
Zigzag games, alternating infinite word automata and linear
Monadic-Second order logic

Cécilia Pradic

j.w.w. Colin Riba (ÉNS Lyon)

April 8th 2022
Birmingham theory seminar

1 / 21

Monadic Second-Order (MSO) logic and constructiveness

Monadic Second-Order logic (MSO)

▶ A fragment of Second-Order logic.
▶ Algorithmically decidable over

N,Q, the infinite binary tree {0, 1}∗, . . .
▶ Subsumes many verification logics. LTL, CTL, . . .

Decidable ̸= constructive
Soundness of decision procedures ⇐= non-constructive theorems.
▶ Over N: infinite Ramsey theorem, weak König’s Lemma.
▶ Over {0, 1}∗: determinacy of infinite parity games.

2 / 21

Monadic Second-Order (MSO) logic and constructiveness

Monadic Second-Order logic (MSO)

▶ A fragment of Second-Order logic.
▶ Algorithmically decidable over

N,Q, the infinite binary tree {0, 1}∗, . . .
▶ Subsumes many verification logics. LTL, CTL, . . .

Decidable ̸= constructive
Soundness of decision procedures ⇐= non-constructive theorems.
▶ Over N: infinite Ramsey theorem, weak König’s Lemma.
▶ Over {0, 1}∗: determinacy of infinite parity games.

2 / 21

MSO over infinite words

Syntax of MSO(N)

φ,ψ ::= n ∈ X | n < k | ∃n φ | ∃X φ | ¬φ | φ ∧ ψ

▶ Can be regarded as a subsystem of Second-Order Arithmetic
▶ Standard model: n ∈ N, X ∈ P(N)
▶ Only unary predicates. no pairing, no addition

Typical MSO(N)-definable properties

▶ “The set X ⊆ N is infinite.”
▶ “The set X ⊆ N is finite.”

Corresponds exactly to sets recognizable by automata over infinite words.
▶ Infinite words: regard sets as sequences of bits through P(N) ' 2ω

▶ φ(X1, . . .Xk): formula over Σω for Σ = 2k

3 / 21

MSO over infinite words

Syntax of MSO(N)

φ,ψ ::= n ∈ X | n < k | ∃n φ | ∃X φ | ¬φ | φ ∧ ψ

▶ Can be regarded as a subsystem of Second-Order Arithmetic
▶ Standard model: n ∈ N, X ∈ P(N)
▶ Only unary predicates. no pairing, no addition

Typical MSO(N)-definable properties

▶ “The set X ⊆ N is infinite.”
▶ “The set X ⊆ N is finite.”

Corresponds exactly to sets recognizable by automata over infinite words.
▶ Infinite words: regard sets as sequences of bits through P(N) ' 2ω

▶ φ(X1, . . .Xk): formula over Σω for Σ = 2k

3 / 21

MSO over infinite words

Syntax of MSO(N)

φ,ψ ::= n ∈ X | n < k | ∃n φ | ∃X φ | ¬φ | φ ∧ ψ

▶ Can be regarded as a subsystem of Second-Order Arithmetic
▶ Standard model: n ∈ N, X ∈ P(N)
▶ Only unary predicates. no pairing, no addition

Typical MSO(N)-definable properties

▶ “The set X ⊆ N is infinite.”
▶ “The set X ⊆ N is finite.”

Corresponds exactly to sets recognizable by automata over infinite words.
▶ Infinite words: regard sets as sequences of bits through P(N) ' 2ω

▶ φ(X1, . . .Xk): formula over Σω for Σ = 2k

3 / 21

Non-deterministic Büchi automata (NBA)

Definition
A non-deterministic Büchi automaton (NBA) A : Σ is a tuple (Q, q0, δ,F)

▶ Q is a finite set of states, q0 ∈ Q
▶ transition function δ : Σ× Q → P(Q)

▶ F ⊆ Q accepting states

Recognizes languages of infinite words L(A) ⊆ Σω:

w ∈ L(A) iff there is a run over w ∈ Σω hitting F infinitely often

non-recursive acceptance condition

Example:
0, 1

0
0 L(A) = streams with finitely many 1.

4 / 21

Non-deterministic Büchi automata (NBA)

Definition
A non-deterministic Büchi automaton (NBA) A : Σ is a tuple (Q, q0, δ,F)

▶ Q is a finite set of states, q0 ∈ Q
▶ transition function δ : Σ× Q → P(Q)

▶ F ⊆ Q accepting states

Recognizes languages of infinite words L(A) ⊆ Σω:

w ∈ L(A) iff there is a run over w ∈ Σω hitting F infinitely often

non-recursive acceptance condition

Example:
0, 1

0
0 L(A) = streams with finitely many 1.

4 / 21

MSO/automata correspondance

MSO formulas over Σ

φ 7→Aφ

''

φ 7→L(φ) ((

automata over Σ

A7→L(A)wwnnn
nnn

nnn
nnn

P(Σω)

Decidability [Büchi (1962)]
MSO over infinite words is decidable.

▶ Proof idea: automata theoretic-construction for each logical connective.
▶ Hard case for infinite words: negation ¬.

corresponds to complementation

5 / 21

Complementation, determinization and constructivity

For finite word automata: easy complementation for deterministic automata.
0, 1

0
0

. . . but Büchi automata are hard to determinize.

