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Monadic Second-Order logic

Syntax of MSO

φ,ψ ::= R(t1, . . . , tk) | ¬φ | φ ∧ ψ | ∃x φ | x ∈ X | ∃X φ

• Only unary predicates.
• The structures which we will discuss today:

the natural numbers the rationals the infinite (binary) tree
(ω,<) (Q, <) ({0, 1}∗, s0, s1,=)

. . . . . .. . .

By default: standard/full models

Typical MSO-definable properties

• ``The set X is unbounded.'' (ω,<)

• ``There is no homomorphism (Q, <) → (X, <) (i.e., X is scattered).'' (Q, <)

• ``X intersects infinitely many times exactly one infinite branch.'' ({0, 1}∗, s0, s1,=)
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MSO/automata correspondance

Rabin's theorem (1971)
MSO(2∗, s0, s1,=) is decidable.

MSO formulas over Σ

φ 7→Aφ

((

φ 7→L(φ) ))

automata over Σ

A7→L(A)vvmmm
mmm

mmm
mmm

m

P(2∗ → Σ)

The high-level idea

• L(φ(X1, . . .Xn)) ⊆ [2∗ → 2n] corresponds to the valuations {ρ | MSO({0, 1}∗, s0, s1,=) |=ρ φ}.
• Automata construction for each connective; ∃ and ¬ present the most difficulty.
• It is decidable to check whether ∃t ∈ L(A) or not.

• Decidability of MSO(ω,<) and MSO(Q, <) can be deduced from Rabin's theorem. (interpretations)

• Direct proof for MSO(ω,<) using the same high-level approach (Büchi 1962).
• Assuming AC and CH, MSO(R, <) is undecidable (Shelah 1975).
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Automata

A non-deterministic word automaton A : Σ is a tuple (Q, q0, δ, F) with

• Q is a finite set of states, q0 ∈ Q
• a transition function δ : Σ×Q → P(Q)

• a set F ⊆ Q of accepting states

A run over the input w ∈ Σω is a sequence ρ ∈ Qω

with ρ0 = q0 and ∀n ∈ ω ρn+1 ∈ δ(wn, ρn)

q0
w0 // ρ1 ∈ δ(w0, q0)

w1 // ρ2 ∈ δ(w1, ρ1)
w2 // . . .

Büchi acceptance condition
w ∈ L(A) ⊆ Σω iff there is a run over w hitting F infinitely often. non-recursive!

a, b, c

a a, c

c

a, b, c

``There are infinitely many cs or finitely many bs.''
(Σ∗c)ω +Σ∗{a, c}ω

b

b

a

a

a

a

b

b

L

L

L

LR R

RRR

a, b a, b

a

L,R

L,R

A tree automaton recognizing
``∃! branch with ∞ many bs''
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Complement and projections

Major roadblocks toward proving the decidability theorems for MSO(ω,<) and MSO(2∗, s0, s1,=)

On ω-words

• For every Büchi automaton A : Σ, there is Ac s.t. L(Ac) = Σω \ L(A) (Büchi 1962)
• Büchi automata can be determinized into parity automata (McNaughton 1969)

Modern proofs typically involve weak König's lemma and infinite Ramsey for pairs

On labeled trees (Rabin 1971)

• For every non-deterministic parity tree automaton A : Σ, there is Ac s.t. L(Ac) = Σ2∗ \ L(A)

• Alternating parity tree automata ≡ non-deterministic parity tree automata

Modern proofs typically involve positional determinacy of parity games GS games at level BC(Σ0
2)

Motivating question
Those arguments are increasingly sophisticated from a combinatorial and logical perspective.
How can we quantify this?
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Reverse Mathematics



Reverse Mathematics

• A framework to analyze axiomatic strength
• Vast program [Friedman, Simpson, Steele 70s]

• Many links with recursion theory

Methodology

• Consider a theorem T formulated in second-order arithmetic.
• Work in the weak theory RCA0.
• Target some natural axiom A such that RCA0 ⊬ A.
• Show that RCA0 ` A ⇔ T.

Essentially independence proofs…

• Similar in spirit to statements like
``Tychonoff's theorem is equivalent to the axiom of choice.''
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Induction and comprehension

RCA0 is defined by restricting induction and comprehension

Comprehension axiom
For every formula ϕ(n) (with X /∈ FV(ϕ))

∃X ∀n ∈ N [ϕ(n) ⇔ n ∈ X]

• RCA0: restricted to ∆0
1 formulas recursive comprehension

Induction axiom
To prove that ∀n ∈ N ϕ(n) it suffices to show

• ϕ(0) holds
• for every n ∈ N, ϕ(n) implies ϕ(n+ 1)

• RCA0: restricted to Σ0
1 formulas ∃n δ(n) with δ ∈ ∆0

1

• Γ-induction equivalent to Γ-comprehension for finite sets

∀n ∈ N ∃X ∀k < n (k ∈ X ⇔ ϕ(k))
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The big five

Outliers: infinite Ramsey for pairs, determinacy statements.

