Zigzag games, alternating infinite word automata and linear Monadic-Second order logic

Cécilia Pradic

j.w.w. Colin RIBA (ÉNS Lyon)

 $\begin{array}{c} \text{April 8}^{\text{th}} \ 2022 \\ \text{Birmingham theory seminar} \end{array}$

Monadic Second-Order (MSO) logic and constructiveness

Monadic Second-Order logic (MSO)

- ► A fragment of Second-Order logic.
- ► Algorithmically decidable over

 \mathbb{N}, \mathbb{Q} , the infinite binary tree $\{0, 1\}^*, \ldots$

Subsumes many verification logics.

LTL, CTL, ...

Monadic Second-Order (MSO) logic and constructiveness

Monadic Second-Order logic (MSO)

- ► A fragment of Second-Order logic.
- ► Algorithmically decidable over

```
\mathbb{N}, \mathbb{Q}, the infinite binary tree \{0, 1\}^*, \ldots
```

Subsumes many verification logics.

LTL, CTL, ...

Decidable \neq constructive

Soundness of decision procedures \leftarrow non-constructive theorems.

- ▶ Over N: infinite Ramsey theorem, weak König's Lemma.
- Over $\{0,1\}^*$: determinacy of infinite parity games.

MSO over infinite words

Syntax of $MSO(\mathbb{N})$

$$\varphi, \psi ::= \mathbf{n} \in \mathbf{X} \mid \mathbf{n} < \mathbf{k} \mid \exists \mathbf{n} \varphi \mid \exists \mathbf{X} \varphi \mid \neg \varphi \mid \varphi \wedge \psi$$

- ► Can be regarded as a subsystem of Second-Order Arithmetic
- ▶ Standard model: $n \in \mathbb{N}$, $X \in \mathcal{P}(\mathbb{N})$
- Only unary predicates.

no pairing, no addition

MSO over infinite words

Syntax of $MSO(\mathbb{N})$

$$\varphi, \psi ::= \mathbf{n} \in \mathbf{X} \mid \mathbf{n} < \mathbf{k} \mid \exists \mathbf{n} \varphi \mid \exists \mathbf{X} \varphi \mid \neg \varphi \mid \varphi \wedge \psi$$

- ► Can be regarded as a subsystem of Second-Order Arithmetic
- ▶ Standard model: $n \in \mathbb{N}$, $X \in \mathcal{P}(\mathbb{N})$
- Only unary predicates.

no pairing, no addition

Typical $MSO(\mathbb{N})$ -definable properties

- ▶ "The set $X \subseteq \mathbb{N}$ is infinite."
- ▶ "The set $X \subseteq \mathbb{N}$ is finite."

MSO over infinite words

Syntax of $MSO(\mathbb{N})$

$$\varphi, \psi ::= \mathbf{n} \in \mathbf{X} \quad | \quad \mathbf{n} < \mathbf{k} \quad | \quad \exists \mathbf{n} \ \varphi \quad | \quad \exists \mathbf{X} \ \varphi \quad | \quad \neg \varphi \quad | \quad \varphi \wedge \psi$$

- ► Can be regarded as a subsystem of Second-Order Arithmetic
- ▶ Standard model: $n \in \mathbb{N}$, $X \in \mathcal{P}(\mathbb{N})$
- Only unary predicates.

no pairing, no addition

Typical $MSO(\mathbb{N})$ -definable properties

- ▶ "The set $X \subseteq \mathbb{N}$ is infinite."
- ▶ "The set $X \subseteq \mathbb{N}$ is finite."

Corresponds exactly to sets recognizable by automata over infinite words.

- ▶ Infinite words: regard sets as sequences of bits through $\mathcal{P}(\mathbb{N}) \simeq 2^{\omega}$
- $ightharpoonup \varphi(X_1,\ldots X_k)$: formula over Σ^{ω} for $\Sigma=2^k$

Non-deterministic Büchi automata (NBA)

Definition

A non-deterministic Büchi automaton (NBA) $\mathcal{A}:\Sigma$ is a tuple (Q,q_0,δ,F)

- ▶ Q is a finite set of states, $q_0 \in Q$
- ▶ transition function $\delta : \Sigma \times Q \rightarrow \mathcal{P}(Q)$
- $ightharpoonup F \subseteq Q$ accepting states

Recognizes languages of infinite words $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$:

 $w \in \mathcal{L}(\mathcal{A})$ iff there is a run over $w \in \Sigma^{\omega}$ hitting F infinitely often

non-recursive acceptance condition

Non-deterministic Büchi automata (NBA)

Definition

A non-deterministic Büchi automaton (NBA) $\mathcal{A}:\Sigma$ is a tuple (Q,q_0,δ,F)

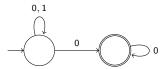
- ▶ Q is a finite set of states, $q_0 \in Q$
- ▶ transition function $\delta : \Sigma \times Q \rightarrow \mathcal{P}(Q)$
- $ightharpoonup F \subseteq Q$ accepting states

Recognizes languages of infinite words $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$:

 $w \in \mathcal{L}(\mathcal{A})$ iff there is a run over $w \in \Sigma^{\omega}$ hitting F infinitely often

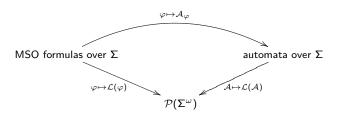
non-recursive acceptance condition

Example:



 $\mathcal{L}(\mathcal{A}) = \text{streams}$ with finitely many 1.

