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» A fragment of Second-Order logic.
» Algorithmically decidable over
N, Q, the infinite binary tree {0,1}*, ...

» Subsumes many verification logics. LTL, CTL, ...

2/21



Monadic Second-Order (MSO) logic and constructiveness

Monadic Second-Order logic (MSO)

» A fragment of Second-Order logic.
» Algorithmically decidable over
N, Q, the infinite binary tree {0,1}*, ...

» Subsumes many verification logics. LTL, CTL, ...

Decidable # constructive

Soundness of decision procedures <— non-constructive theorems.
» Over N: infinite Ramsey theorem, weak Konig's Lemma.

» Over {0,1}": determinacy of infinite parity games.
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ppui=neX | n<k | 3np | X | ~p | pAY

» Can be regarded as a subsystem of Second-Order Arithmetic
» Standard model: n € N, X € P(N)
» Only wunary predicates. no pairing, no addition
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ppui=neX | n<k | 3np | X | ~p | pAY

» Can be regarded as a subsystem of Second-Order Arithmetic
» Standard model: n € N, X € P(N)

» Only wunary predicates. no pairing, no addition

» “The set X C N is infinite.”
» “The set X C N is finite.”

Corresponds exactly to sets recognizable by automata over infinite words.
» Infinite words: regard sets as sequences of bits through P(N) ~ 2¢
> o(X1,...Xk): formula over T for ¥ = 2k
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A non-deterministic Biichi automaton (NBA) A : X is a tuple (Q, qo, 9, F)
» Q@ is a finite set of states, qo € Q
» transition function § : ¥ x Q@ — P(Q)
» F C @ accepting states

Recognizes languages of infinite words £(.A) C X*:
w € L(A) iff there is a run over w € X hitting F infinitely often

non-recursive acceptance condition
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Non-deterministic Biichi automata (NBA)

Definition

A non-deterministic Biichi automaton (NBA) A : X is a tuple (Q, qo, 9, F)
» Q is a finite set of states, go € Q
» transition function § : ¥ x Q — P(Q)
» [ C Q accepting states

Recognizes languages of infinite words £(A) C X*:
w € L(A) iff there is a run over w € X* hitting F infinitely often

non-recursive acceptance condition

Example:

0,1

0 L(A) = streams with finitely many 1.
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p—rAyp
MSO formulas over © automata over *
= L(p) A—L(A)
P(X¥)

MSO over infinite words is decidable.

» Proof idea: automata theoretic-construction for each logical connective.

» Hard case for infinite words: negation —.
corresponds to complementation
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For finite word automata: easy complementation for deterministic automata.
0,1

0
... but Biichi automata are hard to determinize.
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Complementation, determinization and constructivity

For finite word automata: easy complementation for deterministic automata.
0,1

— 0
... but Biichi automata are hard to determinize.

Theorem [McNaughton (1968)]

Non-deterministic Biichi automata can be determinized into Rabin automata.

more complex acceptance condition

» Biichi's original complementation procedure: w/o determinization.

» Effective algorithms for automata ...
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Complementation, determinization and constructivity

For finite word automata: easy complementation for deterministic automata.
0,1

— 0
... but Biichi automata are hard to determinize.

Theorem [McNaughton (1968)]

Non-deterministic Biichi automata can be determinized into Rabin automata.

more complex acceptance condition

» Biichi's original complementation procedure: w/o determinization.
» Effective algorithms for automata ...

» ... but non-constructive proofs of soundness!

usual proofs: infinite Ramsey theorem, weak Kénig's lemma
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Church’s synthesis (1/2): causal functions

0 Causal/synchronous stream functions f : X — %

» Interpret n € N as time steps.
b|b bla, ala . . o
» Lifted from functions f : ¥* — T as
Foozv v
ala s —  n— f(s(0)...s(n))
i.e., the output does not depend on the future.
» Focus on finite-state causal functions.

(Correspond to Mealy machines)

» All f.s. causal functions are recursive.