⇝Where do our decidability theorems sit in this hierarchy?
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Between 2∗ and ω: quick overview



The infinite binary tree

Material covered in How unprovable is Rabin's decidability theorem [Kołodziejczyk, Michalewski, 2015]

Relationship to the big five
Complementation of non-deterministic tree automata and Rabin's theorem are

• provable in Π1
3-comprehension

• unprovable in ∆1
3-comprehension

⇝well above Π1
1-comprehension. . .

Main equivalence
Over ACA0, the following are equivalent:

• Determinacy of BC(Σ0
2) games

• Positional determinacy of parity games
• Closure under complement of regular tree languages
• Decidability of MSO(2∗, s0, s1,=)

10/27



Büchi's decidability theorem (over RCA0)

Material covered in The Logical Strength of Büchi's Decidability Theorem
[Kołodziejczyk, Michalewski, P., Skrzypczak, 2016]

Weak König’s lemma Infinite Ramsey theorem

Bounded weak König’s lemma Determinization of NBA

⇓

⇓

⇓w

Compl. of NBAMSO(ω)

Σ0
2-induction Additive Ramsey

⇑ ⇓

⇐

⇒

⇑

Let's focus on additive Ramsey (main tool for complementation and algebraic approaches)
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Additive Ramsey over ω

For any linear order (P, <) write [P]2 for {(i, j) ∈ P2 | i < j} and fix a finite monoid (M, ·, e).

Call f : [P]2 → M additive when f(i, j) · f(j, k) = f(i, k) for all i < j < k

Additive Ramsey
For any additive f : [P]2 → M, there is an unbounded monochromatic X ⊆ P (s.t. |f([X]2)| = 1).

Theorem
Over RCA0, additive Ramsey over ω is equivalent to Σ0

2-induction.

Direct proof: ``as usual'' for additive Ramsey. (factored through an ordered variant in the paper)

Π0
2-induction from additive Ramsey

• Consider equivalently comprehension for sets bounded by n for ∃∞k δ(x, k)
(the set of infinite sets is a complete Π0

2-set)

• Define the coloring f : [ω]2 → 2n as f(i, j)x = max
i≤l<j

δ(x, l)

• Apply additive Ramsey and consider the color X of the monochromatic set. Conclude as
x ∈ X ⇐⇒ ∃∞k δ(x, k)

12/27



Additive Ramsey over ω

For any linear order (P, <) write [P]2 for {(i, j) ∈ P2 | i < j} and fix a finite monoid (M, ·, e).

Call f : [P]2 → M additive when f(i, j) · f(j, k) = f(i, k) for all i < j < k

Additive Ramsey
For any additive f : [P]2 → M, there is an unbounded monochromatic X ⊆ P (s.t. |f([X]2)| = 1).

Theorem
Over RCA0, additive Ramsey over ω is equivalent to Σ0

2-induction.

Direct proof: ``as usual'' for additive Ramsey. (factored through an ordered variant in the paper)

Π0
2-induction from additive Ramsey

• Consider equivalently comprehension for sets bounded by n for ∃∞k δ(x, k)
(the set of infinite sets is a complete Π0

2-set)

• Define the coloring f : [ω]2 → 2n as f(i, j)x = max
i≤l<j

δ(x, l)

• Apply additive Ramsey and consider the color X of the monochromatic set. Conclude as
x ∈ X ⇐⇒ ∃∞k δ(x, k)

12/27



Additive Ramsey over ω

For any linear order (P, <) write [P]2 for {(i, j) ∈ P2 | i < j} and fix a finite monoid (M, ·, e).

Call f : [P]2 → M additive when f(i, j) · f(j, k) = f(i, k) for all i < j < k

Additive Ramsey
For any additive f : [P]2 → M, there is an unbounded monochromatic X ⊆ P (s.t. |f([X]2)| = 1).

Theorem
Over RCA0, additive Ramsey over ω is equivalent to Σ0

2-induction.