MSO/automata correspondance



Decidability [Büchi (1962)]

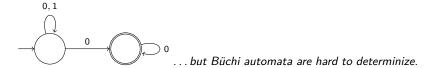
MSO over infinite words is decidable.

- ▶ Proof idea: automata theoretic-construction for each logical connective.
- ► Hard case for infinite words: negation ¬.

corresponds to complementation

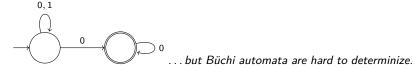
Complementation, determinization and constructivity

For finite word automata: easy complementation for *deterministic* automata.



Complementation, determinization and constructivity

For finite word automata: easy complementation for deterministic automata.



Theorem [McNaughton (1968)]

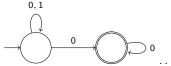
Non-deterministic Büchi automata can be determinized into *Rabin automata*.

more complex acceptance condition

- ► Büchi's original complementation procedure: w/o determinization.
- ► Effective algorithms for automata ...

Complementation, determinization and constructivity

For finite word automata: easy complementation for *deterministic* automata.



.. but Büchi automata are hard to determinize.

Theorem [McNaughton (1968)]

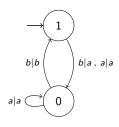
Non-deterministic Büchi automata can be determinized into *Rabin automata*.

more complex acceptance condition

- ▶ Büchi's original complementation procedure: w/o determinization.
- ► Effective algorithms for automata . . .
- ▶ ... but non-constructive proofs of soundness!

usual proofs: infinite Ramsey theorem, weak König's lemma

Church's synthesis (1/2): causal functions



Causal/synchronous stream functions $f: \Sigma^{\omega} \to \Gamma^{\omega}$

- ▶ Interpret $n \in \mathbb{N}$ as time steps.
- ▶ Lifted from functions $\hat{f}: \Sigma^+ \to \Gamma$ as

$$\hat{f}: \Sigma^{\omega} \to \Gamma^{\omega}$$
 $s \mapsto n \mapsto f(s(0) \dots s(n))$

i.e., the output does not depend on the future.

Focus on finite-state causal functions.
 (Correspond to Mealy machines)

- ► All f.s. causal functions are recursive.
- ► All causal functions are continuous.
- ► Some recursive functions are not causal.

 $w \longmapsto n \mapsto w_{n+1}$

Church's synthesis (2/2): the Büchi-Landweber theorem

Church's synthesis problem

Given a formula $\varphi(X,Y)$, find a f. s. causal $f:\Sigma^\omega\to\Gamma^\omega$ such that $\forall w\;\varphi(w,f(w))$

Church's synthesis (2/2): the Büchi-Landweber theorem

Church's synthesis problem

Given a formula
$$\varphi(X,Y)$$
, find a f. s. causal $f:\Sigma^\omega\to\Gamma^\omega$ such that $\forall w\; \varphi(w,f(w))$

Example (inspired from [Thomas (2008)]):

 $ightharpoonup \varphi(X,Y) \equiv (X \text{ infinite} \Rightarrow Y \text{ infinite}) \text{ and } \forall i \ (i \in Y \Rightarrow i+1 \notin Y)$

Theorem [Büchi-Landweber (1969)]

Algorithmic solution for $\varphi(X, Y)$ in MSO.

► Algorithmically costly...

MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]

 $\ensuremath{\mathsf{MSO}}$ is completely axiomatized by the axioms of second-order arithmetic.

MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]

MSO is completely axiomatized by the axioms of second-order arithmetic.

Church's synthesis reminiscent of extraction from proofs:

$$\mathsf{MSO} \vdash \forall x \exists y \ \varphi(x,y) \qquad \stackrel{?}{\Longrightarrow} \qquad \exists f \ \mathsf{f.s.} \ \mathsf{causal} \quad \forall x \ \varphi(x,f(x))$$

MSO and proofs

MSO can also be seen as a classical axiomatic theory

Theorem [Siefkes (1970)]

MSO is completely axiomatized by the axioms of second-order arithmetic.

Church's synthesis reminiscent of extraction from proofs:

$$\mathsf{MSO} \vdash \forall x \exists y \ \varphi(x,y) \qquad \Rightarrow \qquad \exists f \ \mathsf{f.s.} \ \mathsf{causal} \quad \forall x \ \varphi(x,f(x))$$

Classical theorems in MSO

► Excluded middle

(subtle point $\{0,1\}^\omega$ vs $\mathcal{P}(\mathbb{N})$)

- ► The infinite pigeonhole principle
- ► Instances of additive Ramsey
- \leadsto No algorithmic witnesses for $\forall \exists$ theorems.

Extraction from proofs

Goal: a refinement of MSO(\mathbb{N}) with extraction for **causal** functions.

- ► Toward semi-automatic approach to synthesis.
- ► Approach inspired by realizability.

[Kleene (1945), ...]

Extraction from proofs

Goal: a refinement of $MSO(\mathbb{N})$ with extraction for **causal** functions.

- ► Toward semi-automatic approach to synthesis.
- Approach inspired by realizability.

[Kleene (1945), ...]

