Comparison-free polyregular functions

Ncuyén Lé Thanh Diing (a.k.a. Tito) --- nltd@nguyentito.eu
Laboratoire d'informatique de Paris Nord, Villetaneuse, France

Camille NoUs --- https://www.cogitamus. fr/camilleen.html

Cécilia PrapIC --- pierre.pradic@cs.ox.ac.uk
University of Oxford, United Kingdom

ICALP 2021 --- track B

1/15

https://www.cogitamus.fr/camilleen.html

Introduction: string-to-string
transducers

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g

Output:

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
efabd) A ki e

Output:

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
efabd) A ki e

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
efabd) A ki e

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# N

Output:
abc

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g

Output:
abc

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g

Output:
abce

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g

Output:
abcch

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g
dle
Output:
abccba

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# xle
dle
Output:
abccba

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}" — {a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
cefabe) B ## Ae
dle
Output:
abccba
!
(> lalbolcl#]olalel#]c]ala]

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# xle
dle
Output:
abccba

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) 2 i g
dle
Output:
abccba

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
efabd) A ki e

Output:
abccba#

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
efabd) A ki e

Output:
abccba#b

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
efabd) A ki e

Output:
abccba#tba

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# N

Output:
abccba#tbac

(> lalofef#lolafec]#]cfalql]

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g

Output:
abccba#tbac

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g

Output:
abccba#tbacc

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g

Output:
abccba#tbacca
[alel#]c]lala]

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# N
dle
Output:
abccba#tbaccab

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# xle
dle
Output:
abccba#tbaccab
[a[c#[cla]<]

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# xle
dle
Output:
abccba#tbaccab

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# xle
dle
Output:
abccba#tbaccab

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #1# N
dle
Output:
abccba#tbaccab

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
efabd) A ki e

Output:
abccba#tbaccab#:

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
efabd) A ki e

Output:
abccba#tbaccab#tc

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# N

Output:
abccba#tbaccab#ca

(> lalofef#lolafec]#]cfalql]

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g

Output:
abccba#tbaccab#ca

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
(xefabey) B #t g

Output:
abccba#baccab#:caa

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# N
dle
Output:
abccba#tbaccab4£caac

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# xle
dle
Output:
abccba#tbaccab4£caac

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# xle
dle
Output:
abccba#tbaccab4£caac

2/15

Deterministic two-way transducers (2DFT)

Topic of this talk: certain basic computation models for string-to-string functions

Two-way transducers: executive summary

Finite set of states + bidirectional reading head + output produced from left to right

Example:
mapPalin: {a,b,c,#}* — A{a,b,c,#}"
wif ... #w, —— wi-reverse(wi)# ... #wy - reverse(w,)
xe{abey) F #l# N
dle
Output:
abccba#tbaccab4£caac

2/15

Regular functions

Functions ¥* — I'* definable by 2DFTs are called regular functions
Properties of regular functions
e Linear growth: |f(w)| = O(|w|)
e Closed under composition (iff: I'* — £* and g : ©* — II* are regular then so is g o f)
e Lregular = f (L) regular

Alternative characterizations
Via Monadic Second-Order logic (MSO transductions)
Copyless streaming string transducers
Various functional programming or regexp-like (declarative) formalisms

(recent work of ours) Minimal linear A-calculus and Church encodings [Nguyén,Nots,P. 2020]

3/15

Polyregular functions

Polyregular functions:

o Alarger class of string-to-string transductions

e Garnered significant attention recently, starting with [Bojariczyk 2018]
Properties

e Polynomial growth: |f(w)| = O(|w|")

o Lregular = f (L) regular

o Closed under composition

Characterizations [Bojariczyk 2018; Bojariczyk, Kiefer & Lhote 2019]
Multidimensional MSO interpretations
Imperative nested loop programs
Simply typed A-calculus augmented with a list type and some list manipulation primitives

Composition closure of [regular functions U “squaring with underlining”]

4/15

Polyregular functions

Polyregular functions:

o Alarger class of string-to-string transductions

e Garnered significant attention recently, starting with [Bojariczyk 2018]
Properties

e Polynomial growth: |f(w)| = O(|w|")

o Lregular = f (L) regular

o Closed under composition

Characterizations [Bojariczyk 2018; Bojariczyk, Kiefer & Lhote 2019]
Multidimensional MSO interpretations
Imperative nested loop programs
Simply typed A-calculus augmented with a list type and some list manipulation primitives
Composition closure of [regular functions U “squaring with underlining”]

k-pebble string-to-string transducers

4/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

10, xlx

1=, xx output =

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

(>]alefe]a]

