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Introduction: string-to-string
transducers



Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary
Finite set of states + bidirectional reading head + output produced from left to right

Example:

mapPalin : {a, b, c,#}∗ −→ {a, b, c,#}∗
w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

(x ∈ {a, b, c})

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

Output:

abccba#baccab#caac

▷ a b c # b a c # c a ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
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Regular functions

Functions Σ∗ → Γ∗ definable by 2DFTs are called regular functions

Properties of regular functions

• Linear growth: |f(w)| = O(|w|)
• Closed under composition (if f : Γ∗ → Σ∗ and g : Σ∗ → Π∗ are regular then so is g ◦ f)

• L regular =⇒ f−1(L) regular

Alternative characterizations

• Via Monadic Second-Order logic (MSO transductions)
• Copyless streaming string transducers
• Various functional programming or regexp-like (declarative) formalisms
• (recent work of ours) Minimal linear λ-calculus and Church encodings [Nguyễn,Noûs,P. 2020]
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Polyregular functions

Polyregular functions:

• A larger class of string-to-string transductions
• Garnered significant attention recently, starting with [Bojańczyk 2018]

Properties

• Polynomial growth: |f(w)| = O(|w|k)
• L regular =⇒ f−1(L) regular
• Closed under composition

Characterizations [Bojańczyk 2018; Bojańczyk, Kiefer & Lhote 2019]

• Multidimensional MSO interpretations
• Imperative nested loop programs
• Simply typed λ-calculus augmented with a list type and some list manipulation primitives
• Composition closure of [regular functions ∪ “squaring with underlining”]

• k-pebble string-to-string transducers
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Pebble transducers

k-pebble transducers: executive summary
Finite set of states + a stack of two-way reading heads of height ≤ k

• Heads can be moved, pushed, popped
• Arbitrary comparisons between heads in the stack
• 1-pebble transducers ∼= 2DFTs

Example: “squaring with underlining” (k = 2)

→

→

→

→

push

push ◁|pop

◁|pop

↓6=⇓, x|x

↓6=⇓, x|x

↓=⇓, x|x

↓=⇓, x|x

x|push

x|push

◁|pop

◁|pop

▷ a b c ◁

↓ ↓ ↓ ↓
⇓ ⇓ ⇓ ⇓

squaring : Σ∗ → (Σ ∪ Σ)∗

aab 7→ aabaabaab

output =

abcabcabc
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Comparison-free pebble transducers

Main question
What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

→

→

→
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push ◁|pop

◁|pop

x|x
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x|x, push
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◁|pop
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▷ a b c ◁

↓ ↓ ↓ ↓
⇓ ⇓ ⇓ ⇓

output =

aabcbabccabc

Contributions

• Alternative characterizations
• Separation results
• Along the way: closure by composition, pebble minimization
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Some alternative characterizations



Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
Let Γ, Σ and I be finite alphabets and f : Γ∗ → I∗, gi : Γ∗ → Σ∗ and w ∈ Γ∗.
Define CbS(f, (gi)i∈I)(w) so that, if f(w) = i1 . . . ik, then

CbS(f, (gi)i∈I)(w) = gi1(w) . . . gik(w)

E.g. for cfsquaring, we take f : Σ∗ → (Σ ∪ {X})∗, gX, ga : Σ∗ → (Σ ∪ Σ)∗ (for a ∈ Σ) so that

f(abc) = aXbXcX ga(w) = a and gX(w) = w

• Note: both cfpolyreg and polyregular functions are closed under CbS

Alternative definition of cfpolyregular functions
Smallest class such that

• Every regular function is cfpolyreg
• If f is regular and gi is cfpolyreg for every i ∈ I then CbS(f, (gi)i∈I) is cfpolyreg

• More convenient to manipulate formally
• Tight link between the number of pebbles and the nesting of the CbS operator
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Alternative characterization (2/2): composition and basic combinators

We have an alternative characterization based on linear the λ-calculus

• Not presented in the paper, mostly based on [Nguyễn,Noûs,P. 2020]
• Hints at the following non-trivial theorem

(reproven with automata-theoretic tools in the paper with no references to the λ-calculus)

Closure under composition
If f : Σ∗ → Γ∗ and g : Γ∗ → ∆∗ are both cfpolyregular, so is g ◦ f.

Leads to a combinator-based definition.
Alternative definition of cfpolyregular functions
Least class containing the regular functions, cfsquaring and closed under composition.