Analogous example: extraction for intuitionistic arithmetic (HA)

If $HA \vdash \forall x \exists y \varphi(x, y)$, there is an algorithm computing

$$f: \mathbb{N} \to \mathbb{N}$$
 recursive such that $\forall x \ \varphi(x, f(x))$

- A subset of classical arithmetic (PA).
- ▶ As expressive as classical arithmetic. $(\varphi \mapsto \varphi \neg \neg)$
- ► Can be refined to System T functions.

[Gödel (1930s)]

Analogy

Classical system	∥ MSO(ℕ)	PA
Realizers	Causal functions	System T
Intuitionistic system	???	HA

Intuitionistic version of MSO

$$\varphi,\psi \ ::= \ \alpha \ | \ \varphi \wedge \psi \ | \ \exists X \ \varphi \ | \ \neg \varphi$$

Quantification over individuals encoded as usual

Intuitionistic version of MSO

$$\varphi,\psi \ ::= \ \alpha \ | \ \varphi \wedge \psi \ | \ \exists \mathsf{X} \ \varphi \ | \ \neg \varphi$$

Quantification over individuals encoded as usual

Glivenko's theorem for SMSO

 $\mathsf{MSO} \vdash \varphi \mathsf{ if and only if SMSO} \vdash \neg \neg \varphi$

► Negation erases computational contents.

Intuitionistic version of MSO

$$\varphi, \psi ::= \alpha \mid \varphi \wedge \psi \mid \exists X \varphi \mid \neg \varphi$$

Quantification over individuals encoded as usual

Glivenko's theorem for SMSO

 $MSO \vdash \varphi$ if and only if $SMSO \vdash \neg \neg \varphi$

► Negation erases computational contents.

Extraction of f.s. causal functions

SMSO
$$\vdash \exists y \neg \neg \varphi(x, y)$$
 iff there is a f.s. causal f s.t. MSO $\vdash \forall x \varphi(x, f(x))$

ightharpoonup Proofs $\varphi \vdash \psi$ interpreted as simulations between ND automata.

Intuitionistic version of MSO

$$\varphi, \psi ::= \alpha \mid \varphi \wedge \psi \mid \exists X \varphi \mid \neg \varphi$$

Quantification over individuals encoded as usual

Glivenko's theorem for SMSO

 $MSO \vdash \varphi$ if and only if $SMSO \vdash \neg \neg \varphi$

► Negation erases computational contents.

Extraction of f.s. causal functions

SMSO
$$\vdash \exists y \neg \neg \varphi(x, y)$$
 iff there is a f.s. causal f s.t. MSO $\vdash \forall x \varphi(x, f(x))$

ightharpoonup Proofs $\varphi \vdash \psi$ interpreted as simulations between ND automata.

No interpretation for \Rightarrow and \forall

Intuitionistic version of MSO

$$\varphi, \psi ::= \alpha \mid \varphi \wedge \psi \mid \exists X \varphi \mid \neg \varphi$$

Quantification over individuals encoded as usual

Glivenko's theorem for SMSO

 $MSO \vdash \varphi$ if and only if $SMSO \vdash \neg \neg \varphi$

► Negation erases computational contents.

Extraction of f.s. causal functions

SMSO
$$\vdash \exists y \neg \neg \varphi(x, y)$$
 iff there is a f.s. causal f s.t. MSO $\vdash \forall x \varphi(x, f(x))$

▶ Proofs $\varphi \vdash \psi$ interpreted as simulations between ND automata.

No interpretation for \Rightarrow and \forall Polarity restriction

- Polarized system with dualities.
- ▶ Requires the introduction of **linear** connectives.

Linear MSO (LMSO)

$$\varphi,\psi\quad ::=\quad \alpha\quad |\quad \varphi\otimes\psi\quad |\quad \varphi \stackrel{\Re}{\rightarrow}\psi\quad |\quad \varphi \multimap\psi\quad |\quad \forall X\varphi\quad |\quad \exists X\varphi\quad |\quad !\varphi^-\quad |\quad ?\varphi^+\quad |\quad \dots$$

- ► Polarized system with dualities.
- ▶ Requires the introduction of **linear** connectives.

Linear MSO (LMSO)

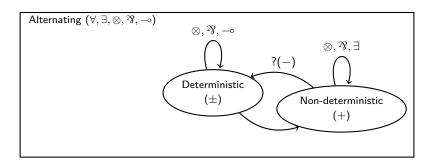
$$\varphi,\psi\quad ::=\quad \alpha \quad \mid \ \varphi\otimes\psi \ \mid \ \varphi \not \ni \psi \ \mid \ \varphi \multimap \psi \ \mid \ \forall X\varphi \ \mid \ \exists X\varphi \ \mid \ !\varphi^- \ \mid \ ?\varphi^+ \ \mid \ \dots$$

Alternating $(\forall, \exists, \otimes, ??, \multimap)$

- ► Polarized system with dualities.
- ▶ Requires the introduction of **linear** connectives.

Linear MSO (LMSO)

$$\varphi,\psi\quad ::=\quad \alpha \quad \mid \ \varphi\otimes\psi \ \mid \ \varphi \not \ni \psi \ \mid \ \varphi \multimap \psi \ \mid \ \forall X\varphi \ \mid \ \exists X\varphi \ \mid \ !\varphi^- \ \mid \ ?\varphi^+ \ \mid \ \dots$$



SMSO

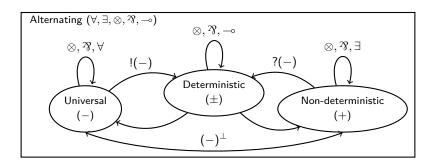
 \approx

restriction to positives

- Polarized system with dualities.
- ▶ Requires the introduction of **linear** connectives.

