generic uniformization-like construction $(C_\&)_\oplus \to C_\oplus$ for monoidal C with certain homsets

Some take-aways:

- Important ingredient in uniformization: monoidal closure
- Additive connectives are important for trees
- Links between planar GoI, two-way transducers and first-order fragments

What happened here:

- Connections between Church encodings and automata
- Application of categorical semantics (Dialectica, geometry of interaction (GoI))
- A generic uniformization-like construction $(C_\&)_\oplus \to C_\oplus$ for monoidal C with certain homsets

Some take-aways:

- Important ingredient in uniformization: monoidal closure
 - Slick formalization w/o categories (using e.g. transition monoids)?
- Additive connectives are important for trees
- Links between planar GoI, two-way transducers and first-order fragments

What happened here:

- Connections between Church encodings and automata
- Application of categorical semantics (Dialectica, geometry of interaction (GoI))
- A generic uniformization-like construction $(C_\&)_\oplus \to C_\oplus$ for monoidal C with certain homsets

Some take-aways:

- Important ingredient in uniformization: monoidal closure
 - Slick formalization w/o categories (using e.g. transition monoids)?
- Additive connectives are important for trees
- Links between planar GoI, two-way transducers and first-order fragments
 - Further links with tree-walking automata?

Broader picture

$\operatorname{Str}_{\Sigma}[A] \multimap$	Bool with	A linear	(adapted a	s needed):
--	-----------	----------	------------	------------

λ -calculus	languages	status
simply typed	regular	√[Hillebrand & Kanellakis 1996]
linear or affine	regular	\checkmark
non-commutative linear or affine	star-free	\checkmark

 $\mathsf{Str}_{\Gamma}[A] \multimap \mathsf{Str}_{\Sigma}$ with *A* affine (adapted as needed):

λ -calculus	transducers	status
linear (without additives)	weird (?)	√(?)
affine	regular functions	\checkmark
non-commutative affine	first-order regular fn.	√?
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

	Broad	ler	pic	ture
--	-------	-----	-----	------

$\operatorname{Str}_{\Sigma}[A] \multimap$	Bool with	A linear	(adapted	as needed):
--	-----------	----------	----------	-------------

λ -calculus	languages	status
simply typed	regular	√[Hillebrand & Kanellakis 1996]
linear or affine	regular	\checkmark
non-commutative linear or affine	star-free	\checkmark

 $\operatorname{Str}_{\Gamma}[A] \longrightarrow \operatorname{Str}_{\Sigma}$ with *A* affine (adapted as needed):

λ -calculus	transducers	status
linear (without additives)	weird (?)	√(?)
affine	regular functions	\checkmark
non-commutative affine	first-order regular fn.	√?
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

+ a characterization of $Str[A] \rightarrow Str$ as *comparison-free* polyregular functions

broader picture	Broad	ler	pi	cture
-----------------	-------	-----	----	-------

λ -calculus	languages	status
simply typed	regular	√[Hillebrand & Kanellakis 1996]
linear or affine	regular	\checkmark
non-commutative linear or affine	star-free	\checkmark

 $\operatorname{Str}_{\Gamma}[A] \longrightarrow \operatorname{Str}_{\Sigma}$ with *A* affine (adapted as needed):

λ -calculus	transducers	status
linear (without additives)	weird (?)	√(?)
affine	regular functions	\checkmark
non-commutative affine	first-order regular fn.	√?
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

+ a characterization of $\mathsf{Str}[A] \to \mathsf{Str}$ as *comparison-free* polyregular functions

String functions without additive

• Still an equivalence, but non-trivial

(solution via Krohn--Rhodes)

- Allows GoI-style interpretation in categories of diagrams
- → Interpretation as bidirectional automata (w/o registers)

Dropping the additives

- Allows GoI-style interpretation in categories of diagrams
- → Interpretation as two-way automata

```
(\cong Int(FinPartInj))
[Hines 2003]
```

```
Define regular languages
```


Consequence (not interesting)

Every linear term t: Str_{Σ}[A] \multimap Bool with $A \rightarrow$ -free defines a regular language.

- Allows GoI-style interpretation in categories of planar diagrams
- → Interpretation as two-way **planar** automata

[Hines 2003,2006] Define **star-free** languages

Consequence [Nguyễn, P. 2020]

Every **planar** linear term t: Str_{Σ}[A] \multimap Str with $A \rightarrow$ -free defines a star-free language.

