Comparison-free polyregular functions

NGUYĒN Lê Thành Dũng (a.k.a. Tito) --- nltd@nguyentito.eu Laboratoire d'informatique de Paris Nord, Villetaneuse, France

Camille Noûs --- https://www.cogitamus.fr/camilleen.html

<u>Cécilia Pradic</u> --- pierre.pradic@cs.ox.ac.uk University of Oxford, United Kingdom

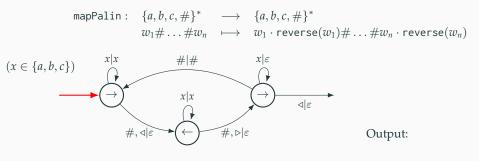
ICALP 2021 --- track B

Introduction: string-to-string transducers

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

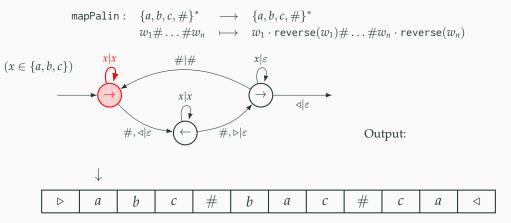
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

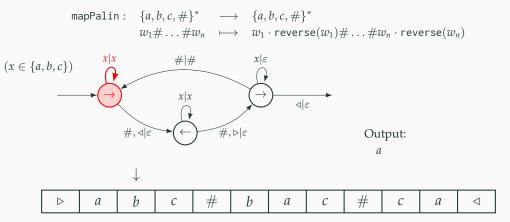
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

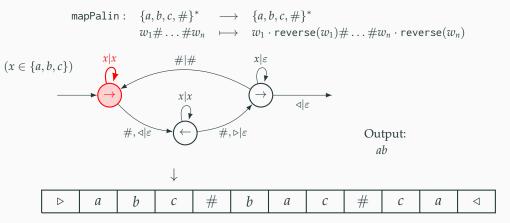
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

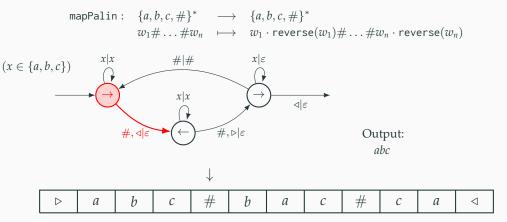
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

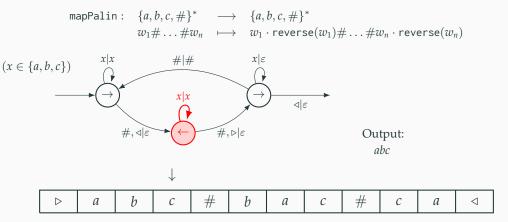
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

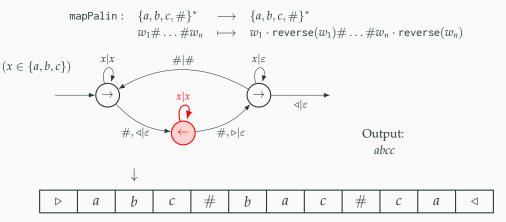
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

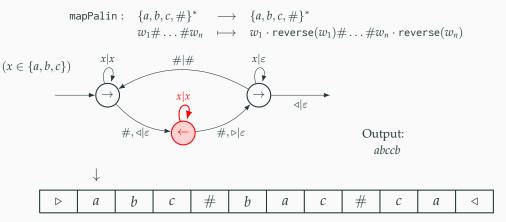
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

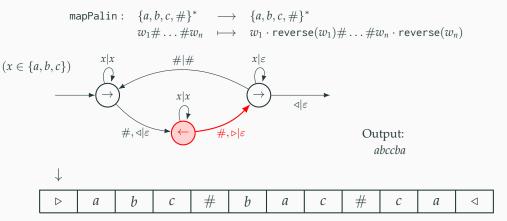
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

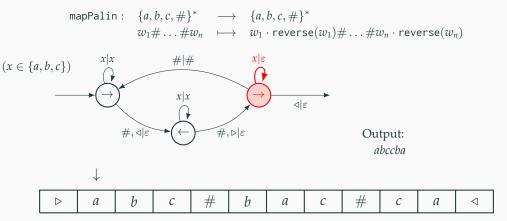
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

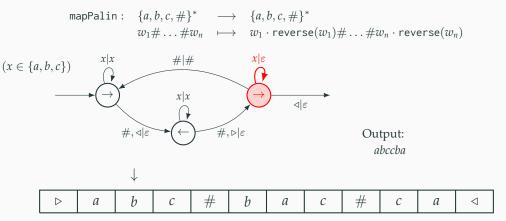
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

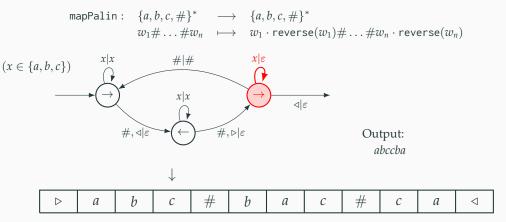
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

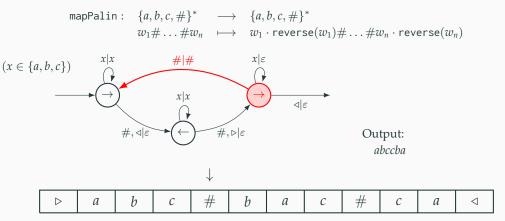
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

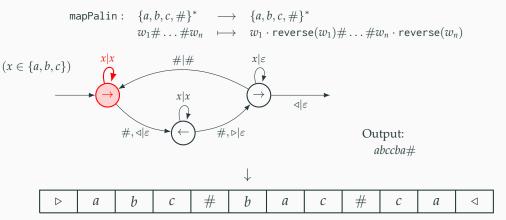
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

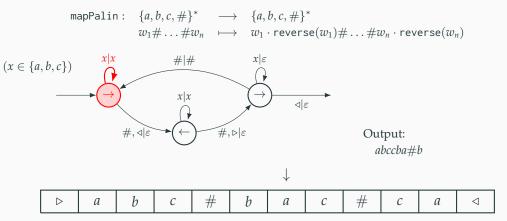
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