Theorem [McNaughton (1968)]
Non-deterministic Büchi automata can be determinized into Rabin automata.

more complex acceptance condition

▶ Büchi’s original complementation procedure: w/o determinization.
▶ Effective algorithms for automata . . .
▶ . . . but non-constructive proofs of soundness!

usual proofs: infinite Ramsey theorem, weak König’s lemma

6 / 21

Complementation, determinization and constructivity

For finite word automata: easy complementation for deterministic automata.
0, 1

0
0

. . . but Büchi automata are hard to determinize.

Theorem [McNaughton (1968)]
Non-deterministic Büchi automata can be determinized into Rabin automata.

more complex acceptance condition

▶ Büchi’s original complementation procedure: w/o determinization.
▶ Effective algorithms for automata . . .

▶ . . . but non-constructive proofs of soundness!
usual proofs: infinite Ramsey theorem, weak König’s lemma

6 / 21

Complementation, determinization and constructivity

For finite word automata: easy complementation for deterministic automata.
0, 1

0
0

. . . but Büchi automata are hard to determinize.

Theorem [McNaughton (1968)]
Non-deterministic Büchi automata can be determinized into Rabin automata.

more complex acceptance condition

▶ Büchi’s original complementation procedure: w/o determinization.
▶ Effective algorithms for automata . . .
▶ . . . but non-constructive proofs of soundness!

usual proofs: infinite Ramsey theorem, weak König’s lemma

6 / 21

Church’s synthesis (1/2): causal functions

1

0

b|a , a|a

a|a

b|b

Causal/synchronous stream functions f : Σω → Γω

▶ Interpret n ∈ N as time steps.
▶ Lifted from functions f̂ : Σ+ → Γ as

f̂ : Σω → Γω

s 7→ n 7→ f (s(0) . . . s(n))
i.e., the output does not depend on the future.

▶ Focus on finite-state causal functions.
(Correspond to Mealy machines)

▶ All f.s. causal functions are recursive.
▶ All causal functions are continuous.
▶ Some recursive functions are not causal. w 7−→ n 7→ wn+1

7 / 21

Church’s synthesis (2/2): the Büchi-Landweber theorem

Church’s synthesis problem
Given a formula φ(X ,Y), find a f. s. causal f : Σω → Γω such that

∀w φ(w , f (w))

Example (inspired from [Thomas (2008)]):
▶ φ(X ,Y) ≡ (X infinite ⇒ Y infinite) and ∀i (i ∈ Y ⇒ i + 1 /∈ Y)

1 0
1|0 , 0|0

0|0
1|1

Theorem [Büchi-Landweber (1969)]
Algorithmic solution for φ(X ,Y) in MSO.

▶ Algorithmically costly. . .

8 / 21

Church’s synthesis (2/2): the Büchi-Landweber theorem

Church’s synthesis problem
Given a formula φ(X ,Y), find a f. s. causal f : Σω → Γω such that

∀w φ(w , f (w))

Example (inspired from [Thomas (2008)]):
▶ φ(X ,Y) ≡ (X infinite ⇒ Y infinite) and ∀i (i ∈ Y ⇒ i + 1 /∈ Y)

1 0
1|0 , 0|0

0|0
1|1

Theorem [Büchi-Landweber (1969)]
Algorithmic solution for φ(X ,Y) in MSO.

▶ Algorithmically costly. . .

8 / 21

MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]
MSO is completely axiomatized by the axioms of second-order arithmetic.

Church’s synthesis reminiscent of extraction from proofs:

MSO ` ∀x∃y φ(x , y)

?
=⇒6⇒

∃f f.s. causal ∀x φ(x , f (x))

Classical theorems in MSO
▶ Excluded middle (subtle point {0, 1}ω vs P(N))

▶ The infinite pigeonhole principle
▶ Instances of additive Ramsey

⇝ No algorithmic witnesses for ∀∃ theorems.

9 / 21

MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]
MSO is completely axiomatized by the axioms of second-order arithmetic.

Church’s synthesis reminiscent of extraction from proofs:

MSO ` ∀x∃y φ(x , y) ?
=⇒

6⇒

∃f f.s. causal ∀x φ(x , f (x))

Classical theorems in MSO
▶ Excluded middle (subtle point {0, 1}ω vs P(N))

▶ The infinite pigeonhole principle
▶ Instances of additive Ramsey

⇝ No algorithmic witnesses for ∀∃ theorems.

9 / 21

MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]
MSO is completely axiomatized by the axioms of second-order arithmetic.

Church’s synthesis reminiscent of extraction from proofs:

MSO ` ∀x∃y φ(x , y)

?
=⇒

6⇒ ∃f f.s. causal ∀x φ(x , f (x))

Classical theorems in MSO
▶ Excluded middle (subtle point {0, 1}ω vs P(N))

▶ The infinite pigeonhole principle
▶ Instances of additive Ramsey

⇝ No algorithmic witnesses for ∀∃ theorems.

9 / 21

Extraction from proofs

Goal: a refinement of MSO(N) with extraction for causal functions.
▶ Toward semi-automatic approach to synthesis.
▶ Approach inspired by realizability. [Kleene (1945), . . .]