Linear MSO (LMSO)

$$\varphi,\psi\quad ::=\quad \alpha\quad |\quad \varphi\otimes\psi\quad |\quad \varphi^{\,\mathfrak{R}}\,\psi\quad |\quad \varphi\multimap\psi\quad |\quad \forall X\varphi\quad |\quad \exists X\varphi\quad |\quad !\varphi^-\quad |\quad ?\varphi^+\quad |\quad \dots$$



SMSO

 \approx

restriction to positives

Expressivity and proof extraction for LMSO

Conservativity

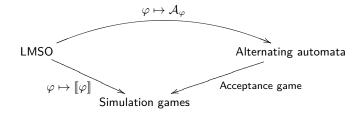
$$\begin{array}{ccc} \mathsf{LMSO} & \to & \mathsf{MSO} \\ \varphi & \mapsto & \lceil \varphi \rceil \end{array}$$

If LMSO $\vdash \varphi$, then MSO $\vdash \lceil \varphi \rceil$.

Expressivity

$$\begin{array}{ccc} \mathsf{MSO} & \to & \mathsf{LMSO} \\ \varphi & \mapsto & \varphi^L \end{array}$$

If MSO $\vdash \varphi$, then LMSO $\vdash \varphi^L$.



Expressivity and proof extraction for LMSO

Conservativity

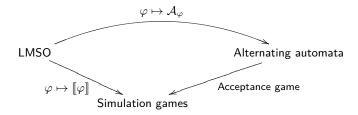
$$\begin{array}{ccc} \mathsf{LMSO} & \to & \mathsf{MSO} \\ \varphi & \mapsto & \lceil \varphi \rceil \end{array}$$

If LMSO $\vdash \varphi$, then MSO $\vdash \lceil \varphi \rceil$.

Expressivity

$$\begin{array}{ccc} \mathsf{MSO} & \to & \mathsf{LMSO} \\ \varphi & \mapsto & \varphi^L \end{array}$$

If MSO $\vdash \varphi$, then LMSO $\vdash \varphi^L$.



Extraction of f.s. causal functions

LMSO $\vdash \forall x \exists y \ \varphi^L(x,y)$ iff there is a f.s causal f s.t. MSO $\vdash \forall x \ \varphi(x,f(x))$

► LMSO includes Full Intuitionistic Multiplicative Linear Logic.

[Hyland, de Paiva (1993)]

Similarities with Dialectica categories DC:

[de Paiva (1989,1991)]

► LMSO includes Full Intuitionistic Multiplicative Linear Logic.

[Hyland, de Paiva (1993)]

► Similarities with Dialectica categories DC:

[de Paiva (1989,1991)]

Realized principles

► Linear Markov principle and independence of premise.

► LMSO includes Full Intuitionistic Multiplicative Linear Logic.

[Hyland, de Paiva (1993)]

► Similarities with Dialectica categories DC:

[de Paiva (1989,1991)]

Realized principles

- Linear Markov principle and independence of premise.
- ► A classically false choice-like scheme

$$\forall x \in \Sigma^{\omega} \ \exists y \in \Gamma^{\omega} \ \varphi(x,y) \qquad \longrightarrow \qquad \exists f \in (\Sigma \to \Gamma)^{\omega} \ \forall x \in \Sigma^{\omega} \ \varphi(x,f(x))$$

f(x) for pointwise application

► LMSO includes Full Intuitionistic Multiplicative Linear Logic.

[Hyland, de Paiva (1993)]

► Similarities with Dialectica categories DC:

[de Paiva (1989,1991)]

Realized principles

- Linear Markov principle and independence of premise.
- ► A classically false choice-like scheme

$$\forall x \in \Sigma^{\omega} \ \exists y \in \Gamma^{\omega} \ \varphi(x,y) \qquad \longrightarrow \qquad \exists f \in (\Sigma \to \Gamma)^{\omega} \ \forall x \in \Sigma^{\omega} \ \varphi(x,f(x))$$

f(x) for pointwise application

Double linear-negation elimination

For every
$$\varphi$$
, there is a realizer $(\varphi \multimap \bot) \multimap \bot \longrightarrow$

► LMSO includes Full Intuitionistic Multiplicative Linear Logic.

[Hyland, de Paiva (1993)]

► Similarities with Dialectica categories DC: [de Paiva (1989,1991)]

Realized principles

- Linear Markov principle and independence of premise.
- ► A classically false choice-like scheme

$$\forall x \in \Sigma^{\omega} \ \exists y \in \Gamma^{\omega} \ \varphi(x,y) \qquad \longrightarrow \qquad \exists f \in (\Sigma \to \Gamma)^{\omega} \ \forall x \in \Sigma^{\omega} \ \varphi(x,f(x))$$

f(x) for pointwise application

Double linear-negation elimination

For every φ , there is a realizer $(\varphi \multimap \bot) \multimap \bot \longrightarrow \varphi$ but no canonical iso in general!

► Also holds in DC if the base satisfies choice.

Why automata?

The above logic can be defined without reference to automata.

- ightharpoonup ω -word automata guarantee decidability properties. . .
- ▶ But they are not needed to extract realizers.

Why automata?

The above logic can be defined without reference to automata.