» All causal functions are continuous.
» Some recursive functions are not causal. W —> N — Wpt

7/21



Given a formula ¢(X, Y), find a f. s. causal f: X% — I'* such that
Yw p(w, f(w))

8/21



Given a formula ¢(X, Y), find a f. s. causal f: X% — I'* such that
Yw p(w, f(w))

Example (inspired from [Thomas (2008)]):
> o(X,Y) = (X infinite = Y infinite) and Vi(ieY=i+1¢Y)

() O=1

Algorithmic solution for ¢(X, Y) in MSO.

» Algorithmically costly. ..
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MSO can also be seen as a classical axiomatic theory

MSO is completely axiomatized by the axioms of second-order arithmetic.
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MSO can also be seen as a classical axiomatic theory

MSO is completely axiomatized by the axioms of second-order arithmetic.

Church’s synthesis reminiscent of extraction from proofs:

MSO + Vx3y ¢(x,y) # 3f f.s. causal  Vx p(x, f(x))

» Excluded middle (subtle point {0,1}* vs P(N))
» The infinite pigeonhole principle

» Instances of additive Ramsey

~> No algorithmic witnesses for V3 theorems.

9/21



Goal: a refinement of MSO(N) with extraction for causal functions.
» Toward semi-automatic approach to synthesis.

» Approach inspired by realizability. [Kleene (1945), ...]
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Extraction from proofs

Goal: a refinement of MSO(N) with extraction for causal functions.
» Toward semi-automatic approach to synthesis.

» Approach inspired by realizability. [Kleene (1945), ...]

Analogous example: extraction for intuitionistic arithmetic (HA)
If HAF Vx3dyp(x, y), there is an algorithm computing
f : N — N recursive such that Vx p(x, f(x))

> A subset of classical arithmetic (PA).

> As expressive as classical arithmetic. (¢ — ¢77)

» Can be refined to System T functions. [Gédel (1930s)]
Analogy
Classical system MSO(N) PA
Realizers Causal functions | System T
Intuitionistic system 77 HA
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Intuitionistic version of MSO
o u= a | pAY | X @ | np

Quantification over individuals encoded as usual
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Intuitionistic version of MSO
o u= a | pAY | X @ | np

Quantification over individuals encoded as usual

MSO F ¢ if and only if SMSO F ——¢p

» Negation erases computational contents.

SMSO + 3y ——p(x,y) iff there is a f.s.causal f s.t.  MSO F Vx ¢(x, f(x))

» Proofs ¢ I- 9 interpreted as simulations between ND automata.

No interpretation for = and V
Polarity restriction
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» Polarized system with dualities.

» Requires the introduction of linear connectives.

o = a | e®% | ¢BY | p o | VXp | X | lo= | 2T |
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A linear refinement LMSO [P., Riba (2018)]

» Polarized system with dualities.

» Requires the introduction of linear connectives.

Linear MSO (LMSO)

o n= a | 9@ | eBY | ooy | VXp | X | lpT | 7T |

Alternating (¥, 3, ®, %, —)

®,%,—

Deterministic

()

Non-deterministic

()

SMSO ~ restriction to positives
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A linear refinement LMSO [P., Riba (2018)]

» Polarized system with dualities.

» Requires the introduction of linear connectives.

Linear MSO (LMSO)

P, P

= oa | 9®Y | @BY | ooy | VXp | X | lpT | 70T |

Alternating (¥, 3, ®, %, —)

®77?7 -0
®,3,vY

'(-)

" Deterministic

(£) Non-deterministic
m (+)

SMSO ~ restriction to positives
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LMSO — MSO MSO — LMSO
e = el p =
If LMSO F ¢, then MSO - [¢]. If MSO | ¢, then LMSO + ©t.
o= A,
LMSO Alternating automata

;:::E;j\\\\; A(/////jig;;;;;egame

Simulation games
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LMSO — MSO MSO — LMSO
N Y e = ot
If LMSO F ¢, then MSO - [¢]. If MSO | ¢, then LMSO + ©t.
o= A,
LMSO Alternating automata

@m\ mce game

Simulation games

LMSO F Vx3y o' (x,y) iff there is a f.scausal f s.t.  MSO F Vx o(x, f(x))
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» LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

» Similarities with Dialectica categories DC: [de Paiva (1989,1991)]
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Simulation model: logical aspects

» LMSO includes Full Intuitionistic Multiplicative Linear Logic.
[Hyland, de Paiva (1993)]

» Similarities with Dialectica categories DC: [de Paiva (1989,1991)]

Realized principles

» Linear Markov principle and independence of premise.