• Analogous to the case of general polyregular functions
cfsquaring replaced by “squaring with underlining” in the above → all polyregular functions

• Regular functions can also themselves be decomposed
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Not all polyregular functions are
comparison-free



Separation results

Theorem
The function f : an ∈ {a}∗ 7→ a#aa# . . .#an
is polyregular but not comparison-free.

Corollary: “squaring with underlining” is not CF.

f is also an HDT0L transduction (⇐⇒ computable
by a copyful streaming string transducer /
marble transducer [Douéneau-Tabot et al. 2020]).
Therefore HDT0L 6⊂ cfpolyreg; conversely:

Theorem
w ∈ Γ∗ 7→ w|w| is comparison-free polyregular,
but when |Γ| ≥ 2, it is not HDT0L.

Note: polynomially growing HDT0L ⊂ polyreg

Theorem
g : an1# . . .#ank ∈ {a,#}∗ 7→ an1×n1# . . .#ank×nk

is polyregular but not comparison-free.

([Douéneau-Tabot 2021] proves a stronger result)

Definition
For h : Γ∗ → Σ∗, w1, . . . ,wn ∈ Γ∗ with # /∈ Γ,
map(h)(w1# . . .#wn) = f(w1)# . . .#f(wn).

g = map(w 7→ w|w|) therefore comparison-free
polyregular functions are not closed under map,
unlike regular and polyreg functions
→ obstruction to characterizing cfpolyreg fn

by list-processing functional programs
(à la [Bojańczyk, Daviaud & Krishna 2018])

9/15



Separation results

Theorem
The function f : an ∈ {a}∗ 7→ a#aa# . . .#an
is polyregular but not comparison-free.

Corollary: “squaring with underlining” is not CF.

f is also an HDT0L transduction (⇐⇒ computable
by a copyful streaming string transducer /
marble transducer [Douéneau-Tabot et al. 2020]).
Therefore HDT0L 6⊂ cfpolyreg; conversely:

Theorem
w ∈ Γ∗ 7→ w|w| is comparison-free polyregular,
but when |Γ| ≥ 2, it is not HDT0L.

Note: polynomially growing HDT0L ⊂ polyreg

Theorem
g : an1# . . .#ank ∈ {a,#}∗ 7→ an1×n1# . . .#ank×nk

is polyregular but not comparison-free.

([Douéneau-Tabot 2021] proves a stronger result)

Definition
For h : Γ∗ → Σ∗, w1, . . . ,wn ∈ Γ∗ with # /∈ Γ,
map(h)(w1# . . .#wn) = f(w1)# . . .#f(wn).

g = map(w 7→ w|w|) therefore comparison-free
polyregular functions are not closed under map,
unlike regular and polyreg functions
→ obstruction to characterizing cfpolyreg fn

by list-processing functional programs
(à la [Bojańczyk, Daviaud & Krishna 2018])

9/15



Separation results

Theorem
The function f : an ∈ {a}∗ 7→ a#aa# . . .#an
is polyregular but not comparison-free.

Corollary: “squaring with underlining” is not CF.

f is also an HDT0L transduction (⇐⇒ computable
by a copyful streaming string transducer /
marble transducer [Douéneau-Tabot et al. 2020]).
Therefore HDT0L 6⊂ cfpolyreg; conversely:

Theorem
w ∈ Γ∗ 7→ w|w| is comparison-free polyregular,
but when |Γ| ≥ 2, it is not HDT0L.

Note: polynomially growing HDT0L ⊂ polyreg

Theorem
g : an1# . . .#ank ∈ {a,#}∗ 7→ an1×n1# . . .#ank×nk

is polyregular but not comparison-free.

([Douéneau-Tabot 2021] proves a stronger result)

Definition
For h : Γ∗ → Σ∗, w1, . . . ,wn ∈ Γ∗ with # /∈ Γ,
map(h)(w1# . . .#wn) = f(w1)# . . .#f(wn).

g = map(w 7→ w|w|) therefore comparison-free
polyregular functions are not closed under map,
unlike regular and polyreg functions
→ obstruction to characterizing cfpolyreg fn

by list-processing functional programs
(à la [Bojańczyk, Daviaud & Krishna 2018])

9/15



Separation proof idea for “map unary square”

via pebble minimization

Pebble minimization -- major result of our paper
If f is cfpolyreg and |f(w)| = O(|w|k) then some comparison-free k-pebble transducer computes f.

Very technical proof adapted from the analogous result for pebble transducers [Lhote 2020].

Theorem
g(an1# . . .#ank) = an1×n1# . . .#ank×nk is not comparison-free polyregular.

Proof by contradiction: assume g is cfpolyreg.