- ightharpoonup ω -word automata guarantee decidability properties. . .
- ▶ But they are not needed to extract realizers.

→ A purely logical reformulation of LMSO using categorical semantics.

Goals

- ► Purely syntactic transformations.
- ▶ Understand links with typed realizability and Dialectica.

Finite-state causal functions as terms

Define the category ${\mathbb M}$ of causal functions

- ▶ Objects: sets of streams Σ^{ω} for Σ finite
- ► Morphisms: finite-state causal functions
- ▶ Cartesian products $\Sigma^{\omega} \times \Gamma^{\omega} \simeq (\Sigma \times \Gamma)^{\omega}$, but **not** cartesian-closed

Finite-state causal functions as terms

Define the category M of causal functions

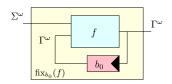
- ▶ Objects: sets of streams Σ^{ω} for Σ finite
- ► Morphisms: finite-state causal functions
- ightharpoonup Cartesian products $\Sigma^{\omega} \times \Gamma^{\omega} \simeq (\Sigma \times \Gamma)^{\omega}$, but **not** cartesian-closed

Inductive presentation

$$rac{f:\Sigma o\Gamma}{f^\omega:\Sigma^\omega o\Gamma^\omega}$$

$$\frac{f: \Sigma \to \Gamma}{f^{\omega}: \Sigma^{\omega} \to \Gamma^{\omega}} \qquad \frac{f: \Sigma^{\omega} \times \Gamma^{\omega} \to \Gamma^{\omega} \quad b_0 \in \Gamma}{\operatorname{fix}_{b_0}(f): \Sigma^{\omega} \to \Gamma^{\omega}}$$

+ closure under composition



$$\approx$$
 guarded recursion fix : $A^{\triangleright A} \rightarrow A$

topos of trees

$\mathsf{MSO}(\mathbb{N})$ as an equational logic over \mathbb{M}

FOM (First-Order Mealy)

$$\varphi, \psi ::= \mathbf{t} =_{\Sigma^{\omega}} \mathbf{u} \mid \varphi \wedge \psi \mid \neg \varphi \mid \exists x \in \Sigma^{\omega} \varphi$$

▶ Typed variables stand for streams, terms for every f.s. causal functions.

Proposition

FOM and $MSO(\mathbb{N})$ are interpretable in one another.

▶ Justifies focusing on FOM.

$\mathsf{MSO}(\mathbb{N})$ as an equational logic over \mathbb{M}

FOM (First-Order Mealy)

$$\varphi, \psi ::= \mathbf{t} = \mathbf{\Sigma} \omega \mathbf{u} \mid \varphi \wedge \psi \mid \neg \varphi \mid \exists \mathbf{x} \in \mathbf{\Sigma}^{\omega} \varphi$$

► Typed variables stand for streams, terms for every f.s. causal functions.

Proposition

FOM and $MSO(\mathbb{N})$ are interpretable in one another.

► Justifies focusing on FOM.

Tarskian semantics (categorical logic)

- ▶ Regard M as a multi-sorted Lawvere theory.
- ightharpoonup Tarskian semantics pprox indexed category, from global section functor $oldsymbol{\Gamma}$

$$oldsymbol{\Gamma}: \quad \Sigma^\omega \quad \longmapsto \quad \operatorname{\mathsf{Hom}}_{\mathbb{M}}\left(1^\omega, \Sigma^\omega
ight)$$

$$\Sigma^{\omega} \longmapsto (\mathcal{P}(\Gamma(\Sigma^{\omega})), \subseteq)$$

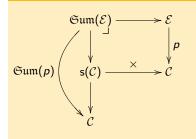
SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

$$X \times Y \xrightarrow{\pi} X$$

 \leadsto the simple fibration $s(\mathcal{C}) \to \mathcal{C}$

The construction Sum



- ► $\mathfrak{Sum}(p)$ -predicate: $(U, \varphi(a, u))$ U object of \mathcal{C} , φ over $A \times U$ (in p) $\approx \exists u : U \varphi(a, u)$
- ► Freely adds existential quantifications (simple sums)
- lacktriangle Reminiscent of typed realizability realizers in ${\cal C}$

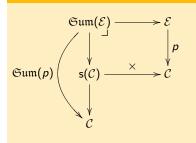
SMSO and the simple fibration

Simple slice C//X = full subcategory of C/X with objects

$$X \times Y \xrightarrow{\pi} X$$

 \leadsto the simple fibration $\mathsf{s}(\mathcal{C}) \to \mathcal{C}$

The construction Sum

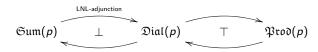


- ► $\mathfrak{Sum}(p)$ -predicate: $(U, \varphi(a, u))$ U object of \mathcal{C} , φ over $A \times U$ (in p) $\approx \exists u : U \varphi(a, u)$
- ► Freely adds existential quantifications (simple sums)
- ► Reminiscent of typed realizability realizers in C

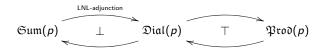
Reconstructing SMSO

Simulations of non-determinstic automata \approx Sum applied to FOM

Fibered Dialectica [Hyland (2001)] $\mathfrak{Dial} \cong \mathfrak{Sum} \circ \mathfrak{Prod} \qquad \mathfrak{Prod}(p) \cong \mathfrak{Sum}(p^{\mathrm{op}})^{\mathrm{op}} \qquad [\text{Hofstra (2011)}]$ $\blacktriangleright \ \mathfrak{Dial}(p)\text{-predicate over } A \approx (U, X, \varphi(a, u, x))$ $\qquad \qquad \qquad \text{think } \exists u \ \forall x \ \varphi(a, u, x)$ $\blacktriangleright \ \text{interprets full intuitionistic MLL+FO}$