Analogous example: extraction for intuitionistic arithmetic (HA)
If HA ` ∀x∃yφ(x , y), there is an algorithm computing

f : N → N recursive such that ∀x φ(x , f (x))

▶ A subset of classical arithmetic (PA).
▶ As expressive as classical arithmetic. (φ 7→ φ¬¬)
▶ Can be refined to System T functions. [Gödel (1930s)]

Analogy
Classical system MSO(N) PA

Realizers Causal functions System T
Intuitionistic system ??? HA

10 / 21

Extraction from proofs

Goal: a refinement of MSO(N) with extraction for causal functions.
▶ Toward semi-automatic approach to synthesis.
▶ Approach inspired by realizability. [Kleene (1945), . . .]

Analogous example: extraction for intuitionistic arithmetic (HA)
If HA ` ∀x∃yφ(x , y), there is an algorithm computing

f : N → N recursive such that ∀x φ(x , f (x))

▶ A subset of classical arithmetic (PA).
▶ As expressive as classical arithmetic. (φ 7→ φ¬¬)
▶ Can be refined to System T functions. [Gödel (1930s)]

Analogy
Classical system MSO(N) PA

Realizers Causal functions System T
Intuitionistic system ??? HA

10 / 21

Synchronous MSO (SMSO) [P., Riba (2017)]

Intuitionistic version of MSO
φ,ψ ::= α | φ ∧ ψ | ∃X φ | ¬φ

Quantification over individuals encoded as usual

Glivenko’s theorem for SMSO
MSO ` φ if and only if SMSO ` ¬¬φ

▶ Negation erases computational contents.

Extraction of f.s. causal functions
SMSO ` ∃y ¬¬φ(x , y) iff there is a f.s. causal f s.t. MSO ` ∀x φ(x , f (x))

▶ Proofs φ ` ψ interpreted as simulations between ND automata.

No interpretation for ⇒ and ∀
Polarity restriction

11 / 21

Synchronous MSO (SMSO) [P., Riba (2017)]

Intuitionistic version of MSO
φ,ψ ::= α | φ ∧ ψ | ∃X φ | ¬φ

Quantification over individuals encoded as usual

Glivenko’s theorem for SMSO
MSO ` φ if and only if SMSO ` ¬¬φ

▶ Negation erases computational contents.

Extraction of f.s. causal functions
SMSO ` ∃y ¬¬φ(x , y) iff there is a f.s. causal f s.t. MSO ` ∀x φ(x , f (x))

▶ Proofs φ ` ψ interpreted as simulations between ND automata.

No interpretation for ⇒ and ∀
Polarity restriction

11 / 21

Synchronous MSO (SMSO) [P., Riba (2017)]

Intuitionistic version of MSO
φ,ψ ::= α | φ ∧ ψ | ∃X φ | ¬φ

Quantification over individuals encoded as usual

Glivenko’s theorem for SMSO
MSO ` φ if and only if SMSO ` ¬¬φ

▶ Negation erases computational contents.

Extraction of f.s. causal functions
SMSO ` ∃y ¬¬φ(x , y) iff there is a f.s. causal f s.t. MSO ` ∀x φ(x , f (x))

▶ Proofs φ ` ψ interpreted as simulations between ND automata.

No interpretation for ⇒ and ∀
Polarity restriction

11 / 21

Synchronous MSO (SMSO) [P., Riba (2017)]

Intuitionistic version of MSO
φ,ψ ::= α | φ ∧ ψ | ∃X φ | ¬φ

Quantification over individuals encoded as usual

Glivenko’s theorem for SMSO
MSO ` φ if and only if SMSO ` ¬¬φ

▶ Negation erases computational contents.

Extraction of f.s. causal functions
SMSO ` ∃y ¬¬φ(x , y) iff there is a f.s. causal f s.t. MSO ` ∀x φ(x , f (x))

▶ Proofs φ ` ψ interpreted as simulations between ND automata.

No interpretation for ⇒ and ∀

Polarity restriction

11 / 21

Synchronous MSO (SMSO) [P., Riba (2017)]

Intuitionistic version of MSO
φ,ψ ::= α | φ ∧ ψ | ∃X φ | ¬φ

Quantification over individuals encoded as usual

Glivenko’s theorem for SMSO
MSO ` φ if and only if SMSO ` ¬¬φ

▶ Negation erases computational contents.

Extraction of f.s. causal functions
SMSO ` ∃y ¬¬φ(x , y) iff there is a f.s. causal f s.t. MSO ` ∀x φ(x , f (x))

▶ Proofs φ ` ψ interpreted as simulations between ND automata.

No interpretation for ⇒ and ∀
Polarity restriction

11 / 21

A linear refinement LMSO [P., Riba (2018)]

▶ Polarized system with dualities.
▶ Requires the introduction of linear connectives.

Linear MSO (LMSO)

φ,ψ ::= α | φ⊗ ψ | φ` ψ | φ⊸ ψ | ∀Xφ | ∃Xφ | !φ− | ?φ+ | . . .

Deterministic
(±) Non-deterministic

(+)

Universal
(−)

?(−)

⊗,`, ∃
⊗,`,⊸

!(−)

⊗,`, ∀

(−)⊥

Alternating (∀, ∃,⊗,`,⊸)

SMSO ≈ restriction to positives

12 / 21

A linear refinement LMSO [P., Riba (2018)]

▶ Polarized system with dualities.
▶ Requires the introduction of linear connectives.

Linear MSO (LMSO)

φ,ψ ::= α | φ⊗ ψ | φ` ψ | φ⊸ ψ | ∀Xφ | ∃Xφ | !φ− | ?φ+ | . . .