Direct proof: ``as usual'' for additive Ramsey. (factored through an ordered variant in the paper)

Π0
2-induction from additive Ramsey

• Consider equivalently comprehension for sets bounded by n for ∃∞k δ(x, k)
(the set of infinite sets is a complete Π0

2-set)

• Define the coloring f : [ω]2 → 2n as f(i, j)x = max
i≤l<j

δ(x, l)

• Apply additive Ramsey and consider the color X of the monochromatic set. Conclude as
x ∈ X ⇐⇒ ∃∞k δ(x, k)

12/27



Additive Ramsey over ω

For any linear order (P, <) write [P]2 for {(i, j) ∈ P2 | i < j} and fix a finite monoid (M, ·, e).

Call f : [P]2 → M additive when f(i, j) · f(j, k) = f(i, k) for all i < j < k

Additive Ramsey
For any additive f : [P]2 → M, there is an unbounded monochromatic X ⊆ P (s.t. |f([X]2)| = 1).

Theorem
Over RCA0, additive Ramsey over ω is equivalent to Σ0

2-induction.

Direct proof: ``as usual'' for additive Ramsey. (factored through an ordered variant in the paper)

Π0
2-induction from additive Ramsey

• Consider equivalently comprehension for sets bounded by n for ∃∞k δ(x, k)
(the set of infinite sets is a complete Π0

2-set)

• Define the coloring f : [ω]2 → 2n as f(i, j)x = max
i≤l<j

δ(x, l)

• Apply additive Ramsey and consider the color X of the monochromatic set. Conclude as
x ∈ X ⇐⇒ ∃∞k δ(x, k)

12/27



The big picture

∆1
3 − CA0

WKL0 ACA0 ATR0 Π1
1 − CA0

Π1
3 − CA0Σ0

2 − IND

MSO(ω,<) MSO(2∗, s0, s1,=)

⇐ ⇐ ⇐

=⇒

=⇒
=⇒

=⇒

m

Intermediate cases?
Observations

• RCA0 ∧ MSO(ω2) =⇒ ACA0, and a fortiori, RCA0 ∧ MSO(Q, <) =⇒ ACA0

• RCA0 ∧ MSO(Q, <) =⇒ Π1
1 − CA0

• (subtle point: RCA0 ∧Dec(MSO(Q, <)) =⇒ Π1
1 − IND)

Motivates studying MSO(Q, <) strictly intermediate?
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Decidability of MSO(Q, <) via algebras



Background on the decidability of MSO(Q, <)

• Initially proven as a corollary of Rabin's theorem (other interesting examples also obtained like this)

1
2

1
4

1
8

1
16

3
4

3
8

5
8

7
8

3
16

5
16

7
16

9
16

11
16

13
16

15
16

Q '
{

k
2n | 1 ≤ k ≤ 2n

}
7−→

• Direct proof using the composition method in The monadic theory of order [S. Shelah, 1975]
• By computing effectively (n, k)-types (n=quantifier depth and k=parameters)
• In particular, coincides with the MSO theory of an Aronszajn line
• Important subcase: scattered linear orders (no homomorphism (Q, <) → (P, <))

• We will follow a modern presentation appearing in
An algebraic approach to MSO-definability on countable linear orderings

[O. Carton, T. Colcombet, G. Puppis, 2011]
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Algebras for countable linear orders

Fix a set LOℵ0 containing all countable linear orders (up to iso) closed under lexicograhic sums
∑

p Qp

◦-monoid
A ◦-monoid is a pair (M, (µP)P∈LOℵ0

) where

• M is a (finite) set
• (µP)P∈LOℵ0

is a family of maps µP : [P → M] → M that are associative (for |P| ≤ 2 → monoid laws)

∏
p∈P

[Qp → M]

∏
p
µQp

//

∼
��

MP

µP

��
[M →

∑
Q]

µ∑
Q

// M

and stable under order-isomorphism

Typical examples: (n, r)-types of countable linear orders
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Recognizing ◦-words

A countable word (◦-word) over Σ is a map P → Σ with P ∈ LOℵ0

Recognition by ◦-monoids
Fix a finite alphabet Σ and a tuple (M, µ, φ, F) with

• (M, µ) a ◦-monoid
• φ : Σ → M and F ⊆ M

Say w ∈ ΣP is recognized by (M, µ, φ, F) iff µP(φ ◦ w) ∈ F

• Generalizes the algebraic approach to (in)finite word automata (recognition via (ω)-monoids)

• ◦-word languages trivially closed under boolean operations
• Closure under ∃ via a powerset operation over ◦-monoid
• Caution, the multiplication need not be effective!