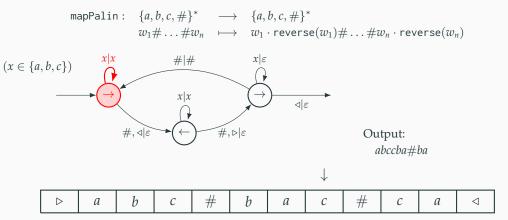
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

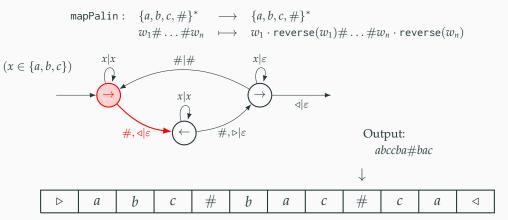
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

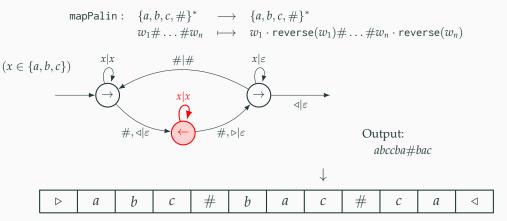
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

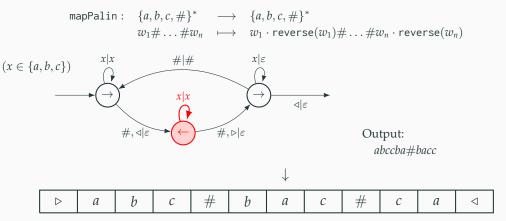
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

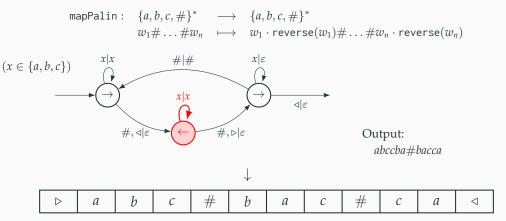
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

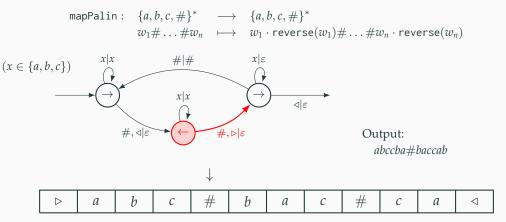
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

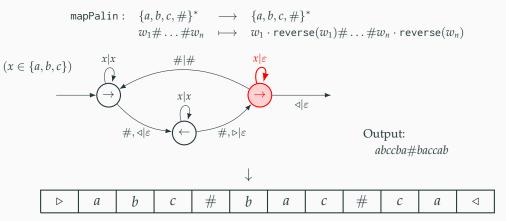
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

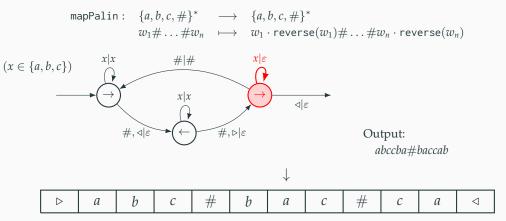
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

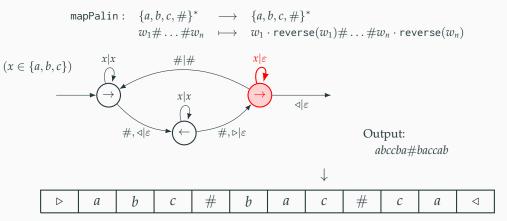
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

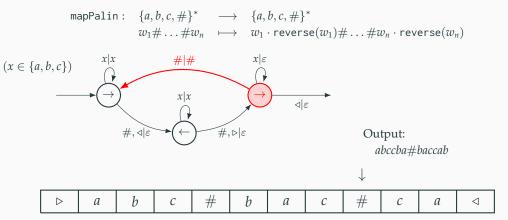
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

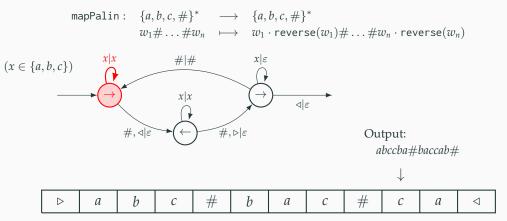
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

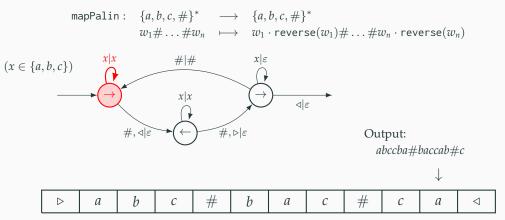
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

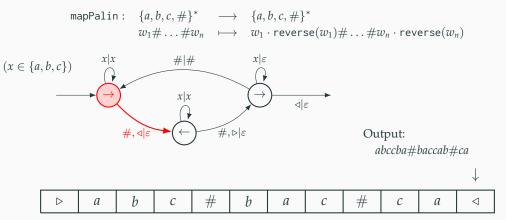
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

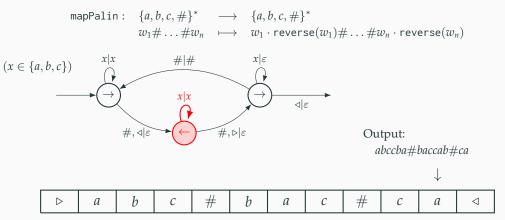
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

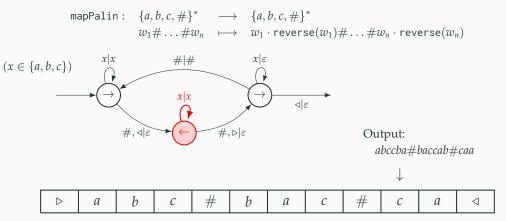
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