» A classically false choice-like scheme
Vxex®dyel” olx,y) — dfe(T =" VxeI¥ olx, f(x))

f(x) for pointwise application

Double linear-negation elimination

For every ¢, there is a realizer (p—oLl)—oL — %)
but no canonical iso in general!

» Also holds in DC if the base satisfies choice.
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The above logic can be defined without reference to automata.
» w-word automata guarantee decidability properties. . .

» But they are not needed to extract realizers.
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The above logic can be defined without reference to automata.
» w-word automata guarantee decidability properties. . .

» But they are not needed to extract realizers.

~> A purely logical reformulation of LMSO using categorical semantics.

» Purely syntactic transformations.
» Understand links with typed realizability and Dialectica.
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Define the category M of causal functions
» Objects: sets of streams ¥* for X finite
» Morphisms: finite-state causal functions
» Cartesian products % x ¥ ~ (£ x ), but not cartesian-closed
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Finite-state causal functions as terms

Define the category M of causal functions

Inductive presentation

YW

» Cartesian products X* x

~

» Objects: sets of streams £“ for X finite

» Morphisms: finite-state causal functions

Tw

fixp, (f)

(X x IN*, but not cartesian-closed

+ closure under composition

f:X—oT FiT¥ XM 5T byel
Fo x> T fixpy (F) - T — [
Fw

~ guarded recursion fix : A" — A

topos of trees

16 /21



o = t=zeu | pAY | np | IXEXV @

» Typed variables stand for streams, terms for every f.s. causal functions.

FOM and MSO(N) are interpretable in one another.

» Justifies focusing on FOM.
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n= t=zeu | pAY | mp | IXETV @

» Typed variables stand for streams, terms for every f.s. causal functions.

FOM and MSO(N) are interpretable in one another.
» Justifies focusing on FOM.

» Regard M as a multi-sorted Lawvere theory.
~» Tarskian semantics ~ indexed category, from global section functor I’
r- ¥ +~—— Homy(1¥,x%)

¥ = (P(T(Z¥)),9)
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Simple slice C//X = full subcategory of C/X with objects
XxYS X

~+ the simple fibration s(C) — C

SGum(f) ——=¢& » Sum(p)-predicate: (U, ¢(a, u))
- U object of C, ¢ over A x U (in p)
l P ~ Ju: U ¢(a,u)
X
Sum(p) s(C) ———¢C

» Freely adds existential quantifications
l (simple sums)

C

» Reminiscent of typed realizability
realizers in C
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SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

XxY 5 X
~> the simple fibration s(C) — C
The construction Gum
Gum(€&) & > Sum(p)-predicate: (U, ¢(a, u))
/ - U object of C, ¢ over A X U (in p)
/ i p ~ Ju: U ¢(a,u)
Sum(p){ s(C) X .c

» Freely adds existential quantifications

\ \L (simple sums)
C
» Reminiscent of typed realizability

realizers in C

Reconstructing SMSO
Simulations of non-determinstic automata ~ Gum applied to FOM
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Dial =2 SGum o Prod Prod(p) = Sum(p®)®  [Hofstra (2011)]

» Dial(p)-predicate over A = (U, X, ¢(a, u, x))
think Ju Vx ¢(a, u, x)

» interprets full intuitionistic MLL+FO

LNL-adjunction

T A T
Gum(p) i Dial(p) T Prod(p)
~N~~— ~N~~—
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think Ju Vx ¢(a, u, x)
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LNL-adjunction

T A T T
Sum(p) il Dial*(p) T Prod(p)
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Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]
Dial = Gum o Prod Prod(p) = Sum(p®)*P [Hofstra (2011)]

» Dial(p)-predicate over A = (U, X, ¢(a, u, x))
think Ju Vx ¢(a, u, x)