Fibered Dialectica		[Hyland (2001)]			
$\mathfrak{Dial}\cong\mathfrak{Sum}\circ\mathfrak{Prod}$	$\mathfrak{Prod}(p)\cong\mathfrak{Sum}(p^{op})^{op}$	[Hofstra (2011)]			
$ ightharpoons$ $\mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$					
	thinl	$\forall x \ \exists u \ \forall x \ \varphi(a,u,x)$			
▶ interprets full intuitionistic MLL+FO and exponentials					
	$!(U,X,\varphi(u,x)) =$	$(U,1,\forall x \varphi(u,x)$			



Fibered Dialectica

[Hyland (2001)]

 $\mathfrak{Dial} \cong \mathfrak{Sum} \circ \mathfrak{Prod}$

$$\mathfrak{Prod}(p) \cong \mathfrak{Sum}(p^{\mathsf{op}})^{\mathsf{op}}$$

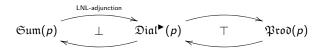
[Hofstra (2011)]

▶ $\mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$

think $\exists u \ \forall x \ \varphi(a, u, x)$

▶ interprets full intuitionistic MLL+FO and exponentials

$$!(U,X,\varphi(u,x)) = (U,1,\forall x \varphi(u,x))$$



Realized Dialectica-like construction Dial

Fibered Dialectica

[Hyland (2001)]

 $\mathfrak{Dial} \cong \mathfrak{Sum} \circ \mathfrak{Prod}$

$$\mathfrak{Prod}(p) \cong \mathfrak{Sum}(p^{\mathsf{op}})^{\mathsf{op}}$$

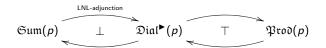
[Hofstra (2011)]

▶ $\mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$

think
$$\exists u \ \forall x \ \varphi(a, u, x)$$

▶ interprets full intuitionistic MLL+FO and exponentials

$$!(U,X,\varphi(u,x)) \ = \ (U,1,\forall x \ \varphi(u,x)$$



Realized Dialectica-like construction Dial

► Only over a CCC extension of M

$$!(U,X,\varphi(u,x))=(U^{\blacktriangleright X},1,\forall x\ \varphi(f(\blacktriangleright x),x)$$

Fibered Dialectica

[Hyland (2001)]

Dial ≅ Sum o Prod

$$\mathfrak{P}\mathfrak{rod}(p)\cong\mathfrak{Sum}(p^{\mathrm{op}})^{\mathrm{op}}$$

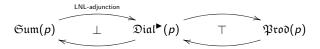
[Hofstra (2011)]

▶ $\mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$

think
$$\exists u \ \forall x \ \varphi(a, u, x)$$

▶ interprets full intuitionistic MLL+FO and exponentials

$$!(U,X,\varphi(u,x)) = (U,1,\forall x \varphi(u,x)$$



Realized Dialectica-like construction Dial

▶ Only over a CCC extension of M

$$!(U, X, \varphi(u, x)) = (U^{\triangleright X}, 1, \forall x \ \varphi(f(\triangleright x), x))$$

▶ Relationship with Dial via a "feedback" monad

exploits fix : $A^{\triangleright A} \rightarrow A$

Fibered Dialectica

[Hyland (2001)]

Dial ≅ Sum o Prod

$$\mathfrak{P}\mathfrak{rod}(p)\cong\mathfrak{Sum}(p^{\mathsf{op}})^{\mathsf{op}}$$

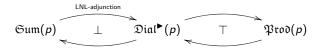
[Hofstra (2011)]

▶ $\mathfrak{Dial}(p)$ -predicate over $A \approx (U, X, \varphi(a, u, x))$

think
$$\exists u \ \forall x \ \varphi(a, u, x)$$

▶ interprets full intuitionistic MLL+FO and exponentials

$$!(U,X,\varphi(u,x)) = (U,1,\forall x \varphi(u,x)$$



Realized Dialectica-like construction Dial

▶ Only over a CCC extension of M

$$!(U, X, \varphi(u, x)) = (U^{\triangleright X}, 1, \forall x \ \varphi(f(\triangleright x), x))$$

► Relationship with Dial via a "feedback" monad

exploits fix :
$$A^{\triangleright A} \to A$$

▶ Polarity restrictions ≈ model of LMSO

(restricted exponentials)

In a nutshell

Summary

- ▶ Realizability models based on simulations between automata
- ► Abstract reformulation

link with Dialectica and typed realizability

► Complete extension of LMSO

omitted from the talk [P., Riba (2019)]

In a nutshell

Summary

- ▶ Realizability models based on simulations between automata
- ► Abstract reformulation

link with Dialectica and typed realizability

► Complete extension of LMSO

omitted from the talk [P., Riba (2019)]

Related work

▶ Fibrations of tree automata

[Riba (2015)]

► Good-for-games automata

[Henziger, Piterman (2006), Kuperberg Skrzypczak (2015)]

Final word

Some further questions

- ▶ Realizability for *continuous* functions $\Sigma^{\omega} \to \Gamma^{\omega}$?
- Extensions of $\mathfrak{Dial}^{\blacktriangleright}$ for fibrations over the topos of trees? $\mathfrak{Fam}(\mathfrak{Fam}(p^{op})^{op}) \text{ instead of } \mathfrak{Dial}(p)$
- ▶ Undecidability of the equational logic of higher-order extensions of FOM?
- ▶ Reconstructing zizgag games as the final coalgebra for $C \mapsto C_{\oplus \&}$?

