# Non-constructivity of the Cantor-Bernstein theorem

Cécilia Pradic j.w.w. Chad E. Brown

School of Maths & CS research day, Swansea, May 27th 2022

 $\pi + e$  is transcendental or  $e \cdot \pi$  is transcendental (or both are).

 $\pi + e$  is transcendental or  $e \cdot \pi$  is transcendental (or both are).

- we do not know whether  $\pi + e$  is transcendental or not...
- nor do we know that for  $e \cdot \pi$

 $\pi + e$  is transcendental or  $e \cdot \pi$  is transcendental (or both are).

- we do not know whether  $\pi + e$  is transcendental or not...
- nor do we know that for  $e \cdot \pi$

#### Morality

~ Not all mathematical arguments are equally informative.

# Constructivity (2/2)

#### In broad strokes

Reject excluded middle and reductio ad absurdum.

 $A \lor \neg A \qquad \neg \neg A \Rightarrow A$ 

- Interesting for a variety of reasons, non-philosophical or otherwise
- Large amounts of mathematics can still be formalized

abstract nonsense, finitary combinatorics,  $(\mathbb{Q}, <)$ 

#### Some things that break down easily

- decidability of equality for  ${\mathbb R}$  or  $2^{\mathbb N}$
- infinitary combinatorics
- ordinal theory

• Some taboos:  $\mathbb{R}_{Cauchy} \cong \mathbb{R}_{Dedekind}$  (as fields),  $2^{\mathbb{N}} \cong \mathbb{N}^{\mathbb{N}}$  (as sets)

 $\forall x, y \in 2^{\mathbb{N}}. \ x = y \lor x \neq y$ 

## The CB theorem

If there exists injection  $f : A \to B$  and  $g : B \to A$ , then there exists a bijection  $h : A \cong B$ .



## The CB theorem

If there exists injection  $f : A \to B$  and  $g : B \to A$ , then there exists a bijection  $h : A \cong B$ .



## The CB theorem

If there exists injection  $f : A \to B$  and  $g : B \to A$ , then there exists a bijection  $h : A \cong B$ .



#### The CB theorem

If there exists injection  $f : A \to B$  and  $g : B \to A$ , then there exists a bijection  $h : A \cong B$ .



 $\longrightarrow$  excluded middle used to show that we have a partition

# What (can't) we do constructively?

- We can ask for the successor of a node in  $f \cup g^{-1}$ ...
- ...but not predecessor

Taboo: ``am I in the range of *f*?"



Even if we could, that would not be enough!

Taboo: ``do I have finitely many predecessors?"

#### Folklore

Cantor-Bernstein fails for models of intuitionistic set theory.

• For the gros topos,  $2^{\mathbb{N}} \ncong \mathbb{N}^{\mathbb{N}}$ 

 $\mathbb{N}^{\mathbb{N}} \hookrightarrow 2^{\mathbb{N}}$  constructively as usual

• In Kleene realizability, easy recursion-theoretic counterexamples. e.g.  $\mathbb{N}$  vs  $\mathbb{N}$  + Halt

Over intuitionistic set theory (IZF), the Cantor-Bernstein theorem implies excluded middle.

Plan:

- Proof of a slightly weaker statement (due to Banaschewski and Brümmer)
- Introduce  $\mathbb{N}_\infty$  and its effective searchability (due to Escardó)
- Conclude

# **Quick preliminaries**

#### Remark

(b/c separation axiom)

Let  $\bullet$  be such that  $\bullet \notin \mathbb{N}, 2^{\mathbb{N}}$ . Then excluded middle is equivalent to

 $\forall A \subseteq \{\bullet\}. \ A = \emptyset \lor \exists x \in A$ 

# **Quick preliminaries**

#### Remark

(b/c separation axiom)

Let  $\bullet$  be such that  $\bullet \notin \mathbb{N}, 2^{\mathbb{N}}$ . Then excluded middle is equivalent to

```
\forall A \subseteq \{\bullet\}. \ A = \emptyset \lor \exists x \in A
```

- 2 is the two-element set
- *cannot* be identified with truth-values/ $\mathcal{P}(\{\bullet\})$
- we will mostly play around with a singleton set  $\{\bullet\}$ ,  $\mathbb{N}$  and  $2^{\mathbb{N}}$ .

# **Quick preliminaries**

## Remark

(b/c separation axiom)

Let • be such that •  $\notin \mathbb{N}, 2^{\mathbb{N}}$ . Then excluded middle is equivalent to

```
\forall A \subseteq \{\bullet\}. \ A = \emptyset \lor \exists x \in A
```

- 2 is the two-element set
- *cannot* be identified with truth-values/ $\mathcal{P}(\{\bullet\})$
- we will mostly play around with a singleton set  $\{\bullet\}$ ,  $\mathbb{N}$  and  $2^{\mathbb{N}}$ .