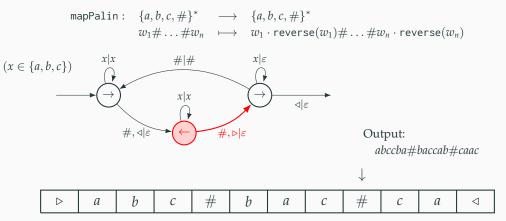
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

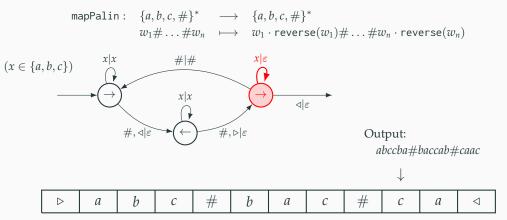
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

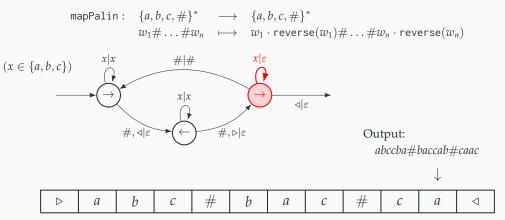
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

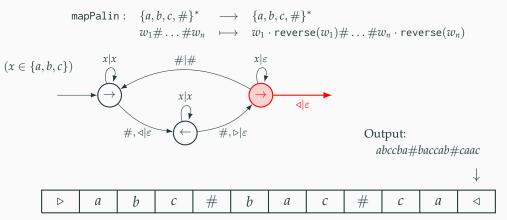
Finite set of states + bidirectional reading head + output produced from left to right



Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right



Regular functions

Functions $\Sigma^* \to \Gamma^*$ definable by 2DFTs are called **regular functions**

Properties of regular functions

- Linear growth: |f(w)| = O(|w|)
- Closed under composition
- L regular $\implies f^{-1}(L)$ regular

 $(\mathrm{if}\,f\colon\Gamma^*\to\Sigma^* \mathrm{ and }g:\Sigma^*\to\Pi^* \mathrm{ are regular then so is }g\circ f)$

Alternative characterizations

- Via Monadic Second-Order logic (MSO transductions)
- Copyless streaming string transducers
- Various functional programming or regexp-like (declarative) formalisms
- (recent work of ours) Minimal linear λ-calculus and Church encodings [Nguyễn,Noûs,P. 2020]

Polyregular functions

Polyregular functions:

- A larger class of string-to-string transductions
- Garnered significant attention recently, starting with [Bojańczyk 2018]

Properties

- *Polynomial* growth: $|f(w)| = O(|w|^k)$
- L regular $\implies f^{-1}(L)$ regular
- Closed under composition

Characterizations [Bojańczyk 2018; Bojańczyk, Kiefer & Lhote 2019]

- Multidimensional MSO interpretations
- Imperative nested loop programs
- Simply typed λ -calculus augmented with a list type and some list manipulation primitives
- Composition closure of [regular functions \cup "squaring with underlining"]

Polyregular functions

Polyregular functions:

- A larger class of string-to-string transductions
- Garnered significant attention recently, starting with [Bojańczyk 2018]

Properties

- *Polynomial* growth: $|f(w)| = O(|w|^k)$
- L regular $\implies f^{-1}(L)$ regular
- Closed under composition

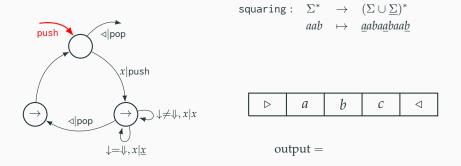
Characterizations [Bojańczyk 2018; Bojańczyk, Kiefer & Lhote 2019]

- Multidimensional MSO interpretations
- Imperative nested loop programs
- Simply typed λ -calculus augmented with a list type and some list manipulation primitives
- Composition closure of [regular functions ∪ "squaring with underlining"]
- *k*-pebble string-to-string transducers

k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

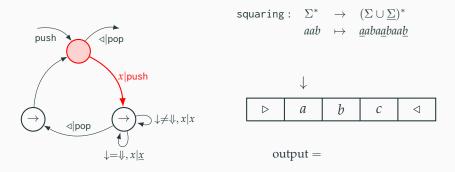
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

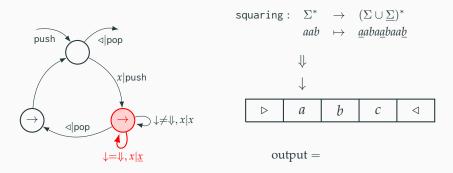
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

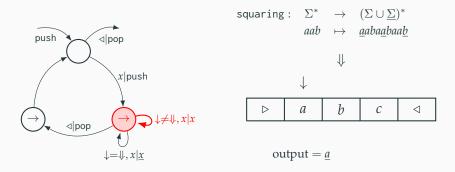
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

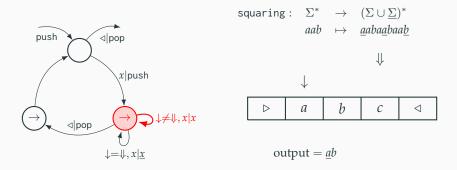
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

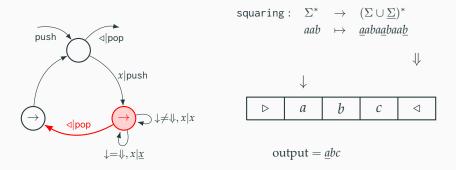
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

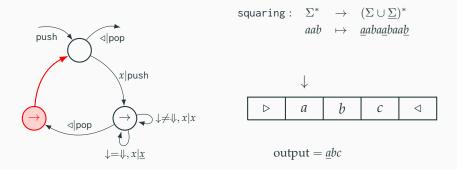
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

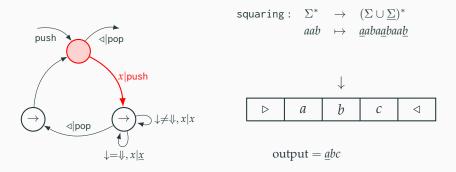
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

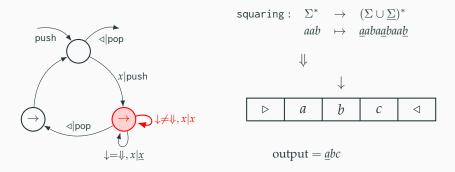
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