Some further questions

- ▶ Realizability for *continuous* functions $\Sigma^{\omega} \to \Gamma^{\omega}$?
- ► Extensions of $\mathfrak{Dial}^{\blacktriangleright}$ for fibrations over the topos of trees? $\mathfrak{Fam}(\mathfrak{Fam}(p^{op})^{op})$ instead of $\mathfrak{Dial}(p)$
- ▶ Undecidability of the equational logic of higher-order extensions of FOM?
- ▶ Reconstructing zizgag games as the final coalgebra for $C \mapsto C_{\oplus \&}$?

Thanks for your attention! Questions?

Induction and comprehension

RCA₀ is defined by restricting induction and comprehension

Comprehension axiom

For every formula
$$\phi(n)$$
 (with $X \notin FV(\phi)$
$$\exists X \ \forall n \in \mathbb{N} \ (\phi(n) \Leftrightarrow n \in X)$$

▶ RCA $_0$: restricted to Δ^0_1 formulas

recursive comprehension

Induction axiom

To prove that $\forall n \in \mathbb{N}\phi(n)$ it suffices to show

- $ightharpoonup \phi(0)$ holds
- ▶ for every $n \in \mathbb{N}$, $\phi(n)$ implies $\phi(n+1)$
- ▶ RCA₀: restricted to Σ_1^0 formulas.

 $\exists n \ \delta(n) \ \text{with} \ \delta \in \Delta_1^0$

▶ Equivalent to minimization principles and comprehension for finite sets.

Additive Ramsey over ω

For any linear order (P, <) write $[P]^2$ for $\{(i, j) \in P^2 \mid i < j\}$ and fix a finite monoid (M, \cdot, e) .

Call $f : [P]^2 \to M$ additive when $f(i,j) \cdot f(j,k) = f(i,k)$ for all i < j < k

Additive Ramsey

For any additive $f:[P]^2\to M$, there is an unbounded monochromatic $X\subseteq P$ (s.t. $|f([X]^2)|=1$).

Additive Ramsey over ω

For any linear order (P,<) write $[P]^2$ for $\{(i,j) \in P^2 \mid i < j\}$ and fix a finite monoid (M,\cdot,e) .

Call $f: [P]^2 \to M$ additive when $f(i,j) \cdot f(j,k) = f(i,k)$ for all i < j < k

Additive Ramsey

For any additive $f:[P]^2 \to M$, there is an unbounded monochromatic $X \subseteq P$ (s.t. $|f([X]^2)| = 1$).

Theorem

Over RCA₀, additive Ramsey over ω is equivalent to Σ_2^0 -induction.

Direct proof: "as usual" for additive Ramsey (factored through an ordered variant in the paper)

Π_2^0 -induction from additive Ramsey

Consider equivalently comprehension for sets bounded by n for $\exists^{\infty} k$ $\delta(x, k)$. Define the coloring $f: [\omega]^2 \to 2^n$ as $f(i,j)_x = \max_{i < l < i} \delta(x, l)$.

Apply additive Ramsey and consider the color X of the monochromatic set; we have

$$x \in X \qquad \Leftrightarrow \qquad \exists^{\infty} \delta(x, k)$$

Combinatorics for coloring over $\mathbb Q$

Let D be a dense linear order ($\simeq \mathbb{Q}$).

A function $f: D \to X$ is called *homogeneous* if $f^{-1}(x)$ is either dense or empty for every $x \in X$.

The shuffle principle

For any coloring $c: \mathbb{Q} \to \llbracket 0, n \rrbracket$, there is $I \subseteq_{\text{conv}} Q$ such that $c \mid_I$ is a shuffle.

 the key additional principle behind the usual inductive argument in [Carton, Colcombet, Puppis (2015)]

Shelah's additive Ramseyan theorem

Let M be a monoid. For every map $f: [\mathbb{Q}]^2 \to M$ such that f(q,r)f(r,s) = f(q,s), there exists an interval $I \subseteq \mathbb{Q}$ and a finite partition into finitely many dense sets D_i of I such that f is constant over each $[D_i]^2$.

► the key additional principle behind the usual inductive argument in [Shelah (1975)]

The Büchi-Landweber theorem

Consider a formula $\varphi(u,x)$.

 \rightsquigarrow Infinite 2-player game \mathcal{G}_{φ} between **P** and **O**.

О	<i>x</i> ₀		<i>x</i> ₁			Xn		
Р		u_0		u_1	• • •		un	• • •

$$(u \in U^{\omega}, x \in X^{\omega})$$

 $\varphi(u,x) \text{ holds}$

The Büchi-Landweber theorem

Consider a formula $\varphi(u,x)$.

$$(u \in U^{\omega}, x \in X^{\omega})$$

 \rightsquigarrow Infinite 2-player game \mathcal{G}_{φ} between **P** and **O**.