#### For the sequel

Assume  $\bullet \notin \mathbb{N} \cup 2^{\mathbb{N}}$  to be distinguishable from elements of  $\mathbb{N}$  and  $2^{\mathbb{N}}$ 

$$\forall x \in \{\bullet\} \cup \mathbb{N} \cup 2^{\mathbb{N}}. x \in \mathbb{N} \lor x \in 2^{\mathbb{N}} \lor x = \bullet$$

# Banaschewski and Brümmer's reversal

#### A strengthening of Cantor-Bernstein (CBBB)

If there exists injection  $f : A \to B$  and  $g : B \to A$ , then there exists  $h : A \cong B$  with  $h \subseteq f \cup g^{-1}$ 

Theorem (Banaschewski and Brümmer 1986)

Over IZF, CBBB implies excluded middle.

Fix  $A \subseteq \{\bullet\}$  and build maps  $f : \mathbb{N} \to A \cup \mathbb{N}$  and  $g : A \cup \mathbb{N} \to \mathbb{N}$ 

$$f(n) := n$$
  $g(\bullet) := 0$   $g(n) := n + 1$ 



Is *A* inhabited or not?  $\rightarrow$  is  $h(0) = \bullet$  or 0?

# Banaschewski and Brümmer's reversal

#### A strengthening of Cantor-Bernstein (CBBB)

If there exists injection  $f: A \to B$  and  $g: B \to A$ , then there exists  $h: A \cong B$  with  $h \subseteq f \cup g^{-1}$ 

Theorem (Banaschewski and Brümmer 1986)

Over IZF, CBBB implies excluded middle.

Fix  $A \subseteq \{\bullet\}$  and build maps  $f : \mathbb{N} \to A \cup \mathbb{N}$  and  $g : A \cup \mathbb{N} \to \mathbb{N}$ 

$$f(n) := n$$
  $g(\bullet) := 0$   $g(n) := n + 1$ 



Is A inhabited or not?  $\rightarrow$  is  $h(0) = \bullet$  or 0? Yes!

# Banaschewski and Brümmer's reversal

#### A strengthening of Cantor-Bernstein (CBBB)

If there exists injection  $f: A \to B$  and  $g: B \to A$ , then there exists  $h: A \cong B$  with  $h \subseteq f \cup g^{-1}$ 

Theorem (Banaschewski and Brümmer 1986)

Over IZF, CBBB implies excluded middle.

Fix  $A \subseteq \{\bullet\}$  and build maps  $f : \mathbb{N} \to A \cup \mathbb{N}$  and  $g : A \cup \mathbb{N} \to \mathbb{N}$ 

$$f(n) := n$$
  $g(\bullet) := 0$   $g(n) := n + 1$ 



Is *A* inhabited or not?  $\rightarrow$  is  $h(0) = \bullet$  or 0? No!

# For general Cantor-Bernstein





- h(0) might be uninformative
- But asking ``Is  $\in h(\mathbb{N})$ )" would be enough
- Reduction to a weaker instance of excluded middle

# For general Cantor-Bernstein





- h(0) might be uninformative
- But asking ``Is  $\in h(\mathbb{N})$ )" would be enough
- Reduction to a weaker instance of excluded middle

#### Idea

Replace  ${\mathbb N}$  with another domain  ${\mathbb N}_\infty$  for which we can ask our question

``For any  $h : \mathbb{N}_{\infty} \to A \cup \mathbb{N}_{\infty}$ , is  $\bullet \in h(\mathbb{N}_{\infty})$ ?''

## Definition

$$\mathbb{N}_{\infty} \ := \ \{p \in 2^{\mathbb{N}} \mid \exists^{\leq 1} n \in \mathbb{N}. \ p(n) = 1\}$$

- Alternative definition: final coalgebra for  $X \mapsto 1 + X$
- Call  $\infty$  the sequence  $n \mapsto 0$
- Embedding  $\mathbb{N} \to \mathbb{N}_{\infty}$ : let's write it  $n \mapsto \underline{n}$ .

streams of • that might halt

the infinite stream

#### Definition

$$\mathbb{N}_{\infty} := \{ p \in 2^{\mathbb{N}} \mid \exists^{\leq 1} n \in \mathbb{N}. \ p(n) = 1 \}$$