Deterministic
(±) Non-deterministic

(+)

Universal
(−)

?(−)

⊗,`, ∃
⊗,`,⊸

!(−)

⊗,`, ∀

(−)⊥

Alternating (∀, ∃,⊗,`,⊸)

SMSO ≈ restriction to positives

12 / 21

A linear refinement LMSO [P., Riba (2018)]

▶ Polarized system with dualities.
▶ Requires the introduction of linear connectives.

Linear MSO (LMSO)

φ,ψ ::= α | φ⊗ ψ | φ` ψ | φ⊸ ψ | ∀Xφ | ∃Xφ | !φ− | ?φ+ | . . .

Deterministic
(±) Non-deterministic

(+)

Universal
(−)

?(−)

⊗,`, ∃
⊗,`,⊸

!(−)

⊗,`, ∀

(−)⊥

Alternating (∀, ∃,⊗,`,⊸)

SMSO ≈ restriction to positives

12 / 21

A linear refinement LMSO [P., Riba (2018)]

▶ Polarized system with dualities.
▶ Requires the introduction of linear connectives.

Linear MSO (LMSO)

φ,ψ ::= α | φ⊗ ψ | φ` ψ | φ⊸ ψ | ∀Xφ | ∃Xφ | !φ− | ?φ+ | . . .

Deterministic
(±) Non-deterministic

(+)

Universal
(−)

?(−)

⊗,`, ∃
⊗,`,⊸

!(−)

⊗,`, ∀

(−)⊥

Alternating (∀, ∃,⊗,`,⊸)

SMSO ≈ restriction to positives

12 / 21

Expressivity and proof extraction for LMSO

Conservativity
LMSO → MSO
φ 7→ dφe

If LMSO ` φ, then MSO ` dφe.

Expressivity
MSO → LMSO
φ 7→ φL

If MSO ` φ, then LMSO ` φL.

LMSO

φ 7→ Aφ

((

φ 7→ JφK ((PP
PPP

PPP
PPP

PP Alternating automata

Acceptance gameuujjjj
jjjj

jjjj
jjj

Simulation games

Extraction of f.s. causal functions
LMSO ` ∀x∃y φL(x , y) iff there is a f.s causal f s.t. MSO ` ∀x φ(x , f (x))

13 / 21

Expressivity and proof extraction for LMSO

Conservativity
LMSO → MSO
φ 7→ dφe

If LMSO ` φ, then MSO ` dφe.

Expressivity
MSO → LMSO
φ 7→ φL

If MSO ` φ, then LMSO ` φL.

LMSO

φ 7→ Aφ

((

φ 7→ JφK ((PP
PPP

PPP
PPP

PP Alternating automata

Acceptance gameuujjjj
jjjj

jjjj
jjj

Simulation games

Extraction of f.s. causal functions
LMSO ` ∀x∃y φL(x , y) iff there is a f.s causal f s.t. MSO ` ∀x φ(x , f (x))

13 / 21

Simulation model: logical aspects

▶ LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

▶ Similarities with Dialectica categories DC: [de Paiva (1989,1991)]

Realized principles

▶ Linear Markov principle and independence of premise.
▶ A classically false choice-like scheme
∀x ∈ Σω ∃y ∈ Γω φ(x , y) −⊸ ∃f ∈ (Σ → Γ)ω ∀x ∈ Σω φ(x , f (x))

f (x) for pointwise application

Double linear-negation elimination
For every φ, there is a realizer (φ⊸ ⊥)⊸ ⊥ −⊸ φ

but no canonical iso in general!

▶ Also holds in DC if the base satisfies choice.

14 / 21

Simulation model: logical aspects

▶ LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

▶ Similarities with Dialectica categories DC: [de Paiva (1989,1991)]

Realized principles

▶ Linear Markov principle and independence of premise.

▶ A classically false choice-like scheme
∀x ∈ Σω ∃y ∈ Γω φ(x , y) −⊸ ∃f ∈ (Σ → Γ)ω ∀x ∈ Σω φ(x , f (x))

f (x) for pointwise application

Double linear-negation elimination
For every φ, there is a realizer (φ⊸ ⊥)⊸ ⊥ −⊸ φ

but no canonical iso in general!

▶ Also holds in DC if the base satisfies choice.

14 / 21

Simulation model: logical aspects

▶ LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

▶ Similarities with Dialectica categories DC: [de Paiva (1989,1991)]

Realized principles

▶ Linear Markov principle and independence of premise.
▶ A classically false choice-like scheme
∀x ∈ Σω ∃y ∈ Γω φ(x , y) −⊸ ∃f ∈ (Σ → Γ)ω ∀x ∈ Σω φ(x , f (x))

f (x) for pointwise application

Double linear-negation elimination
For every φ, there is a realizer (φ⊸ ⊥)⊸ ⊥ −⊸ φ

but no canonical iso in general!

▶ Also holds in DC if the base satisfies choice.

14 / 21

Simulation model: logical aspects

▶ LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

▶ Similarities with Dialectica categories DC: [de Paiva (1989,1991)]

Realized principles

▶ Linear Markov principle and independence of premise.
▶ A classically false choice-like scheme
∀x ∈ Σω ∃y ∈ Γω φ(x , y) −⊸ ∃f ∈ (Σ → Γ)ω ∀x ∈ Σω φ(x , f (x))

f (x) for pointwise application

Double linear-negation elimination
For every φ, there is a realizer (φ⊸ ⊥)⊸ ⊥ −⊸ φ

but no canonical iso in general!