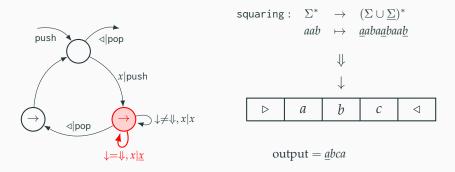
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

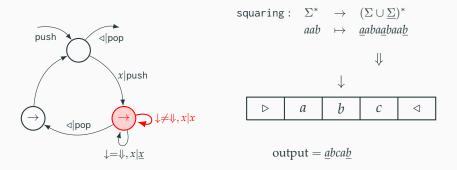
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

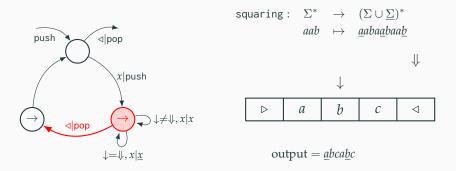
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

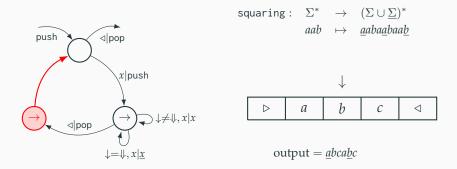
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

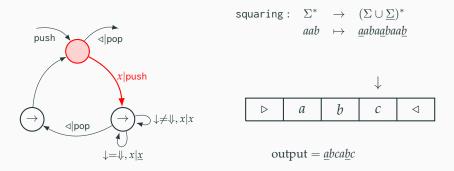
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

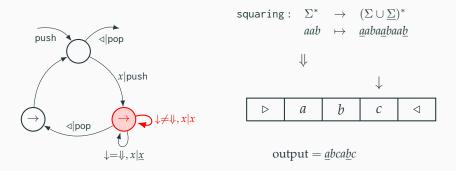
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

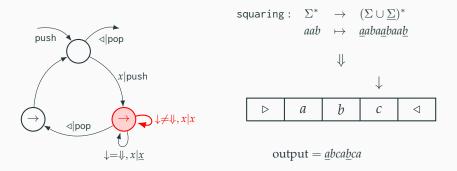
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

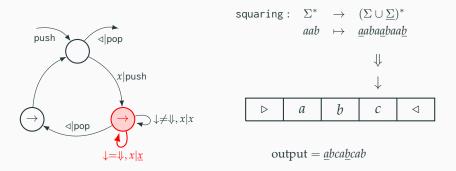
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

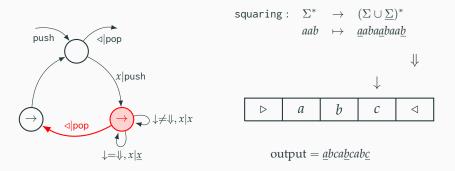
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

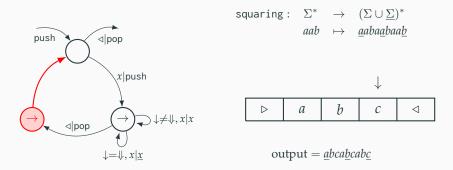
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

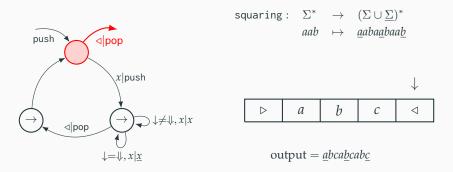
- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs



k-pebble transducers: executive summary

Finite set of states + a stack of two-way reading heads of height $\leq k$

- Heads can be moved, pushed, popped
- Arbitrary comparisons between heads in the stack
- 1-pebble transducers \cong 2DFTs

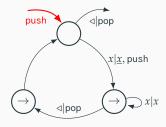


Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

⊳ a	b	С	⊲
-----	---	---	---

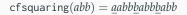
output =

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

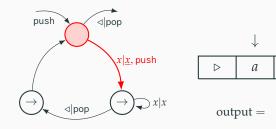
Example: "comparison-free squaring"



 \triangleleft

b

С

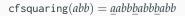


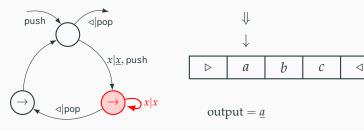
Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



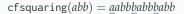


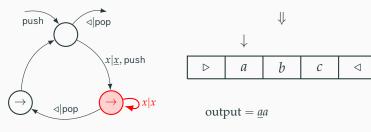
Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



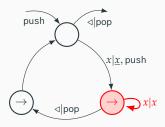


Main question

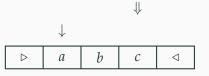
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



cfsquaring(abb) = aabbbabbbabb



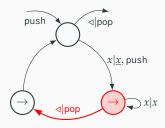
output = <u>a</u>ab

Main question

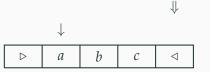
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$



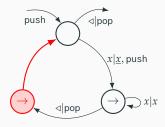
output = <u>a</u>abc

Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$

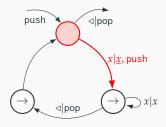
output = $\underline{a}abc$

Main question

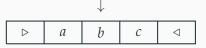
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$



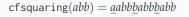
output = $\underline{a}abc$

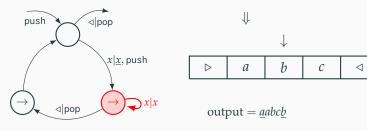
Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



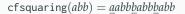


Main question

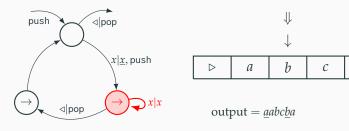
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 \triangleleft

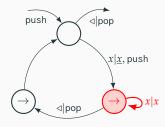


Main question

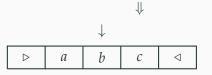
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



cfsquaring(abb) = aabbbabbbabb



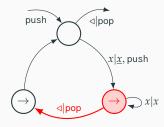
output = <u>a</u>abc<u>b</u>ab

Main question

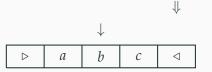
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



cfsquaring(abb) = aabbbabbbabb



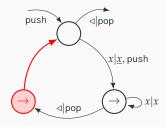
output = <u>aabcbabc</u>

Main question

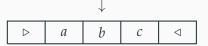
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$