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

4

e L2z e e][]

output = ab

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

4

e [olalelcfs]

=4, x|x output = abc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”

aab + aabagbaab
push <[pop

X|push 1

e (IR [olefole]-]

=4, x|x output = abc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

output = abc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

output = abc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab
\
1
(o [alb]ec]a]

10, xlx

=, x|x output = abca

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* —

aab

(Zux)”
aabaabaab

output = abcab

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

e [olalelcfs]

=4, x|x output = abcabc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”

aab + aabagbaab
push <[pop

X|push 1

e (IR [olefole]-]

=4, x|x output = abcabc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

e L2 le o] e <]

output = abcabc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

4

e L2z e e][]

output = abcabc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

e L2z e e][]

output = abcabca

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

4

e L2 le o] e <]

=, x|x output = abcabcab

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

4

e [olalelcfs]

=4, x|x output = abcabcabc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”

aab + aabagbaab
push <[pop

X|push 1

e (IR [olefole]-]

=4, x|x output = abcabcabc

5/15

Pebble transducers

Finite set of states + a stack of two-way reading heads of height < k

e Heads can be moved, pushed, popped
e Arbitrary comparisons between heads in the stack
e 1-pebble transducers = 2DFTs

Example: “squaring with underlining” (k = 2)

squaring: X* — (JUX)”
aab + aabagbaab

e L2 le o] e <]

output = abcabcabc

5/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop
h
vt [eJefefcle]
X|X
<|pop output =

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop

x|x, push

X|X
<|pop output =

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop lL
1
Vet e fefe 9]
X|x
<|pop output =a

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop lL
1
x|x, push
(> lafbofe]<]
X|x
lpop output = aa

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop ‘U’
1
Vet e fefe 9]
X|x
lpop output = aab

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop ‘U’
1
e e o[[7]
X|X
<|pop output = aabc

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop

x|x, push

(> lefbo]c]a]

X|X
<[pop output = aabc

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop

x|x, push

X|X
<[pop output = aabc

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop lL

x|x, push

X|x
<|pop output = aabch

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop lL
1
Vet e fefe 9]
X|x
<lpop output = aabcba

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop ‘U’
1
Vet e fefe 9]
X|x
<lpop output = aabcbab

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop ‘U’
1
Vet e fefe 9]
X|X
<lpop output = aabcbabc

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop

x|x, push

X|X
<|pop output = aabcbabc

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop

x|x, push

(> lefbo]c]a]

X|X
<|pop output = aabcbabc

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop lL

x|x, push

(> lefbo]c]a]

X|x
<|pop output = aabcbabcc

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop lL

x|x, push

(> lefbo]c]a]

X|x
<|pop output = aabcbabcca

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop ‘U’
1
vt [eJefefcle]
X|x
<lpop output = aabcbabccab

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb
push <|pop ‘U’
1
Vet e fefe 9]
X|X
<[pop output = aabcbabccabe

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop

x|x, push

(> lefbo]c]a]

X|X
<|pop output = aabcbabceabe

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

push <|pop

x|x, push

(> lefbo]c]a]

X|X
<|pop output = aabcbabceabe

6/15

Comparison-free pebble transducers

What happens if we disallow comparisons between reading heads?

Non-example: “squaring with underlining”

Example: “comparison-free squaring” cfsquaring(abb) = aabbbabbbabb

x|x, push

(> lefbo]c]a]

output = aabcbabccabe

e Alternative characterizations
e Separation results

e Along the way: closure by composition, pebble minimization

6/15

Some alternative characterizations

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
LetI', ¥ and I be finite alphabets and f: I'* — I*, g; : I'" — X" and w € I"".
Define CbS(f, (g:)icr)(w) so that, if f(w) = iy .. . i, then

CbS(f, (gi)ien) (w) = giy (W) . . . gi (W)

E.g. for cfsquaring, we takef: ¥* — (X U{X})", ¢gx,8:: " = (XU X)" (fora € X) so that
flabc) = aXbXcX gu(w) =a and gx(w)=w

e Note: both cfpolyreg and polyregular functions are closed under CbS

7/15

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
LetI', ¥ and I be finite alphabets and f: I'* — I*, g; : I'" — X" and w € I"".
Define CbS(f, (g:)icr)(w) so that, if f(w) = iy .. . i, then