First, |g(w)| = O(|w|2) therefore g is computed by some 2-cf-pebble transducer.

Equivalently,
for some finite I and regular functions f and hi,

g = CbS(f, (hi)i∈I) i.e. f(w) = i1 . . . im =⇒ g(w) = hi1(w) . . . him(w)

To conclude:
pumping argument + pigeonhole principle, exploiting the linear asymptotic growth

Might be doable without pebble minimization, but convenient and of independent interest
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Separation proof idea continued: unary inputs

Theorem
f(an) = a#aa# . . .#an is not cfpolyreg.

Observation: f(an) has the n maximal a-factors

a aa . . . an

Lemma
For any cfpolyreg g : {a}∗ → Σ∗, there are O(1)
possible lengths for maximal a-factors in g(an).

In fact, ∃S ⊆ Q[X] finite such that {P(n) | P ∈ S}
contains {lengths of maximal a-factors of g(an)},
by structural induction on poly-pumping sequences.

Definition (poly-pumping sequence of words)
Smallest subclass of (Σ∗)N

• Containing the constant sequences αn = w
• Closed under concatenation αn = βn · γn
• Closed under “iteration” αn = (βn)

n

Theorem (cfpolyreg with unary input)
f : {a}∗ → Σ∗ is comparison-free polyregular
if and only if ∃p ∈ N such that (f(a(n+1)p+m))n∈N

is poly-pumping for every m < p.

→ “ultimately periodic combinations” (u.p.c.)

• Regular word sequences are u.p.c. of pumping sequences (u0(v1)
n . . . (vl)nul)n∈N [Choffrut 2017]

Proof idea: find an idempotent in a suitable transition monoid of your favorite machine model for reg fn

• Proof for general cfpolyreg sequences: induction on the CbS-based definition
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Further topics



Going first-order

First-order (FO)-regular functions
Robust subclass of regular functions; several characterizations:

• Logic: replace MSO by first-order logic
• 2DFT with aperiodic monoid of behaviors
• Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

⇝ Analogous class of FO-polyregular.

What about cfpolyregular functions?

Definition (First-order comparison-free polyregular functions)
FO-cfpolyreg = smallest class such that

• Every FO-regular function is FO-cfpolyreg
• If f is FO-regular and gi is FO-cfpolyreg (∀i ∈ I), then CbS(f, (gi)i∈I) is FO-cfpolyreg

Other characterizations?
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Logical characterization of FO-cfpolyregular functions

Let M : {words} → {finite models} be as usual.
For U = (U,R, . . .), let Uk = (Uk,R1, . . . ,Rk, . . .) where Ri(x1, . . . , xm) :⇔ R(πi(x1), . . . , πi(xm)).

Conjecture
f is first-order comparison-free polyregular if and only there exist k ∈ N and a FO transduction φ s.t.

∀w. M(f(w)) ' φ
(
M(w)k

)

• Arguably leads to a logical characterization of general cfpolyregular as

FO-cfpolyregular functions ◦ regular functions = cfpolyregular functions

• Equivalences with other candidates characterizing FO-cfpolyregular: apparently easier
E.g., FO-cfpolregular = closure under ◦ of FO-regular and cfsquaring
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Further topics

A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations
A linear λ-calculus characterization matches an analogue of the CbS definition

• Separation and membership problems, in the spirit of:

Theorem [Douéneau-Tabot 2021]
There is an algorithm with

• Input: a pebble transducer implementing a function f with quadratic growth
• Output: a comparison-free transducer implementing f, or an error if there is none

• Non-commutative linear λ-calculus characterization for the FO case
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Conclusion



Summary

A new(?) class of string-to-string functions: comparison-free polyregular functions.

Equivalent definitions

• By comparison-free pebble transducers
• Inductively (composition by substitution)
• As the composition closure of regular functions + cfsquaring(abc) = aabcbabccabc

• L regular language =⇒ f−1(L) also regular
• Polynomial growth: |f(w)| = O(|w|k)

• pebble minimization theorem: k = number of heads necessary to compute f
• Strictly included in polyregular functions

• an 7→ a#aa# . . .#an and “map unary square” are polyregular but not cfpolyreg
• for {a}∗ → {a}∗ cfpolyreg = polyreg

• Incomparable with polynomial HDT0L transductions
• an 7→ a#aa# . . .#an not cfpolyreg but HDT0L
• w 7→ w|w| is cfpolyreg but not HDT0L

• Well-behaved first-order counterpart

Thanks for watching! We'll be happy to take questions
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