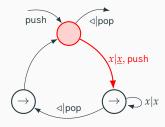
output = <u>aabcbabc</u>

Main question

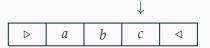
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$



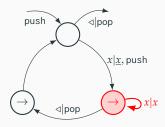
output = <u>aabcbabc</u>

Main question

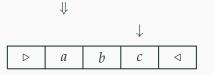
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



cfsquaring(*abb*) = *aabbbabbbabb*



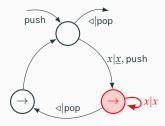
output = <u>aabcbabcc</u>

Main question

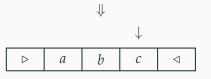
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$



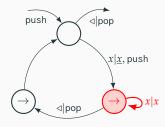
output = <u>aabcbabcca</u>

Main question

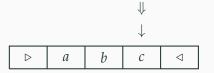
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$



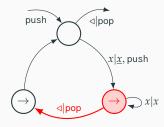
output = <u>aabcbabccab</u>

Main question

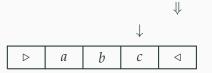
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



cfsquaring(abb) = aabbbabbbabb



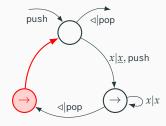
output = <u>aabcbabccabc</u>

Main question

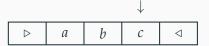
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$



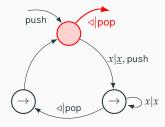
output = <u>aabcbabccabc</u>

Main question

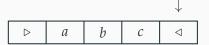
What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"



 $cfsquaring(abb) = \underline{a}abb\underline{b}abb\underline{b}abb$



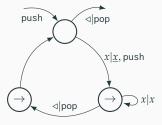
output = <u>aabcbabccabc</u>

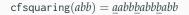
Main question

What happens if we disallow comparisons between reading heads?

Non-example: "squaring with underlining"

Example: "comparison-free squaring"





⊳ a	b	С	⊲
-----	---	---	---

output = <u>aabcbabccabc</u>

Contributions

- Alternative characterizations
- Separation results
- Along the way: closure by composition, pebble minimization

Some alternative characterizations

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)

Let Γ , Σ and I be finite alphabets and $f : \Gamma^* \to I^*$, $g_i : \Gamma^* \to \Sigma^*$ and $w \in \Gamma^*$. Define $\text{CbS}(f, (g_i)_{i \in I})(w)$ so that, if $f(w) = i_1 \dots i_k$, then

 $CbS(f, (g_i)_{i \in I})(w) = g_{i_1}(w) \dots g_{i_k}(w)$

E.g. for cfsquaring, we take $f: \Sigma^* \to (\Sigma \cup \{X\})^*, g_X, g_a: \Sigma^* \to (\Sigma \cup \underline{\Sigma})^*$ (for $a \in \Sigma$) so that

f(abc) = aXbXcX $g_a(w) = \underline{a}$ and $g_X(w) = w$

• Note: both cfpolyreg and polyregular functions are closed under CbS

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)

Let Γ , Σ and I be finite alphabets and $f : \Gamma^* \to I^*$, $g_i : \Gamma^* \to \Sigma^*$ and $w \in \Gamma^*$. Define $\text{CbS}(f, (g_i)_{i \in I})(w)$ so that, if $f(w) = i_1 \dots i_k$, then

 $CbS(f, (g_i)_{i \in I})(w) = g_{i_1}(w) \dots g_{i_k}(w)$

E.g. for cfsquaring, we take $f: \Sigma^* \to (\Sigma \cup \{X\})^*, g_X, g_a: \Sigma^* \to (\Sigma \cup \underline{\Sigma})^*$ (for $a \in \Sigma$) so that

$$f(abc) = aXbXcX$$
 $g_a(w) = \underline{a}$ and $g_X(w) = w$

• Note: both cfpolyreg and polyregular functions are closed under CbS

Alternative definition of cfpolyregular functions

Smallest class such that

- Every regular function is cfpolyreg
- If *f* is regular and g_i is cfpolyreg for every $i \in I$ then $CbS(f, (g_i)_{i \in I})$ is cfpolyreg

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)

Let Γ , Σ and I be finite alphabets and $f : \Gamma^* \to I^*$, $g_i : \Gamma^* \to \Sigma^*$ and $w \in \Gamma^*$. Define $\text{CbS}(f, (g_i)_{i \in I})(w)$ so that, if $f(w) = i_1 \dots i_k$, then

 $CbS(f, (g_i)_{i \in I})(w) = g_{i_1}(w) \dots g_{i_k}(w)$

E.g. for cfsquaring, we take $f: \Sigma^* \to (\Sigma \cup \{X\})^*, g_X, g_a: \Sigma^* \to (\Sigma \cup \underline{\Sigma})^*$ (for $a \in \Sigma$) so that

$$f(abc) = aXbXcX$$
 $g_a(w) = \underline{a}$ and $g_X(w) = w$

• Note: both cfpolyreg and polyregular functions are closed under CbS

Alternative definition of cfpolyregular functions

Smallest class such that

- Every regular function is cfpolyreg
- If *f* is regular and g_i is cfpolyreg for every $i \in I$ then $CbS(f, (g_i)_{i \in I})$ is cfpolyreg
- More convenient to manipulate formally
- Tight link between the number of pebbles and the nesting of the CbS operator

We have an alternative characterization based on linear the λ -calculus

- Not presented in the paper, mostly based on [Nguyễn,Noûs,P. 2020]
- Hints at the following non-trivial theorem

(reproven with automata-theoretic tools in the paper with no references to the λ -calculus)

Closure under composition

If $f: \Sigma^* \to \Gamma^*$ and $g: \Gamma^* \to \Delta^*$ are both cfpolyregular, so is $g \circ f$.