▶ Also holds in DC if the base satisfies choice.

14 / 21

Simulation model: logical aspects

▶ LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

▶ Similarities with Dialectica categories DC: [de Paiva (1989,1991)]

Realized principles

▶ Linear Markov principle and independence of premise.
▶ A classically false choice-like scheme
∀x ∈ Σω ∃y ∈ Γω φ(x , y) −⊸ ∃f ∈ (Σ → Γ)ω ∀x ∈ Σω φ(x , f (x))

f (x) for pointwise application

Double linear-negation elimination
For every φ, there is a realizer (φ⊸ ⊥)⊸ ⊥ −⊸ φ

but no canonical iso in general!

▶ Also holds in DC if the base satisfies choice.

14 / 21

Why automata?

The above logic can be defined without reference to automata.
▶ ω-word automata guarantee decidability properties. . .
▶ But they are not needed to extract realizers.

⇝ A purely logical reformulation of LMSO using categorical semantics.

Goals
▶ Purely syntactic transformations.
▶ Understand links with typed realizability and Dialectica.

15 / 21

Why automata?

The above logic can be defined without reference to automata.
▶ ω-word automata guarantee decidability properties. . .
▶ But they are not needed to extract realizers.

⇝ A purely logical reformulation of LMSO using categorical semantics.

Goals
▶ Purely syntactic transformations.
▶ Understand links with typed realizability and Dialectica.

15 / 21

Finite-state causal functions as terms

Define the category M of causal functions
▶ Objects: sets of streams Σω for Σ finite
▶ Morphisms: finite-state causal functions
▶ Cartesian products Σω × Γω ' (Σ× Γ)ω, but not cartesian-closed

Inductive presentation

f : Σ → Γ

f ω : Σω → Γω

f : Σω × Γω → Γω b0 ∈ Γ

fixb0(f) : Σω → Γω

+ closure under composition

Σω

Γω

Γω

f

b0
fixb0(f)

≈ guarded recursion fix : A▶A → A
topos of trees

16 / 21

Finite-state causal functions as terms

Define the category M of causal functions
▶ Objects: sets of streams Σω for Σ finite
▶ Morphisms: finite-state causal functions
▶ Cartesian products Σω × Γω ' (Σ× Γ)ω, but not cartesian-closed

Inductive presentation

f : Σ → Γ

f ω : Σω → Γω

f : Σω × Γω → Γω b0 ∈ Γ

fixb0(f) : Σω → Γω

+ closure under composition

Σω

Γω

Γω

f

b0
fixb0(f)

≈ guarded recursion fix : A▶A → A
topos of trees

16 / 21

MSO(N) as an equational logic over M

FOM (First-Order Mealy)
φ,ψ ::= t =Σω u | φ ∧ ψ | ¬φ | ∃x ∈ Σω φ

▶ Typed variables stand for streams, terms for every f.s. causal functions.

Proposition
FOM and MSO(N) are interpretable in one another.

▶ Justifies focusing on FOM.

Tarskian semantics (categorical logic)

▶ Regard M as a multi-sorted Lawvere theory.
⇝ Tarskian semantics ≈ indexed category, from global section functor Γ

Γ : Σω 7−→ HomM (1ω,Σω)

Σω 7−→ (P (Γ (Σω)) ,⊆)

17 / 21

MSO(N) as an equational logic over M

FOM (First-Order Mealy)
φ,ψ ::= t =Σω u | φ ∧ ψ | ¬φ | ∃x ∈ Σω φ

▶ Typed variables stand for streams, terms for every f.s. causal functions.

Proposition
FOM and MSO(N) are interpretable in one another.

▶ Justifies focusing on FOM.

Tarskian semantics (categorical logic)

▶ Regard M as a multi-sorted Lawvere theory.
⇝ Tarskian semantics ≈ indexed category, from global section functor Γ

Γ : Σω 7−→ HomM (1ω,Σω)

Σω 7−→ (P (Γ (Σω)) ,⊆)

17 / 21

SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

X × Y π−→ X
⇝ the simple fibration s(C) → C

The construction Sum

Sum(E)

Sum(p)

��

//
⌟ E

p
��

s(C) × //

��

C

C

▶ Sum(p)-predicate: (U, φ(a, u))
U object of C, φ over A × U (in p)

≈ ∃u : U φ(a, u)

▶ Freely adds existential quantifications
(simple sums)

▶ Reminiscent of typed realizability
realizers in C

Reconstructing SMSO
Simulations of non-determinstic automata ≈ Sum applied to FOM

18 / 21

SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

X × Y π−→ X
⇝ the simple fibration s(C) → C

The construction Sum

Sum(E)

Sum(p)

��

//
⌟ E

p
��

s(C) × //

��

C

C

▶ Sum(p)-predicate: (U, φ(a, u))
U object of C, φ over A × U (in p)

≈ ∃u : U φ(a, u)

▶ Freely adds existential quantifications
(simple sums)

▶ Reminiscent of typed realizability
realizers in C

Reconstructing SMSO
Simulations of non-determinstic automata ≈ Sum applied to FOM

18 / 21

Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]

Dial ∼= Sum ◦Prod Prod(p) ∼= Sum(pop)op [Hofstra (2011)]

▶ Dial(p)-predicate over A ≈ (U,X , φ(a, u, x))
think ∃u ∀x φ(a, u, x)