Challenges toward decidability
Find a finitary representation of ◦-monoids such that

• emptiness of a language restricted to domains (Q, <) may be checked algorithmically
• the powerset operation remains computable
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Finitary presentation ◦-algebra

◦-algebra
A ◦-algebra is a tuple (M, ·, e, (−)τ , (−)τ

op
, (−)κ) where

• (M, ·e) is a (finite) monoid
• the operations (−)τ , (−)τ

op
: M → M and (−)κ : P(M) \ ∅ → M satisfy associativity equations

[omitted]

Given an alphabet Σ, a ∈ Σ, P ∈ P(Σ) \ ∅ write

• aω and aωop for the constant maps − 7→ a with domain ω and ωop

• Kη for a map Q → K where each p ∈ P appears densely (unique up to iso)
We call these words K-shuffles

A ◦-monoid maps to a ◦-algebra by setting aτ = µω (aω) , aτop
= µωop

(
aωop) and Pκ = µQ (Pη)

Theorem (representability)
Every finite ◦-algebra has a unique lift to a ◦-monoid.

17/27



Finitary presentation ◦-algebra

◦-algebra
A ◦-algebra is a tuple (M, ·, e, (−)τ , (−)τ

op
, (−)κ) where

• (M, ·e) is a (finite) monoid
• the operations (−)τ , (−)τ

op
: M → M and (−)κ : P(M) \ ∅ → M satisfy associativity equations

[omitted]

Given an alphabet Σ, a ∈ Σ, P ∈ P(Σ) \ ∅ write

• aω and aωop for the constant maps − 7→ a with domain ω and ωop

• Kη for a map Q → K where each p ∈ P appears densely (unique up to iso)
We call these words K-shuffles

A ◦-monoid maps to a ◦-algebra by setting aτ = µω (aω) , aτop
= µωop

(
aωop) and Pκ = µQ (Pη)

Theorem (representability)
Every finite ◦-algebra has a unique lift to a ◦-monoid.

17/27



Finitary presentation ◦-algebra

◦-algebra
A ◦-algebra is a tuple (M, ·, e, (−)τ , (−)τ

op
, (−)κ) where

• (M, ·e) is a (finite) monoid
• the operations (−)τ , (−)τ

op
: M → M and (−)κ : P(M) \ ∅ → M satisfy associativity equations

[omitted]

Given an alphabet Σ, a ∈ Σ, P ∈ P(Σ) \ ∅ write

• aω and aωop for the constant maps − 7→ a with domain ω and ωop

• Kη for a map Q → K where each p ∈ P appears densely (unique up to iso)
We call these words K-shuffles

A ◦-monoid maps to a ◦-algebra by setting aτ = µω (aω) , aτop
= µωop

(
aωop) and Pκ = µQ (Pη)

Theorem (representability)
Every finite ◦-algebra has a unique lift to a ◦-monoid.

17/27



Finitary presentation ◦-algebra

◦-algebra
A ◦-algebra is a tuple (M, ·, e, (−)τ , (−)τ

op
, (−)κ) where

• (M, ·e) is a (finite) monoid
• the operations (−)τ , (−)τ

op
: M → M and (−)κ : P(M) \ ∅ → M satisfy associativity equations

[omitted]

Given an alphabet Σ, a ∈ Σ, P ∈ P(Σ) \ ∅ write

• aω and aωop for the constant maps − 7→ a with domain ω and ωop

• Kη for a map Q → K where each p ∈ P appears densely (unique up to iso)
We call these words K-shuffles

A ◦-monoid maps to a ◦-algebra by setting aτ = µω (aω) , aτop
= µωop

(
aωop) and Pκ = µQ (Pη)

Theorem (representability)
Every finite ◦-algebra has a unique lift to a ◦-monoid.

17/27



Finitary presentation ◦-algebra

◦-algebra
A ◦-algebra is a tuple (M, ·, e, (−)τ , (−)τ

op
, (−)κ) where

• (M, ·e) is a (finite) monoid
• the operations (−)τ , (−)τ

op
: M → M and (−)κ : P(M) \ ∅ → M satisfy associativity equations

[omitted]

Given an alphabet Σ, a ∈ Σ, P ∈ P(Σ) \ ∅ write

• aω and aωop for the constant maps − 7→ a with domain ω and ωop

• Kη for a map Q → K where each p ∈ P appears densely (unique up to iso)
We call these words K-shuffles

A ◦-monoid maps to a ◦-algebra by setting aτ = µω (aω) , aτop
= µωop

(
aωop) and Pκ = µQ (Pη)

Theorem (representability)
Every finite ◦-algebra has a unique lift to a ◦-monoid.