We have an alternative characterization based on linear the λ -calculus

- Not presented in the paper, mostly based on [Nguyễn, Noûs, P. 2020]
- Hints at the following non-trivial theorem

(reproven with automata-theoretic tools in the paper with no references to the λ -calculus)

Closure under composition

If $f: \Sigma^* \to \Gamma^*$ and $g: \Gamma^* \to \Delta^*$ are both cfpolyregular, so is $g \circ f$.

Leads to a combinator-based definition.

Alternative definition of cfpolyregular functions

Least class containing the regular functions, cfsquaring and closed under composition.

• Analogous to the case of general polyregular functions

<code>cfsquaring</code> replaced by "squaring with underlining" in the above \rightarrow all polyregular functions

• Regular functions can also themselves be decomposed

Not all polyregular functions are comparison-free

The function $f : a^n \in \{a\}^* \mapsto a \# aa \# \dots \# a^n$ is polyregular but not comparison-free.

Corollary: "squaring with underlining" is not CF.

Theorem

 $g: a^{n_1} \# \dots \# a^{n_k} \in \{a, \#\}^* \mapsto a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k}$ is polyregular but not comparison-free.

([Douéneau-Tabot 2021] proves a stronger result)

The function $f : a^n \in \{a\}^* \mapsto a \# aa \# \dots \# a^n$ is polyregular but not comparison-free.

Corollary: "squaring with underlining" is not CF.

f is also an *HDT0L transduction* (\iff computable by a copyful streaming string transducer / marble transducer [Douéneau-Tabot et al. 2020]). Therefore HDT0L $\not\subset$ cfpolyreg; conversely:

Theorem

 $w \in \Gamma^* \mapsto w^{|w|}$ is comparison-free polyregular, but when $|\Gamma| \ge 2$, it is not HDT0L.

Note: polynomially growing HDT0L \subset polyreg

Theorem

 $g: a^{n_1} \# \dots \# a^{n_k} \in \{a, \#\}^* \mapsto a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k}$ is polyregular but not comparison-free.

([Douéneau-Tabot 2021] proves a stronger result)

The function $f : a^n \in \{a\}^* \mapsto a \# aa \# \dots \# a^n$ is polyregular but not comparison-free.

Corollary: "squaring with underlining" is not CF.

f is also an *HDT0L transduction* (\iff computable by a copyful streaming string transducer / marble transducer [Douéneau-Tabot et al. 2020]). Therefore HDT0L $\not\subset$ cfpolyreg; conversely:

Theorem

 $w \in \Gamma^* \mapsto w^{|w|}$ is comparison-free polyregular, but when $|\Gamma| \ge 2$, it is not HDT0L.

Note: polynomially growing HDT0L \subset polyreg

Theorem

 $g: a^{n_1} \# \dots \# a^{n_k} \in \{a, \#\}^* \mapsto a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k}$ is polyregular but not comparison-free.

([Douéneau-Tabot 2021] proves a stronger result)

Definition

For $h : \Gamma^* \to \Sigma^*$, $w_1, \ldots, w_n \in \Gamma^*$ with $\# \notin \Gamma$, **map** $(h)(w_1 \# \ldots \# w_n) = f(w_1) \# \ldots \# f(w_n)$.

 $g = \mathbf{map}(w \mapsto w^{|w|}) \text{ therefore comparison-free}$ polyregular functions are *not* closed under **map**, unlike regular and polyreg functions \rightarrow obstruction to characterizing cfpolyreg fn by list-processing functional programs (à la [Bojańczyk, Daviaud & Krishna 2018])

 $g(a^{n_1}\#\ldots\#a^{n_k}) = a^{n_1 \times n_1}\#\ldots\#a^{n_k \times n_k}$ is not comparison-free polyregular.

Proof by contradiction: assume *g* is cfpolyreg.

First, $|g(w)| = O(|w|^2)$ therefore *g* is computed by some **2**-cf-pebble transducer.

Pebble minimization -- major result of our paper

If *f* is cfpolyreg and $|f(w)| = O(|w|^k)$ then some comparison-free *k*-pebble transducer computes *f*.

Very technical proof adapted from the analogous result for pebble transducers [Lhote 2020].

Theorem $g(a^{n_1} \# \dots \# a^{n_k}) = a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k}$ is not comparison-free polyregular.

Proof by contradiction: assume *g* is cfpolyreg.

First, $|g(w)| = O(|w|^2)$ therefore *g* is computed by some **2**-cf-pebble transducer.

Pebble minimization -- major result of our paper

If *f* is cfpolyreg and $|f(w)| = O(|w|^k)$ then some comparison-free *k*-pebble transducer computes *f*.

Very technical proof adapted from the analogous result for pebble transducers [Lhote 2020].

 $g(a^{n_1}\# \dots \# a^{n_k}) = a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k}$ is not comparison-free polyregular.

Proof by contradiction: assume *g* is cfpolyreg.

First, $|g(w)| = O(|w|^2)$ therefore *g* is computed by some 2-cf-pebble transducer. Equivalently, for some *finite I* and *regular* functions *f* and *h_i*,

$$g = \text{CbS}(f, (h_i)_{i \in I})$$
 i.e. $f(w) = i_1 \dots i_m \implies g(w) = h_{i_1}(w) \dots h_{i_m}(w)$

To conclude:

Theorem

pumping argument + pigeonhole principle, exploiting the linear asymptotic growth

Pebble minimization -- major result of our paper

If *f* is cfpolyreg and $|f(w)| = O(|w|^k)$ then some comparison-free *k*-pebble transducer computes *f*.

Very technical proof adapted from the analogous result for pebble transducers [Lhote 2020].

 $g(a^{n_1}\# \dots \# a^{n_k}) = a^{n_1 \times n_1} \# \dots \# a^{n_k \times n_k}$ is not comparison-free polyregular.

Proof by contradiction: assume *g* is cfpolyreg.

First, $|g(w)| = O(|w|^2)$ therefore *g* is computed by some 2-cf-pebble transducer. Equivalently, for some *finite I* and *regular* functions *f* and *h_i*,

$$g = \operatorname{CbS}(f, (h_i)_{i \in I})$$
 i.e. $f(w) = i_1 \dots i_m \implies g(w) = h_{i_1}(w) \dots h_{i_m}(w)$

To conclude:

Theorem

pumping argument + pigeonhole principle, exploiting the linear asymptotic growth Might be doable without pebble minimization, but convenient and of independent interest

Separation proof idea continued: unary inputs

Theorem

 $f(a^n) = a \# aa \# \dots \# a^n$ is not cfpolyreg.