▶ interprets full intuitionistic MLL+FO

and exponentials
!(U, X , φ(u, x)) = (U, 1, ∀x φ(u, x)

Sum(p)

LNL-adjunction
**

⊥ Dial(p)

Dial▶(p)

jj

**
> Prod(p)jj

Realized Dialectica-like construction Dial▶

▶ Only over a CCC extension of M
!(U, X , φ(u, x)) = (U▶X , 1, ∀x φ(f (▶ x), x)

▶ Relationship with Dial via a “feedback” monad
exploits fix : A▶A → A

▶ Polarity restrictions ≈ model of LMSO (restricted exponentials)

19 / 21

Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]

Dial ∼= Sum ◦Prod Prod(p) ∼= Sum(pop)op [Hofstra (2011)]

▶ Dial(p)-predicate over A ≈ (U,X , φ(a, u, x))
think ∃u ∀x φ(a, u, x)

▶ interprets full intuitionistic MLL+FO and exponentials
!(U, X , φ(u, x)) = (U, 1, ∀x φ(u, x)

Sum(p)

LNL-adjunction
**

⊥ Dial(p)

Dial▶(p)

jj

**
> Prod(p)jj

Realized Dialectica-like construction Dial▶

▶ Only over a CCC extension of M
!(U, X , φ(u, x)) = (U▶X , 1, ∀x φ(f (▶ x), x)

▶ Relationship with Dial via a “feedback” monad
exploits fix : A▶A → A

▶ Polarity restrictions ≈ model of LMSO (restricted exponentials)

19 / 21

Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]

Dial ∼= Sum ◦Prod Prod(p) ∼= Sum(pop)op [Hofstra (2011)]

▶ Dial(p)-predicate over A ≈ (U,X , φ(a, u, x))
think ∃u ∀x φ(a, u, x)

▶ interprets full intuitionistic MLL+FO and exponentials
!(U, X , φ(u, x)) = (U, 1, ∀x φ(u, x)

Sum(p)

LNL-adjunction
**

⊥

Dial(p)

Dial▶(p)jj

**
> Prod(p)jj

Realized Dialectica-like construction Dial▶

▶ Only over a CCC extension of M
!(U, X , φ(u, x)) = (U▶X , 1, ∀x φ(f (▶ x), x)

▶ Relationship with Dial via a “feedback” monad
exploits fix : A▶A → A

▶ Polarity restrictions ≈ model of LMSO (restricted exponentials)

19 / 21

Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]

Dial ∼= Sum ◦Prod Prod(p) ∼= Sum(pop)op [Hofstra (2011)]

▶ Dial(p)-predicate over A ≈ (U,X , φ(a, u, x))
think ∃u ∀x φ(a, u, x)

▶ interprets full intuitionistic MLL+FO and exponentials
!(U, X , φ(u, x)) = (U, 1, ∀x φ(u, x)

Sum(p)

LNL-adjunction
**

⊥

Dial(p)

Dial▶(p)jj

**
> Prod(p)jj

Realized Dialectica-like construction Dial▶

▶ Only over a CCC extension of M
!(U, X , φ(u, x)) = (U▶X , 1, ∀x φ(f (▶ x), x)

▶ Relationship with Dial via a “feedback” monad
exploits fix : A▶A → A

▶ Polarity restrictions ≈ model of LMSO (restricted exponentials)

19 / 21

Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]

Dial ∼= Sum ◦Prod Prod(p) ∼= Sum(pop)op [Hofstra (2011)]

▶ Dial(p)-predicate over A ≈ (U,X , φ(a, u, x))
think ∃u ∀x φ(a, u, x)

▶ interprets full intuitionistic MLL+FO and exponentials
!(U, X , φ(u, x)) = (U, 1, ∀x φ(u, x)

Sum(p)

LNL-adjunction
**

⊥

Dial(p)

Dial▶(p)jj

**
> Prod(p)jj

Realized Dialectica-like construction Dial▶

▶ Only over a CCC extension of M
!(U, X , φ(u, x)) = (U▶X , 1, ∀x φ(f (▶ x), x)

▶ Relationship with Dial via a “feedback” monad
exploits fix : A▶A → A

▶ Polarity restrictions ≈ model of LMSO (restricted exponentials)

19 / 21

Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]

Dial ∼= Sum ◦Prod Prod(p) ∼= Sum(pop)op [Hofstra (2011)]

▶ Dial(p)-predicate over A ≈ (U,X , φ(a, u, x))
think ∃u ∀x φ(a, u, x)

▶ interprets full intuitionistic MLL+FO and exponentials
!(U, X , φ(u, x)) = (U, 1, ∀x φ(u, x)

Sum(p)

LNL-adjunction
**

⊥

Dial(p)

Dial▶(p)jj

**
> Prod(p)jj

Realized Dialectica-like construction Dial▶

▶ Only over a CCC extension of M
!(U, X , φ(u, x)) = (U▶X , 1, ∀x φ(f (▶ x), x)

▶ Relationship with Dial via a “feedback” monad
exploits fix : A▶A → A

▶ Polarity restrictions ≈ model of LMSO (restricted exponentials)

19 / 21

In a nutshell

Summary

▶ Realizability models based on simulations between automata
▶ Abstract reformulation link with Dialectica and typed realizability

▶ Complete extension of LMSO omitted from the talk [P., Riba (2019)]

Related work
▶ Fibrations of tree automata [Riba (2015)]

▶ Good-for-games automata
[Henziger, Piterman (2006), Kuperberg Skrzypczak (2015)]

20 / 21

In a nutshell

Summary

▶ Realizability models based on simulations between automata
▶ Abstract reformulation link with Dialectica and typed realizability

▶ Complete extension of LMSO omitted from the talk [P., Riba (2019)]

Related work
▶ Fibrations of tree automata [Riba (2015)]

▶ Good-for-games automata
[Henziger, Piterman (2006), Kuperberg Skrzypczak (2015)]

20 / 21

Final word

Some further questions

▶ Realizability for continuous functions Σω → Γω?
▶ Extensions of Dial▶ for fibrations over the topos of trees?