О	<i>x</i> ₀		<i>x</i> ₁			Xn		
Р		u_0		u_1	• • •		Un	

$$\varphi(u,x) \text{ holds}$$

P-strategies
$$\simeq X^+ \to U$$

$$\begin{array}{ccc} \textbf{O}\text{-strategies} & \simeq & U^* \to X \\ & & & \\ & & \\ & &$$

The Büchi-Landweber theorem

Consider a formula
$$\varphi(u,x)$$
.

$$(u \in U^{\omega}, x \in X^{\omega})$$

 \rightsquigarrow Infinite 2-player game \mathcal{G}_{φ} between **P** and **O**.

$$\varphi(u,x) \text{ holds}$$

P-strategies
$$\simeq X^+ \to U$$

$$\textbf{O-strategies} \quad \simeq \quad U^* \to X$$
 eager causal functions

Theorem [Büchi-Landweber (1969)]

Suppose φ is MSO-definable. The game \mathcal{G}_{φ} is determined:

- ▶ Either there exists a finite-state **P**-strategy $s_P(x)$ s.t. $\forall x \in X^\omega$ $\varphi(s_P(x), x)$
- ▶ Or there exists a finite-state **O**-strategy $s_0(u)$ s.t. $\forall u \in U^\omega \neg \varphi(u, s_0(u))$

The realizability notion for SMSO

Uniform non-deterministic automata

Tuples $\mathcal{A} = (Q, q_0, U, \delta_{\mathcal{A}}, \Omega_{\mathcal{A}}) : \Sigma$ where

- ► *U* a set of *moves*
- ▶ transition function $\delta_A : \Sigma \times Q \times U \rightarrow Q$
- $lackbox{} \Omega_{\mathcal{A}} \subseteq Q^{\omega}$ reasonable acceptance condition

 \simeq amount of non-determinism

induces $\delta_{\mathcal{A}}^*: \Sigma^\omega imes U^\omega o Q^\omega$

(parity, Muller, ...)

► Same definable languages
$$\mathcal{L}(\mathcal{A}) = \{ w \mid \exists u \ \delta^*_{\mathcal{A}}(w, u) \}$$
 $U \simeq Q$

The realizability notion for SMSO

Uniform non-deterministic automata

Tuples $\mathcal{A} = (Q, q_0, U, \delta_{\mathcal{A}}, \Omega_{\mathcal{A}}) : \Sigma$ where

- ► *U* a set of *moves*
- ▶ transition function $\delta_A : \Sigma \times Q \times U \rightarrow Q$
- $lackbox{}{}$ $\Omega_{\mathcal{A}}\subseteq \mathit{Q}^{\omega}$ reasonable acceptance condition

 \sim amount of non-determinism

induces $\delta_{\mathcal{A}}^*: \Sigma^\omega \times U^\omega \to Q^\omega$

(parity, Muller, ...)

▶ Same definable languages $\mathcal{L}(\mathcal{A}) = \{ w \mid \exists u \ \delta^*_{\mathcal{A}}(w,u) \}$ $U \simeq Q$

Simulations $\mathcal{A} \Vdash f : \mathcal{B}$

Finite-state causal function $f: \Sigma^{\omega} \times U^{\omega} \to V^{\omega}$ such that

$$\forall w \in \Sigma^{\omega} \forall u \in U^{\omega} \qquad \delta_{\mathcal{A}}^{*}(w, u) \in \Omega_{\mathcal{A}} \quad \Rightarrow \quad \delta_{\mathcal{A}}^{*}(w, f(w, u)) \in \Omega_{\mathcal{B}}$$

The realizability notion for SMSO

Uniform non-deterministic automata

Tuples $\mathcal{A} = (Q, q_0, U, \delta_{\mathcal{A}}, \Omega_{\mathcal{A}}) : \Sigma$ where

- ► *U* a set of *moves*
- ▶ transition function $\delta_A : \Sigma \times Q \times U \rightarrow Q$
- $lackbox{}{}$ $\Omega_{\mathcal{A}}\subseteq Q^{\omega}$ reasonable acceptance condition

 \simeq amount of non-determinism

induces $\delta_{\mathcal{A}}^*: \Sigma^\omega imes U^\omega o Q^\omega$

(parity, Muller, ...)

 $U \simeq Q$

▶ Same definable languages $\mathcal{L}(\mathcal{A}) = \{ w \mid \exists u \ \delta^*_{\mathcal{A}}(w, u) \}$

Simulations $A \Vdash f : B$

Finite-state causal function $f: \Sigma^\omega \times U^\omega \to V^\omega$ such that

$$\forall w \in \Sigma^{\omega} \forall u \in U^{\omega} \qquad \delta_{\mathcal{A}}^{*}(w, u) \in \Omega_{\mathcal{A}} \quad \Rightarrow \quad \delta_{\mathcal{A}}^{*}(w, f(w, u)) \in \Omega_{\mathcal{B}}$$

- ▶ If $\mathcal{A} \Vdash \mathcal{B}$, then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B})$
- ▶ Natural interpretation for \exists , \land and \neg for deterministic automata...

Alternating uniform automata

Define a notion of alternating uniform automata $(Q, q_0, U, X, \delta, \Omega)$

- \triangleright sets of **P**-moves *U* and **O**-moves *X*
- $w \in \mathcal{L}(A)$ iff **P** wins an acceptance game

Simulation game

- $ightharpoonup X \simeq 1 \quad \leadsto \text{ non-deterministic uniform automata}$
- ▶ $U \simeq X \simeq 1$ \leadsto deterministic automata