- Allows GoI-style interpretation in categories of planar labelled diagrams
- → Interpretation as two-way planar **transducers** (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions

Consequence

Every **planar** linear term t: Str_{Σ}[A] \rightarrow Str with $A \rightarrow$ -free defines a FO-transduction.

- Allows GoI-style interpretation in categories of planar labelled diagrams
- → Interpretation as two-way planar **transducers** (2DFTs; w/o registers) [Hines 2003,2006] Define **first-order** regular functions

Consequence

Every **planar** linear term t: Str_{Σ}[A] \rightarrow Str with $A \rightarrow$ -free defines a FO-transduction.

Alas, planar linear terms are much weaker than FO-transductions (preserve

(preserve Parikh images)

- Allows GoI-style interpretation in categories of planar labelled diagrams
- \sim Interpretation as two-way planar **transducers** (2DFTs; w/o registers) [Hines 2003,2006]

Define first-order regular functions

Conjecture

Every planar **affine** term t : $Str_{\Sigma}[A] \rightarrow Str$ with $A \rightarrow$ -free defines a FO-transduction.

The converse holds (main ingredient for the proof: the Krohn-Rhodes theorem)

A category of planar diagrams

- Interpret purely linear non-commutative λ -terms in a monoidal closed category
- We consider a non-commutative refinement of Geometry of Interaction

(well-known model of linear logic)

A compact closed category of planar diagrams • Objects: words in $\{+, -\}^*$ • Morphisms $u \rightarrow v$: graphs over |u| + |v| with • degree ≤ 1 for every node • polarity restrictions • planarity restriction

To compute the composition of two morphisms, follow the paths (and forget the middle component)

Compact-closure and interpretation of the λ -calculus

Structure to interpret the linear λ -calculus

- Monoidal product $A \otimes B$ given by concatenation
- Duals *A**: reverse and flip polarities
- Monoidal closure by setting $A \multimap B = A^* \otimes B$
- Interpretation of types [[*A*]] by induction with [[*o*]] = +

(injective interpretation of booleans)

Examples

$$\begin{bmatrix} ((o \multimap o) \multimap o \multimap o) \multimap ((o \multimap o) \multimap o) \multimap o] = -++--++ \\ \begin{bmatrix} \lambda f. \lambda g. f(\lambda x. x) (g(\lambda x. x)) \end{bmatrix} =$$

Aperiodicity

To conclude, we need to show that every $(Hom(A, A), \circ)$ is finite and aperiodic for every A

• More elementary proofs w/o Green relations possible

(e.g. order+Kleene's theorem)

Aperiodicity

To conclude, we need to show that every $(Hom(A, A), \circ)$ is finite and aperiodic for every A

- More elementary proofs w/o Green relations possible
- Planarity restriction is essential (consider 🔀)

(e.g. order+Kleene's theorem)

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

- Transition functions $\delta : \Sigma \to \text{Hom}(Q, Q)$ for some object $Q = Q \approx \text{set of directed states}$
- (actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

- Transition functions $\delta : \Sigma \to \text{Hom}(Q, Q)$ for some object $Q = Q \approx \text{set of directed states}$
- (actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))
- Planarity restriction \Rightarrow the transition flow monoid is aperiodic
- (links between GoI and planar 2DFAs already considered by (Hines 2003))

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!

- Transition functions $\delta : \Sigma \to \text{Hom}(Q, Q)$ for some object $Q = Q \approx \text{set of directed states}$
- (actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))
- Planarity restriction \Rightarrow the transition flow monoid is aperiodic
- (links between GoI and planar 2DFAs already considered by (Hines 2003))

Theorem

Star-free languages are exactly those recognized by planar 2DFAs.

More generally: first-order transductions

Consider a richer category of diagrams where edges are labelled by output words

(labels of compositions given by concatenation)

Much like before, corresponding notion of (planar) 2DFTs.

Theorem

First-order transduction (FO regular functions) = reversible planar 2DFTs.

• aperiodic 2DFTs = FO regular functions [Carton&Dartois 2015]

(hence reversible planar 2DFTs \subseteq FO-transductions)

• FO transduction \subseteq reversible planar 2DFTs: compose + Krohn—Rhodes