» interprets full intuitionistic MLL+FO and exponentials
(U, X, p(u,x)) = (U,1,Vx ¢(u,x)

LNL-adjunction

T T T
Sum(p) 1 Dial*(p) T Prod(p)
~N~~— ~N~~—

Realized Dialectica-like construction Dial®™

» Only over a CCC extension of M
(U, X, ¢(u, x)) = (U"X,1,Yx o(F(» x), x)

» Relationship with ®ial via a “feedback” monad
exploits fix : A4 — A
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Linking LMSO with Dialectica

Fibered Dialectica [Hyland (2001)]
Dial = Gum o Prod Prod(p) = Sum(p®)*P [Hofstra (2011)]

» Dial(p)-predicate over A = (U, X, ¢(a, u, x))
think Ju Vx ¢(a, u, x)

» interprets full intuitionistic MLL+FO and exponentials
(U, X, p(u,x)) = (U,1,Vx ¢(u,x)

LNL-adjunction

T T T
Sum(p) 1 Dial*(p) T Prod(p)
~N~~— ~N~~—

Realized Dialectica-like construction Dial™
» Only over a CCC extension of M
(U, X, ¢(u, x)) = (U™X, 1,Yx o(f(» x), x)

» Relationship with ®ial via a “feedback” monad
exploits fix : A4 — A

» Polarity restrictions ~ model of LMSO (restricted exponentials)
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» Realizability models based on simulations between automata
» Abstract reformulation link with Dialectica and typed realizability
» Complete extension of LMSO omitted from the talk [P., Riba (2019)]
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» Realizability models based on simulations between automata

» Abstract reformulation link with Dialectica and typed realizability
» Complete extension of LMSO omitted from the talk [P., Riba (2019)]

» Fibrations of tree automata [Riba (2015)]

» Good-for-games automata
[Henziger, Piterman (2006), Kuperberg Skrzypczak (2015)]
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» Realizability for continuous functions X* — “?

> Extensions of Dial® for fibrations over the topos of trees?
Fam(Fam(pP)°P) instead of Dial(p)

» Undecidability of the equational logic of higher-order extensions of FOM?
» Reconstructing zizgag games as the final coalgebra for C +— Cge?

21/21



Final word

Some further questions

» Realizability for continuous functions X* — “?

» Extensions of Dial® for fibrations over the topos of trees?
Fam(Fam(p®)°P) instead of Dial(p)

» Undecidability of the equational logic of higher-order extensions of FOM?

» Reconstructing zizgag games as the final coalgebra for C — Cge?

Thanks for your attention! Questions?
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RCAy is defined by restricting induction and comprehension

For every formula ¢(n) (with X ¢ FV(¢)
IXVneN (¢(n) < ne X)

» RCAg: restricted to A formulas

recursive comprehension

To prove that Vn € N¢(n) it suffices to show
»> ¢(0) holds
» for every n € N, ¢(n) implies ¢(n + 1)

» RCAq: restricted to X9 formulas.
In §(n) with § € Ag

» Equivalent to minimization principles and comprehension for finite sets.

1/6



For any linear order (P, <) write [P]? for {(i,j) € P? | i < j} and fix a finite
monoid (M, -, e).
Call f: [P]*> — M additive when f(i,j)- f(j, k) = f(i, k) forall i <j <k

For any additive f : [P]> — M, there is an unbounded monochromatic X C P
(s:t. IF(IXI)] =1).
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Additive Ramsey over w

For any linear order (P, <) write [P]? for {(i,j) € P*>|i < j} and fix a finite
monoid (M, -, e).

Call f: [P]*> — M additive when f(i,j)- f(j, k) = f(i, k) forall i <j <k
Additive Ramsey

For any additive f : [P]> — M, there is an unbounded monochromatic X C P
(st [F(IXP) =1).

Over RCA, additive Ramsey over w is equivalent to ¥5-induction.