CbS(f, (gi)ien) (w) = giy (W) . . . gi (W)

E.g. for cfsquaring, we takef: ¥* — (X U{X})", ¢gx,8:: " = (XU X)" (fora € X) so that
flabc) = aXbXcX gu(w) =a and gx(w)=w

e Note: both cfpolyreg and polyregular functions are closed under CbS
Alternative definition of cfpolyregular functions
Smallest class such that
Every regular function is cfpolyreg

If fis regular and g; is cfpolyreg for every i € I then CbS(f, (g:)ier) is cfpolyreg

7/15

Alternative characterization (1/2): composition by substitutions

Definition (Composition by substitutions)
LetI', ¥ and I be finite alphabets and f: I'* — I*, g; : I'" — X" and w € I"".
Define CbS(f, (g:)icr)(w) so that, if f(w) = iy .. . i, then

CbS(f, (gi)ien) (w) = giy (W) . . . gi (W)

E.g. for cfsquaring, we takef: ¥* — (X U{X})", ¢gx,8:: " = (XU X)" (fora € X) so that
flabc) = aXbXcX gu(w) =a and gx(w)=w

e Note: both cfpolyreg and polyregular functions are closed under CbS
Alternative definition of cfpolyregular functions
Smallest class such that
Every regular function is cfpolyreg

If fis regular and g; is cfpolyreg for every i € I then CbS(f, (g:)ier) is cfpolyreg

e More convenient to manipulate formally
o Tight link between the number of pebbles and the nesting of the CbS operator

7/15

Alternative characterization (2/2): composition and basic combinators

We have an alternative characterization based on linear the A-calculus

e Not presented in the paper, mostly based on [Nguyén,Nots,P. 2020]

e Hints at the following non-trivial theorem

(reproven with automata-theoretic tools in the paper with no references to the A-calculus)

Iff: 3" - T'"and g : I'" — A" are both cfpolyregular, sois g o f.

8/15

Alternative characterization (2/2): composition and basic combinators

We have an alternative characterization based on linear the A-calculus

e Not presented in the paper, mostly based on [Nguyén,Nots,P. 2020]

e Hints at the following non-trivial theorem

(reproven with automata-theoretic tools in the paper with no references to the A-calculus)

Closure under composition
Iff: 3" - T'"and g : I'" — A" are both cfpolyregular, sois g o f.

Leads to a combinator-based definition.

Alternative definition of cfpolyregular functions

Least class containing the regular functions, cfsquaring and closed under composition.

e Analogous to the case of general polyregular functions

cfsquaring replaced by “squaring with underlining” in the above — all polyregular functions

e Regular functions can also themselves be decomposed

8/15

Not all polyregular functions are
comparison-free

The function f : a" € {a}* — a#taa#t ... #a" g a"# . A" € {a, #}T > a"V L
is polyregular but not comparison-free. is polyregular but not comparison-free.
Corollary: “squaring with underlining” is not CF. ([Douéneau-Tabot 2021] proves a stronger result)

9/15

Separation results

The function f : a" € {a}* — a#taa#t ... #a" g a"# . A" € {a, #}T > a"V L
is polyregular but not comparison-free. is polyregular but not comparison-free.
Corollary: “squaring with underlining” is not CF. ([Douéneau-Tabot 2021] proves a stronger result)

fis also an HDTOL transduction (<= computable
by a copyful streaming string transducer /

marble transducer [Douéneau-Tabot et al. 2020]).
Therefore HDTOL ¢ cfpolyreg; conversely:

w € T* s w!® is comparison-free polyregular,
but when |T'| > 2, it is not HDTOL.

Note: polynomially growing HDTOL C polyreg

9/15

Separation results

Theorem
The function f: a" € {a}* — a#aa#t ... #a"
is polyregular but not comparison-free.

Corollary: “squaring with underlining” is not CF.

fis also an HDTOL transduction (<= computable
by a copyful streaming string transducer /

marble transducer [Douéneau-Tabot et al. 2020]).
Therefore HDTOL ¢ cfpolyreg; conversely:

Theorem

w € T* s wl®l is comparison-free polyregular,

but when |T'| > 2, it is not HDTOL.