- Alternative definition: final coalgebra for  $X \mapsto 1 + X$  streams of that might halt
- Call  $\infty$  the sequence  $n \mapsto 0$
- Embedding  $\mathbb{N} \to \mathbb{N}_{\infty}$ : let's write it  $n \mapsto \underline{n}$ .
- Classically,  $\mathbb{N}_{\infty} = \underline{\mathbb{N}} \cup \{\infty\}$  equivalent to  $\Sigma_1^0$ -excluded middle
- Can constructively define addition, but not subtraction or an equality map  $\mathbb{N}^2_\infty \to 2$

the infinite stream

# $\mathbb{N}_\infty$ is searchable

## Definition

$$\mathbb{N}_{\infty} := \{ p \in 2^{\mathbb{N}} \mid \exists^{\leq 1} n \in \mathbb{N} . \ p(n) = 1 \} \qquad (\cong \nu X . \ 1 + X)$$

## Theorem (Escardó 2013)

There is a map  $\varepsilon: 2^{\mathbb{N}_{\infty}} \to \mathbb{N}_{\infty}$  that picks witnesses

$$\forall p \in 2^{\mathbb{N}_{\infty}}. \ (\exists n \in \mathbb{N}_{\infty}. \ p(n) = 1) \Longrightarrow p(\varepsilon(p)) = 1$$

provably in constructive set theory

(nice to compare and contrast with  $2^{\mathbb{N}}$ ...)

# $\mathbb{N}_{\infty}$ is searchable

## Definition

$$\mathbb{N}_{\infty} := \{ p \in 2^{\mathbb{N}} \mid \exists^{\leq 1} n \in \mathbb{N} . \ p(n) = 1 \} \qquad (\cong \nu X . \ 1 + X)$$

## Theorem (Escardó 2013)

There is a map  $\varepsilon: 2^{\mathbb{N}_{\infty}} \to \mathbb{N}_{\infty}$  that picks witnesses

$$\forall p \in 2^{\mathbb{N}_{\infty}}. \ (\exists n \in \mathbb{N}_{\infty}. \ p(n) = 1) \Longrightarrow p(\varepsilon(p)) = 1$$

provably in constructive set theory

(nice to compare and contrast with  $2^{\mathbb{N}}$ ...)

$$\varepsilon(p) = \left\{ \begin{array}{ll} \underline{0} & \text{if } p(\underline{0}) = 1 \\ \underline{\text{Succ}}(\varepsilon(p \circ \underline{\text{Succ}})) & \text{otherwise} \end{array} \right.$$

where 
$$\mathbb{N} \xrightarrow{n \mapsto n+1} \mathbb{N}$$
  
 $\downarrow \qquad \qquad \downarrow$   
 $\mathbb{N}_{\infty} \xrightarrow{Succ} \mathbb{N}_{\infty}$ 

```
type Ninfty = Int -> Bool
```

```
ofInt :: Int -> Ninfty
ofInt n i = n == i
```

```
epsilon :: (Ninfty -> Bool) -> Ninfty
epsilon p k = not exSmallerWitness && p (ofInt k)
where exSmallerWitness = any (p . ofInt) [0..k-1]
```

# Proof

## Theorem (Escardó 2013)

There is a map  $\varepsilon: 2^{\mathbb{N}_{\infty}} \to \mathbb{N}_{\infty}$  that picks witnesses

$$\forall p \in 2^{\mathbb{N}_{\infty}}. \ (\exists n \in \mathbb{N}_{\infty}. \ p(n) = 1) \Longrightarrow p(\varepsilon(p)) = 1$$

provably in constructive set theory



- Define  $p \in 2^{\mathbb{N}_{\infty}}$  by  $p(n) := ``h(n) = \bullet''$
- Conclude using  $p(\varepsilon(p)) = 1 \iff \bullet \in A$

## Remarks

- Trick very much unlike the folklore examples
- $\rightarrow$  does not give concrete counterexamples in 2-valued models
- Requires the axiom of infinity

consider  $\mathcal{C}^{op} \to \mathsf{Finset}$  for finite  $\mathcal{C}$ 

Extensions?

- Restriction to e.g., sets with discrete equalities?
- Any relation to investigations of the CB property in more general categories?

## Remarks

- Trick very much unlike the folklore examples
- $\rightarrow$  does not give concrete counterexamples in 2-valued models
- Requires the axiom of infinity

consider  $\mathcal{C}^{op} \to \mathsf{Finset}$  for finite  $\mathcal{C}$ 

Extensions?

- Restriction to e.g., sets with discrete equalities?
- Any relation to investigations of the CB property in more general categories?

# Thanks for listening! Questions?