Observation: $f(a^n)$ has the *n* maximal *a*-factors

Lemma

For any cfpolyreg $g : \{a\}^* \to \Sigma^*$, there are O(1) possible lengths for maximal a-factors in $g(a^n)$.

 $f(a^n) = a \# aa \# \dots \# a^n$ is not cfpolyreg.

Observation: $f(a^n)$ has the *n* maximal *a*-factors

a aa \ldots a^n

Lemma

For any cfpolyreg $g : \{a\}^* \to \Sigma^*$, there are O(1) possible lengths for maximal *a*-factors in $g(a^n)$.

In fact, $\exists S \subseteq \mathbb{Q}[X]$ *finite* such that $\{P(n) \mid P \in S\}$ contains {lengths of maximal *a*-factors of $g(a^n)$ }, by structural induction on *poly-pumping sequences*.

 $f(a^n) = a \# aa \# \dots \# a^n$ is not cfpolyreg.

Observation: $f(a^n)$ has the *n* maximal *a*-factors

a aa \ldots a^n

Lemma

For any cfpolyreg $g : \{a\}^* \to \Sigma^*$, there are O(1) possible lengths for maximal *a*-factors in $g(a^n)$.

In fact, $\exists S \subseteq \mathbb{Q}[X]$ *finite* such that $\{P(n) \mid P \in S\}$ contains {lengths of maximal *a*-factors of $g(a^n)$ }, by structural induction on *poly-pumping sequences*.

Definition (poly-pumping sequence of words) Smallest subclass of $(\Sigma^*)^{\mathbb{N}}$

• Containing the constant sequences $\alpha_n = w$

- Closed under concatenation $\alpha_n = \beta_n \cdot \gamma_n$
- Closed under "iteration" $\alpha_n = (\beta_n)^n$

 $f(a^n) = a \# aa \# \dots \# a^n$ is not cfpolyreg.

Observation: $f(a^n)$ has the *n* maximal *a*-factors

a aa \ldots a^n

Lemma

For any cfpolyreg $g : \{a\}^* \to \Sigma^*$, there are O(1) possible lengths for maximal *a*-factors in $g(a^n)$.

In fact, $\exists S \subseteq \mathbb{Q}[X]$ *finite* such that $\{P(n) \mid P \in S\}$ contains {lengths of maximal *a*-factors of $g(a^n)$ }, by structural induction on *poly-pumping sequences*.

Definition (poly-pumping sequence of words) Smallest subclass of $(\Sigma^*)^{\mathbb{N}}$

- Containing the constant sequences $\alpha_n = w$
- Closed under concatenation $\alpha_n = \beta_n \cdot \gamma_n$
- Closed under "iteration" $\alpha_n = (\beta_n)^n$

Theorem (cfpolyreg with unary input)

 $f: \{a\}^* \to \Sigma^*$ is comparison-free polyregular if and only if $\exists p \in \mathbb{N}$ such that $(f(a^{(n+1)p+m}))_{n \in \mathbb{N}}$ is poly-pumping for every m < p.

 \rightarrow "ultimately periodic combinations" (u.p.c.)

 $f(a^n) = a \# aa \# \dots \# a^n$ is not cfpolyreg.

Observation: $f(a^n)$ has the *n* maximal *a*-factors

a aa \ldots a^n

Lemma

For any cfpolyreg $g : \{a\}^* \to \Sigma^*$, there are O(1) possible lengths for maximal a-factors in $g(a^n)$.

In fact, $\exists S \subseteq \mathbb{Q}[X]$ *finite* such that $\{P(n) \mid P \in S\}$ contains {lengths of maximal *a*-factors of $g(a^n)$ }, by structural induction on *poly-pumping sequences*.

Definition (poly-pumping sequence of words) Smallest subclass of $(\Sigma^*)^{\mathbb{N}}$

- Containing the constant sequences $\alpha_n = w$
- Closed under concatenation $\alpha_n = \beta_n \cdot \gamma_n$
- Closed under "iteration" $\alpha_n = (\beta_n)^n$

Theorem (cfpolyreg with unary input)

 $f: \{a\}^* \to \Sigma^*$ is comparison-free polyregular if and only if $\exists p \in \mathbb{N}$ such that $(f(a^{(n+1)p+m}))_{n \in \mathbb{N}}$ is poly-pumping for every m < p.

 \rightarrow "ultimately periodic combinations" (u.p.c.)

- Regular word sequences are u.p.c. of pumping sequences (u₀(v₁)ⁿ ... (v_l)ⁿu_l)_{n∈N} [Choffrut 2017]
 Proof idea: find an idempotent in a suitable transition monoid of your favorite machine model for reg fn
- Proof for general cfpolyreg sequences: induction on the CbS-based definition

Further topics

Robust subclass of regular functions; several characterizations:

- Logic: replace MSO by first-order logic
- 2DFT with *aperiodic* monoid of behaviors
- Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

→ Analogous class of FO-polyregular.

Robust subclass of regular functions; several characterizations:

- Logic: replace MSO by first-order logic
- 2DFT with *aperiodic* monoid of behaviors
- Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

 $\rightsquigarrow {\it Analogous \ class \ of \ FO-polyregular}. \qquad What \ about \ cfpolyregular \ functions?$

Robust subclass of regular functions; several characterizations:

- Logic: replace MSO by first-order logic
- 2DFT with *aperiodic* monoid of behaviors
- Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

 $\rightsquigarrow {\it Analogous \ class \ of \ FO-polyregular}. \qquad {\it What \ about \ cfpolyregular \ functions}?$

Definition (First-order comparison-free polyregular functions)

FO-cfpolyreg = smallest class such that

- Every FO-regular function is FO-cfpolyreg
- If *f* is FO-regular and g_i is FO-cfpolyreg ($\forall i \in I$), then CbS($f, (g_i)_{i \in I}$) is FO-cfpolyreg

Robust subclass of regular functions; several characterizations:

- Logic: replace MSO by first-order logic
- 2DFT with *aperiodic* monoid of behaviors
- Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

 $\rightsquigarrow {\it Analogous \ class \ of \ FO-polyregular}. \qquad {\it What \ about \ cfpolyregular \ functions}?$

Definition (First-order comparison-free polyregular functions)

FO-cfpolyreg = smallest class such that

- Every FO-regular function is FO-cfpolyreg
- If *f* is FO-regular and g_i is FO-cfpolyreg ($\forall i \in I$), then CbS($f, (g_i)_{i \in I}$) is FO-cfpolyreg

Other characterizations?