Note: polynomially growing HDTOL C polyreg

Theorem

ga"F# . Ha" € {a, H#Y = a4 Fa T

is polyregular but not comparison-free.
([Douéneau-Tabot 2021] proves a stronger result)

Definition

Forh:T* — X%, wy,...,w, € I with# ¢ T,

map (h)(wi# . . . #wn) = flw1)F# . . . #f(wn).

¢ = map(w — w!*!) therefore comparison-free
polyregular functions are not closed under map,
unlike regular and polyreg functions
— obstruction to characterizing cfpolyreg fn

by list-processing functional programs

(ala [Bojariczyk, Daviaud & Krishna 2018])

9/15

Qa4 .. #a) = a4 Ha™ ™ s not comparison-free polyregular.

Proof by contradiction: assume g is cfpolyreg.

First, |g(w)| = O(|w|*) therefore g is computed by some 2-cf-pebble transducer.

10/15

Separation proof idea for “map unary square” via pebble minimization

If f is cfpolyreg and |f(w)| = O(|w|*) then some comparison-free k-pebble transducer computes f.

Very technical proof adapted from the analogous result for pebble transducers [Lhote 2020].

gla™# . #a™) = "M #a™ T s not comparison-free polyregular.

Proof by contradiction: assume g is cfpolyreg.

First, |g(w)| = O(|w|?) therefore g is computed by some 2-cf-pebble transducer.

10/15

Separation proof idea for “map unary square” via pebble minimization

Pebble minimization -- major result of our paper

If f is cfpolyreg and |f(w)| = O(|w|*) then some comparison-free k-pebble transducer computes f.
Very technical proof adapted from the analogous result for pebble transducers [Lhote 2020].
Theorem

Q(a™# .. F#a") = @ >k L H#a" M §s not comparison-free polyreqular.

Proof by contradiction: assume g is cfpolyreg.

First, |g(w)| = O(|w|?) therefore g is computed by some 2-cf-pebble transducer. Equivalently,
for some finite I and regular functions f and h;,

g =CbS(f, (hi)icr) ie. flw)=i...in = g(w)=hy(w)...h,(w)

To conclude:
pumping argument + pigeonhole principle, exploiting the linear asymptotic growth

10/15

Separation proof idea for “map unary square” via pebble minimization

Pebble minimization -- major result of our paper

If f is cfpolyreg and |f(w)| = O(|w|*) then some comparison-free k-pebble transducer computes f.

Very technical proof adapted from the analogous result for pebble transducers [Lhote 2020].
Theorem

Q(a™# .. F#a") = @ >k L H#a" M §s not comparison-free polyreqular.
Proof by contradiction: assume g is cfpolyreg.

First, |g(w)| = O(|w|?) therefore g is computed by some 2-cf-pebble transducer. Equivalently,
for some finite I and regular functions f and h;,

g =CbS(f, (hi)icr) ie. flw)=i...in = g(w)=hy(w)...h,(w)
To conclude:

pumping argument + pigeonhole principle, exploiting the linear asymptotic growth
Might be doable without pebble minimization, but convenient and of independent interest

10/15

Lo T——
f(a") = a#aa# . .. #a" is not cfpolyreg.

Observation: f(a") has the n maximal a-factors

a aa ... 4"

For any cfpolyreg g : {a}* — X%, there are O(1)
possible lengths for maximal a-factors in g(a").

11/15

Separation proof idea continued: unary inputs

Theorem
f(a") = a#aa# . .. #a" is not cfpolyreg.

Observation: f(a") has the n maximal a-factors

n

a aa ... 4

Lemma
For any cfpolyreg g : {a}* — X%, there are O(1)
possible lengths for maximal a-factors in g(a").

In fact, 3§ C Q[X] finite such that {P(n) | P € S}
contains {lengths of maximal a-factors of g(a")},
by structural induction on poly-pumping sequences.

11/15

Separation proof idea continued: unary inputs

Theorem
f(a") = a#aa# . .. #a" is not cfpolyreg.
Observation: f(a") has the n maximal a-factors

n

a aa ... a
Lemma
For any cfpolyreg g : {a}* — X%, there are O(1)
possible lengths for maximal a-factors in g(a").

In fact, 3§ C Q[X] finite such that {P(n) | P € S}
contains {lengths of maximal a-factors of g(a")},
by structural induction on poly-pumping sequences.