Fam(Fam(pop)op) instead of Dial(p)

▶ Undecidability of the equational logic of higher-order extensions of FOM?
▶ Reconstructing zizgag games as the final coalgebra for C 7→ C⊕&?

Thanks for your attention! Questions?

21 / 21

Final word

Some further questions

▶ Realizability for continuous functions Σω → Γω?
▶ Extensions of Dial▶ for fibrations over the topos of trees?

Fam(Fam(pop)op) instead of Dial(p)

▶ Undecidability of the equational logic of higher-order extensions of FOM?
▶ Reconstructing zizgag games as the final coalgebra for C 7→ C⊕&?

Thanks for your attention! Questions?

21 / 21

Induction and comprehension

RCA0 is defined by restricting induction and comprehension

Comprehension axiom
For every formula ϕ(n) (with X /∈ FV (ϕ)

∃X ∀n ∈ N (ϕ(n) ⇔ n ∈ X)

▶ RCA0: restricted to ∆0
1 formulas

recursive comprehension

Induction axiom
To prove that ∀n ∈ Nϕ(n) it suffices to show
▶ ϕ(0) holds
▶ for every n ∈ N, ϕ(n) implies ϕ(n + 1)

▶ RCA0: restricted to Σ0
1 formulas.

∃n δ(n) with δ ∈ ∆0
1

▶ Equivalent to minimization principles and comprehension for finite sets.

1 / 6

Additive Ramsey over ω

For any linear order (P, <) write [P]2 for {(i , j) ∈ P2 | i < j} and fix a finite
monoid (M, ·, e).
Call f : [P]2 → M additive when f (i , j) · f (j, k) = f (i , k) for all i < j < k

Additive Ramsey
For any additive f : [P]2 → M, there is an unbounded monochromatic X ⊆ P
(s.t. |f ([X]2)| = 1).

Theorem
Over RCA0, additive Ramsey over ω is equivalent to Σ0

2-induction.

Direct proof: “as usual” for additive Ramsey (factored through an ordered variant in
the paper)

Π0
2-induction from additive Ramsey

Consider equivalently comprehension for sets bounded by n for ∃∞k δ(x , k).
Define the coloring f : [ω]2 → 2n as f (i , j)x = max

i≤l<j
δ(x , l).

Apply additive Ramsey and consider the color X of the monochromatic set; we
have

x ∈ X ⇔ ∃∞δ(x , k)

2 / 6

Additive Ramsey over ω

For any linear order (P, <) write [P]2 for {(i , j) ∈ P2 | i < j} and fix a finite
monoid (M, ·, e).
Call f : [P]2 → M additive when f (i , j) · f (j, k) = f (i , k) for all i < j < k

Additive Ramsey
For any additive f : [P]2 → M, there is an unbounded monochromatic X ⊆ P
(s.t. |f ([X]2)| = 1).

Theorem
Over RCA0, additive Ramsey over ω is equivalent to Σ0

2-induction.

Direct proof: “as usual” for additive Ramsey (factored through an ordered variant in
the paper)

Π0
2-induction from additive Ramsey

Consider equivalently comprehension for sets bounded by n for ∃∞k δ(x , k).
Define the coloring f : [ω]2 → 2n as f (i , j)x = max

i≤l<j
δ(x , l).

Apply additive Ramsey and consider the color X of the monochromatic set; we
have

x ∈ X ⇔ ∃∞δ(x , k)

2 / 6

Combinatorics for coloring over Q

Let D be a dense linear order (' Q).
A function f : D → X is called homogeneous if f −1(x) is either dense or empty
for every x ∈ X .

The shuffle principle
For any coloring c : Q → J0, nK, there is I ⊆conv Q such that c

∣∣
I is a shuffle.

▶ the key additional principle behind the usual inductive argument in
[Carton, Colcombet, Puppis (2015)]

Shelah’s additive Ramseyan theorem
Let M be a monoid. For every map f : [Q]2 → M such that
f (q, r)f (r , s) = f (q, s), there exists an interval I ⊆ Q and a finite partition into
finitely many dense sets Di of I such that f is constant over each [Di]

2.

▶ the key additional principle behind the usual inductive argument in
[Shelah (1975)]

3 / 6

The Büchi-Landweber theorem

Consider a formula φ(u, x). (u ∈ Uω, x ∈ Xω)
⇝ Infinite 2-player game Gφ between P and O.

O x0 x1 xn
P u0 u1

. . . un
. . .