Let $\mathfrak{M} : \{ \text{words} \} \to \{ \text{finite models} \}$ be as usual. For $\mathfrak{U} = (U, R, \ldots)$, let $\mathfrak{U}^k = (U^k, R_1, \ldots, R_k, \ldots)$ where $R_i(x_1, \ldots, x_m) :\Leftrightarrow R(\pi_i(x_1), \ldots, \pi_i(x_m))$.

Conjecture

f is *first-order* comparison-free polyregular if and only there exist $k \in \mathbb{N}$ and a FO transduction φ s.t.

 $\forall w. \ \mathfrak{M}(f(w)) \simeq \varphi\left(\mathfrak{M}(w)^k\right)$

Let $\mathfrak{M} : \{ \text{words} \} \to \{ \text{finite models} \}$ be as usual. For $\mathfrak{U} = (U, R, \ldots)$, let $\mathfrak{U}^k = (U^k, R_1, \ldots, R_k, \ldots)$ where $R_i(x_1, \ldots, x_m) :\Leftrightarrow R(\pi_i(x_1), \ldots, \pi_i(x_m))$.

Conjecture

f is *first-order* comparison-free polyregular if and only there exist $k \in \mathbb{N}$ and a FO transduction φ s.t.

 $\forall w. \ \mathfrak{M}(f(w)) \simeq \varphi\left(\mathfrak{M}(w)^k\right)$

• Arguably leads to a logical characterization of general cfpolyregular as

FO-cfpolyregular functions o regular functions = cfpolyregular functions

Let $\mathfrak{M} : \{ \text{words} \} \to \{ \text{finite models} \}$ be as usual. For $\mathfrak{U} = (U, R, \ldots)$, let $\mathfrak{U}^k = (U^k, R_1, \ldots, R_k, \ldots)$ where $R_i(x_1, \ldots, x_m) :\Leftrightarrow R(\pi_i(x_1), \ldots, \pi_i(x_m))$.

Conjecture

f is *first-order* comparison-free polyregular if and only there exist $k \in \mathbb{N}$ and a FO transduction φ s.t.

 $\forall w. \ \mathfrak{M}(f(w)) \simeq \varphi\left(\mathfrak{M}(w)^k\right)$

• Arguably leads to a logical characterization of general cfpolyregular as

FO-cfpolyregular functions o regular functions = cfpolyregular functions

• Equivalences with other candidates characterizing FO-cfpolyregular: apparently easier E.g., FO-cfpolregular = closure under o of FO-regular and cfsquaring A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations

A linear λ -calculus characterization matches an analogue of the CbS definition

A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations

A linear $\lambda\text{-calculus}$ characterization matches an analogue of the CbS definition

• Separation and membership problems, in the spirit of:

Theorem [Douéneau-Tabot 2021]

There is an algorithm with

- **Input:** a pebble transducer implementing a function *f* with quadratic growth
- Output: a comparison-free transducer implementing *f*, or an error if there is none

A few relevant directions:

• Extending this class to tree-to-tree functions and look for characterizations

A linear $\lambda\text{-calculus}$ characterization matches an analogue of the CbS definition

• Separation and membership problems, in the spirit of:

Theorem [Douéneau-Tabot 2021]

There is an algorithm with

- **Input:** a pebble transducer implementing a function *f* with quadratic growth
- Output: a comparison-free transducer implementing *f*, or an error if there is none
- Non-commutative linear λ -calculus characterization for the FO case

Conclusion

Summary

A new(?) class of string-to-string functions: *comparison-free polyregular functions*.

Equivalent definitions

- By comparison-free pebble transducers
- Inductively (composition by substitution)
- As the composition closure of regular functions + cfsquaring(*abc*) = <u>aabcbabccabc</u>
- *L* regular language $\implies f^{-1}(L)$ also regular
- Polynomial growth: $|f(w)| = O(|w|^k)$
 - pebble minimization theorem: k = number of heads necessary to compute f
- Strictly included in polyregular functions
 - $a^n \mapsto a \# aa \# \dots \# a^n$ and "map unary square" are polyregular but not cfpolyreg
 - for $\{a\}^* \to \{a\}^*$ cfpolyreg = polyreg
- Incomparable with polynomial HDT0L transductions
 - $a^n \mapsto a \# aa \# \dots \# a^n$ not cfpolyreg but HDT0L
 - $w \mapsto w^{|w|}$ is cfpolyreg but not HDT0L
- Well-behaved first-order counterpart

Summary

A new(?) class of string-to-string functions: *comparison-free polyregular functions*.

Equivalent definitions

- By comparison-free pebble transducers
- Inductively (composition by substitution)
- As the composition closure of regular functions + cfsquaring(*abc*) = <u>aabcbabccabc</u>
- *L* regular language $\implies f^{-1}(L)$ also regular
- Polynomial growth: $|f(w)| = O(|w|^k)$
 - pebble minimization theorem: k = number of heads necessary to compute f
- Strictly included in polyregular functions
 - $a^n \mapsto a \# aa \# \dots \# a^n$ and "map unary square" are polyregular but not cfpolyreg
 - for $\{a\}^* \to \{a\}^*$ cfpolyreg = polyreg
- Incomparable with polynomial HDT0L transductions
 - $a^n \mapsto a \# aa \# \dots \# a^n$ not cfpolyreg but HDT0L
 - $w \mapsto w^{|w|}$ is cfpolyreg but not HDT0L
- Well-behaved first-order counterpart

Thanks for watching! We'll be happy to take questions