Definition (poly-pumping sequence of words)
Smallest subclass of (%)M
o Containing the constant sequences o, = w
e Closed under concatenation o, = Sy - Vn

e Closed under “iteration” c, = (5,)"

11/15

Separation proof idea continued: unary inputs

Theorem
f(a") = a#aa# . .. #a" is not cfpolyreg.
Observation: f(a") has the n maximal a-factors

n

a aa ... a
Lemma

For any cfpolyreg g : {a}* — X%, there are O(1)
possible lengths for maximal a-factors in g(a").

In fact, 3§ C Q[X] finite such that {P(n) | P € S}
contains {lengths of maximal a-factors of g(a")},
by structural induction on poly-pumping sequences.

Definition (poly-pumping sequence of words)
Smallest subclass of (%)M
o Containing the constant sequences o, = w

e Closed under concatenation o, = Sy - Va

e Closed under “iteration” c, = (5,)"

Theorem (cfpolyreg with unary input)

f:{a}* — X" is comparison-free polyregular

if and only if 3p € N such that (f(a" P +")),en
is poly-pumping for every m < p.

— “ultimately periodic combinations” (u.p.c.)

11/15

Separation proof idea continued: unary inputs

Theorem
f(a") = a#aa# . .. #a" is not cfpolyreg.
Observation: f(a") has the n maximal a-factors

a aa ... 4
Lemma
For any cfpolyreg g : {a}* — X%, there are O(1)
possible lengths for maximal a-factors in g(a").

In fact, 3§ C Q[X] finite such that {P(n) | P € S}
contains {lengths of maximal a-factors of g(a")},
by structural induction on poly-pumping sequences.

Definition (poly-pumping sequence of words)

Smallest subclass of (%)M

o Containing the constant sequences o, = w
e Closed under concatenation o, = Sy - Vn

e Closed under “iteration” c, = (5,)"

Theorem (cfpolyreg with unary input)

f:{a}* — X" is comparison-free polyregular

if and only if 3p € N such that (f(a" P +")),en
is poly-pumping for every m < p.

— “ultimately periodic combinations” (u.p.c.)

e Regular word sequences are u.p.c. of pumping sequences (uo(v1)" . .. (v1)"1;)nen [Choffrut 2017

Proof idea: find an idempotent in a suitable transition monoid of your favorite machine model for reg fn

e Proof for general cfpolyreg sequences: induction on the CbS-based definition

Further topics

Going first-order

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

e Logic: replace MSO by first-order logic
e 2DFT with aperiodic monoid of behaviors

e Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

~» Analogous class of FO-polyregular.

12/15

Going first-order

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

e Logic: replace MSO by first-order logic
e 2DFT with aperiodic monoid of behaviors

e Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

~» Analogous class of FO-polyregular. What about cfpolyregular functions?

12/15

Going first-order

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

e Logic: replace MSO by first-order logic
e 2DFT with aperiodic monoid of behaviors

e Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

~» Analogous class of FO-polyregular. What about cfpolyregular functions?

Definition (First-order comparison-free polyregular functions)

FO-cfpolyreg = smallest class such that

e Every FO-regular function is FO-cfpolyreg
o If fis FO-regular and g; is FO-cfpolyreg (Vi € I), then CbS(f, (gi)ier) is FO-cfpolyreg

12/15

Going first-order

First-order (FO)-regular functions

Robust subclass of regular functions; several characterizations:

e Logic: replace MSO by first-order logic
e 2DFT with aperiodic monoid of behaviors

e Functional programming or regexp-like e.g. [Dartois, Gastin & Krishna 2021]

~» Analogous class of FO-polyregular. What about cfpolyregular functions?

Definition (First-order comparison-free polyregular functions)

FO-cfpolyreg = smallest class such that

e Every FO-regular function is FO-cfpolyreg
o If fis FO-regular and g; is FO-cfpolyreg (Vi € I), then CbS(f, (gi)ier) is FO-cfpolyreg

Other characterizations?

12/15

Logical characterization of FO-cfpolyregular functions

Let M : {words} — {finite models} be as usual.
For 4t = (U,R,...), let & = (U*,Ry,...,Ry,...) where Ri(x1, ..., xn) & R(mi(x1), ..., 7i(xm))-

fis first-order comparison-free polyregular if and only there exist k € N and a FO transduction ¢ s.t.