P wins
⇐⇒

φ(u, x) holds

P-strategies ' X+ → U O-strategies ' U∗ → X
causal functions eager causal functions

Theorem [Büchi-Landweber (1969)]
Suppose φ is MSO-definable. The game Gφ is determined:
▶ Either there exists a finite-state P-strategy sP(x) s.t. ∀x ∈ Xω φ(sP(x), x)
▶ Or there exists a finite-state O-strategy sO(u) s.t. ∀u ∈ Uω ¬φ(u, sO(u))

4 / 6

The Büchi-Landweber theorem

Consider a formula φ(u, x). (u ∈ Uω, x ∈ Xω)
⇝ Infinite 2-player game Gφ between P and O.

O x0 x1 xn
P u0 u1

. . . un
. . .

P wins
⇐⇒

φ(u, x) holds

P-strategies ' X+ → U O-strategies ' U∗ → X
causal functions eager causal functions

Theorem [Büchi-Landweber (1969)]
Suppose φ is MSO-definable. The game Gφ is determined:
▶ Either there exists a finite-state P-strategy sP(x) s.t. ∀x ∈ Xω φ(sP(x), x)
▶ Or there exists a finite-state O-strategy sO(u) s.t. ∀u ∈ Uω ¬φ(u, sO(u))

4 / 6

The Büchi-Landweber theorem

Consider a formula φ(u, x). (u ∈ Uω, x ∈ Xω)
⇝ Infinite 2-player game Gφ between P and O.

O x0 x1 xn
P u0 u1

. . . un
. . .

P wins
⇐⇒

φ(u, x) holds

P-strategies ' X+ → U O-strategies ' U∗ → X
causal functions eager causal functions

Theorem [Büchi-Landweber (1969)]
Suppose φ is MSO-definable. The game Gφ is determined:
▶ Either there exists a finite-state P-strategy sP(x) s.t. ∀x ∈ Xω φ(sP(x), x)
▶ Or there exists a finite-state O-strategy sO(u) s.t. ∀u ∈ Uω ¬φ(u, sO(u))

4 / 6

The realizability notion for SMSO

Uniform non-deterministic automata
Tuples A = (Q, q0,U, δA,ΩA) : Σ where
▶ U a set of moves ≃ amount of non-determinism

▶ transition function δA : Σ× Q × U → Q induces δ∗A : Σω × Uω → Qω

▶ ΩA ⊆ Qω reasonable acceptance condition (parity, Muller, . . .)

▶ Same definable languages L(A) = {w | ∃u δ∗A(w , u)} U ' Q

Simulations A ⊩ f : B
Finite-state causal function f : Σω × Uω → V ω such that

∀w ∈ Σω∀u ∈ Uω δ∗A(w , u) ∈ ΩA ⇒ δ∗A(w , f (w , u)) ∈ ΩB

▶ If A ⊩ B, then L(A) ⊆ L(B)
▶ Natural interpretation for ∃, ∧ and ¬ for deterministic automata. . .

5 / 6

The realizability notion for SMSO

Uniform non-deterministic automata
Tuples A = (Q, q0,U, δA,ΩA) : Σ where
▶ U a set of moves ≃ amount of non-determinism

▶ transition function δA : Σ× Q × U → Q induces δ∗A : Σω × Uω → Qω

▶ ΩA ⊆ Qω reasonable acceptance condition (parity, Muller, . . .)

▶ Same definable languages L(A) = {w | ∃u δ∗A(w , u)} U ' Q

Simulations A ⊩ f : B
Finite-state causal function f : Σω × Uω → V ω such that

∀w ∈ Σω∀u ∈ Uω δ∗A(w , u) ∈ ΩA ⇒ δ∗A(w , f (w , u)) ∈ ΩB

▶ If A ⊩ B, then L(A) ⊆ L(B)
▶ Natural interpretation for ∃, ∧ and ¬ for deterministic automata. . .

5 / 6

The realizability notion for SMSO

Uniform non-deterministic automata
Tuples A = (Q, q0,U, δA,ΩA) : Σ where
▶ U a set of moves ≃ amount of non-determinism

▶ transition function δA : Σ× Q × U → Q induces δ∗A : Σω × Uω → Qω

▶ ΩA ⊆ Qω reasonable acceptance condition (parity, Muller, . . .)

▶ Same definable languages L(A) = {w | ∃u δ∗A(w , u)} U ' Q

Simulations A ⊩ f : B
Finite-state causal function f : Σω × Uω → V ω such that

∀w ∈ Σω∀u ∈ Uω δ∗A(w , u) ∈ ΩA ⇒ δ∗A(w , f (w , u)) ∈ ΩB

▶ If A ⊩ B, then L(A) ⊆ L(B)
▶ Natural interpretation for ∃, ∧ and ¬ for deterministic automata. . .

5 / 6

Alternating uniform automata

Define a notion of alternating uniform automata (Q, q0,U,X , δ,Ω)
▶ sets of P-moves U and O-moves X
▶ δ : Σ× Q × U × X → Q
▶ w ∈ L(A) iff P wins an acceptance game

Simulation game

(U , X) −⊸ (V , Y)
...

O un
P vn
O yn
P xn

...

P wins iff

〈u, x〉 P-winning ⇒ 〈v , y〉 P-winning

▶ X ' 1 ⇝ non-deterministic uniform automata
▶ U ' X ' 1 ⇝ deterministic automata

trivial simulations
6 / 6

	Monadic Second-Order logic
	Church's synthesis and witness extraction
	Constructive proof systems
	Categorical/syntactic approach

	Conclusion
	Appendix