Direct proof: “as usual” for additive Ramsey  (factored through an ordered variant in
the paper)
M3-induction from additive Ramsey

Consider equivalently comprehension for sets bounded by n for 3%k §(x, k).
Define the coloring f : [wW]*> = 2" as  f(i,j)x = .rglax'é(x, 1).
iI<I<j

Apply additive Ramsey and consider the color X of the monochromatic set; we
have

xeX & 3%°6(x, k)
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Combinatorics for coloring over Q

Let D be a dense linear order (~ Q).

A function f : D — X is called homogeneous if f~'(x) is either dense or empty
for every x € X.

The shuffle principle

For any coloring ¢ : Q — [0, n], there is | Cconv Q such that c|, is a shuffle.

» the key additional principle behind the usual inductive argument in
[Carton, Colcombet, Puppis (2015)]

Shelah’s additive Ramseyan theorem

Let M be a monoid. For every map f : [Q]*> — M such that
f(q,r)f(r,s) = f(q,s), there exists an interval / C Q and a finite partition into
finitely many dense sets D; of / such that f is constant over each [D;]°.

» the key additional principle behind the usual inductive argument in
[Shelah (1975)]

3/6



Consider a formula ¢(u, x). (ue U¥ xeX?)
~ Infinite 2-player game G, between P and O.

—

0 x X1 Xn P wins
P to u up o(u, x) holds
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P-strategies ~ X" —= U O-strategies ~ U*— X
causal functions eager causal functions
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The Buchi-Landweber theorem

Consider a formula ¢(u, x). (ue U¥ xe X?)
~ Infinite 2-player game G, between P and O.

0 [ x X1 Xn P wins

P Up Uy Un o(u, x) holds

P-strategies ~ X' — U O-strategies ~ U* = X
causal functions eager causal functions

Theorem [Biichi-Landweber (1969)]

Suppose ¢ is MSO-definable. The game G, is determined:
» Either there exists a finite-state P-strategy sp(x) s.t. Vx € X* ¢(sp(x), x)
» Or there exists a finite-state O-strategy so(u) s.t. Vu € U¥ —p(u,so(u))
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Tuples A = (Q, qo, U,54,Q24) : X where

» U a set of moves ~ amount of non-determinism
» transition function 4 : X X @ x U — Q induces 6% : Z¥ x U® — Q*
> Q4 C Q“ reasonable acceptance condition (parity, Muller, ...)
» Same definable languages £(A) = {w | Ju é%(w, u)} U~Q

5/6



The realizability notion for SMSO

Uniform non-deterministic automata
Tuples A = (Q, qo, U,54,924) : X where

» U a set of moves ~ amount of non-determinism
» transition function 4 : X x @ x U — Q induces 5% : ¥ x UY — Q¥
> Q4 C QY reasonable acceptance condition (parity, Muller, ...)
» Same definable languages £(A) = {w | Ju §%(w, u)} U~Q

Simulations A I f : B
Finite-state causal function f : ¥“ x U“ — V“ such that

VYw € X“Vu € U¥ Sa(w,u) € Qa = Sa(w,f(w,u)) € Qg
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The realizability notion for SMSO

Uniform non-deterministic automata
Tuples A = (Q, qo, U,54,924) : X where

» U a set of moves ~ amount of non-determinism
» transition function 4 : X x @ x U — Q induces 8% : ¥ x U¥ — Q¥
> Q4 C QY reasonable acceptance condition (parity, Muller, ...)
» Same definable languages £(A) = {w | Ju §%(w, u)} U~Q

Simulations A I f : B
Finite-state causal function f : ¥“ x U“ — V“ such that

VYw € X“Vu € U¥ Sa(w,u) € Qa = Sa(w,f(w,u)) € Qg

> If Al- B, then £(A) C £(B)

» Natural interpretation for 3, A and — for deterministic automata. ..
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Alternating uniform automata

Define a notion of alternating uniform automata (Q, qo, U, X, ,Q)
» sets of P-moves U and O-moves X
> i xQxUxX—=Q
> w € L(A) iff P wins an acceptance game

Simulation game

(U, X) — (V,Y)

“" P wins iff
Vn

Yn

TOTVO

Xn (u, x) P-winning = (v, y) P-winning

» X ~1 ~v non-deterministic uniform automata

» U~ X~1 ~v deterministic automata
trivial simulations
6/6
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