Vw. M(fw)) ~ ¢ (Dﬁ(w)k)

13/15

Logical characterization of FO-cfpolyregular functions

Let M : {words} — {finite models} be as usual.
For 4t = (U,R,...), let & = (U*,Ry,...,Ry,...) where Ri(x1, ..., xn) & R(mi(x1), ..., 7i(xm))-

fis first-order comparison-free polyregular if and only there exist k € N and a FO transduction ¢ s.t.

Vw. M(fw)) ~ ¢ (Dﬁ(w)k)

e Arguably leads to a logical characterization of general cfpolyregular as

FO-cfpolyregular functions o regular functions = cfpolyregular functions

13/15

Logical characterization of FO-cfpolyregular functions

Let M : {words} — {finite models} be as usual.
For 4t = (U,R,...), let s = (U, Ry,...,Ry,...) where Ri(x1, ..., xu) :& R(mi(x1), ..., mi(xm))-

Conjecture
fis first-order comparison-free polyregular if and only there exist k € N and a FO transduction ¢ s.t.

Vw. M(f(w)) ~ ¢ (im(w)k)

e Arguably leads to a logical characterization of general cfpolyregular as

FO-cfpolyregular functions o regular functions = cfpolyregular functions

e Equivalences with other candidates characterizing FO-cfpolyregular: apparently easier

E.g., FO-cfpolregular = closure under o of FO-regular and cfsquaring

13/15

A few relevant directions:

o Extending this class to tree-to-tree functions and look for characterizations

A linear \-calculus characterization matches an analogue of the CbS definition

14/15

Further topics

A few relevant directions:

o Extending this class to tree-to-tree functions and look for characterizations
A linear A-calculus characterization matches an analogue of the CbS definition
e Separation and membership problems, in the spirit of:
Theorem [Douéneau-Tabot 2021]

There is an algorithm with

e Input: a pebble transducer implementing a function f with quadratic growth
e Output: a comparison-free transducer implementing f, or an error if there is none

14/15

Further topics

A few relevant directions:

o Extending this class to tree-to-tree functions and look for characterizations
A linear A-calculus characterization matches an analogue of the CbS definition
e Separation and membership problems, in the spirit of:
Theorem [Douéneau-Tabot 2021]
There is an algorithm with
e Input: a pebble transducer implementing a function f with quadratic growth

e Output: a comparison-free transducer implementing f, or an error if there is none

e Non-commutative linear A-calculus characterization for the FO case

14/15

Conclusion

Summary

A new(?) class of string-to-string functions: comparison-free polyregular functions.

Equivalent definitions

By comparison-free pebble transducers
Inductively (composition by substitution)

As the composition closure of regular functions + cfsquaring(abc) = aabcbabccabe

L regular language = f '(L) also regular
Polynomial growth: [f(w)| = O(|w|")
e pebble minimization theorem: k = number of heads necessary to compute f
Strictly included in polyregular functions
o a" — a#taa# ... #a" and “map unary square” are polyregular but not cfpolyreg
o for {a}* — {a}* cfpolyreg = polyreg
Incomparable with polynomial HDTOL transductions
o " — affaa# . .. #a" not cfpolyreg but HDTOL
o w +— wl®lis cfpolyreg but not HDTOL

Well-behaved first-order counterpart

15/15

Summary

A new(?) class of string-to-string functions: comparison-free polyregular functions.
Equivalent definitions

e By comparison-free pebble transducers

Inductively (composition by substitution)

e As the composition closure of regular functions + cfsquaring(abc) = aabcbabccabe

L regular language = f '(L) also regular

Polynomial growth: [f(w)| = O(|w|")
e pebble minimization theorem: k = number of heads necessary to compute f
Strictly included in polyregular functions
o a" — a#taa# ... #a" and “map unary square” are polyregular but not cfpolyreg
o for {a}* — {a}* cfpolyreg = polyreg
Incomparable with polynomial HDTOL transductions
o " — affaa# . .. #a" not cfpolyreg but HDTOL
o w +— wl®lis cfpolyreg but not HDTOL

o Well-behaved first-order counterpart
Thanks for watching! We'll be happy to take questions

15/15

	Introduction: string-to-string transducers
	Some alternative characterizations
	Not all polyregular functions are comparison-free
	Further topics
	Conclusion