17/27



Representability: the impredicative argument

Theorem (representability)
Every finite ◦-algebra M has a unique lift to a ◦-monoid.

A convex subset Q ⊆conv P is a set Q ⊆ P such that x, y ∈ Q ∧ x < z < y =⇒ z ∈ Q
Say that a countable word w : P → M has value m if there is an associative

µ :
∏

Q ⊆conv P

[
MQ → M

]
compatible with M such that µP(w) = m

Outline of the argument

1. Assume a word w : P → M and define x ∼ y for x < y iff w ↾ [x, y[ has a value
(convex equivalence relation)

2. Each equivalence class X is convex and w ↾ X has a value; this induces a word w/∼
(additive Ramsey, cofinality ≤ ω important here)

3. P/∼ is necessarily a subsingleton
• If two successive elements in P/∼ , contradiction because of binary multiplication
• Otherwise, P

/
∼ is dense and there is a shuffle in w/∼ , contradiction because of (−)κ
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The additional fine combinatorial ingredient: shuffle principle/additive Ramsey over Q

The shuffle principle
For any n ∈ N and c : Q → n, there is I ⊆conv Q such that c ↾ I is a shuffle.

Compare and contrast with the key combinatorial principle in Shelah's argument

Shelah's additive Ramseyan theorem
For every additive map f : [Q]2 → M, there exists

• I ⊆conv Q

• finitely many dense sets Di with I =
∪

i Di

such that f is constant over each [Di]
2
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Decidability

Powerset ◦-monoid
Define the operation (M, µ) 7→ (P(M), µP) as

µP
P (w) = {µ(u) | u ∈ MP, ∀x ∈ P u(x) ∈ w(x)}

This ◦-monoid is important as allows to produce

• A tuple (P(M), µP , φ∃, F∃) recognizing a projection of L(M, µ, φ, F)
• Go from the (n, k+ 1)-types to (n+ 1, k)-types

Lemma
The underlying map of ◦-algebra is computable

Corollary
MSO(Q, <) is decidable
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Reverse Mathematics of MSO(Q, <)



The fine combinatorial principles?

Do the more obvious combinatorial principles contribute to the logical complexity once again?
Not really

Theorem
Over RCA0, the following are equivalent:

• the shuffle principle
• Shelah's additive Ramseyan theorem over Q
• induction for Σ0

2 formulas

(Recall that RCA0 ∧ MSO(Q, <) =⇒ Π1
1CA0)

The implications =⇒ Σ0
1 − IND are proven similarly as before using the map

{ 2k+1
2n | 0 ≤ k ≤ 2n−1} −→ N

2k+1
2n 7−→ n

density ⇐= infinity
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An upper bound and a conjectural upper bound

Adapting the approach above, with the following caveats:

• Some lemmas cannot be stated in the language of second-order arithmetic as-is
(adapted statements: talk about infinitary syntax trees and algebras only)

• Swept the effectivization of (P(M), µP) under the rug (needs to be reformulated anyways)

• We would at several points use conservativity of choice for certain classes of formualas

Theorem
Π1

2-comprehension proves decidability of MSO(Q, <)

• This shows that this is strictly easier than Rabin's theorem, strictly harder than Büchi's
• We have reasons to suspect this is not optimal
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Operating conjecture

The axiom of finite Π1
1-recursion (ϕ ∈ Π1

1, X /∈ FV(ϕ))

∀n ∃X.X0 = ∅ ∧ ∀k < n ∀z (z ∈ Xk+1 ⇔ ϕ(z,Xk))

• Always true in standard models of Π1
1 − CA0.

• This is equivalent to determinacy of weak parity games BC(Σ0
1) GS games

Conjecture
Finite Π1

1-recursion proves the soundness of the standard decision algorithm for MSO(Q)

• So far, we know how to prove the analogue of the representation lemma
• We miss the soundness of the definition of the powerset algebra
• Enough to derive a descriptive set theoretic result
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Evaluating words with finite Π1
1-recursion (scattered vs dense)

Now let us sketch the argument for a representability theorem. Fix a ◦-algebra M.
Consider the following procedure to compute the value of a word w : P → M
Iterate the following two steps

1. When P is dense in itself, factorize pseudo-shuffles maximally
2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part

2. relies on
Hausdorff's theorem Π1

1 → (Clote 1989)

Every linear order is isomorphic to a Π1
1-definable decomposition

∑
d∈D Pd where

• D is dense in itself (if countable, either 0, 1 or Q up to endpoints)
• every Pd is non-empty and scattered

Evaluation of scattered words
The value of words w : P → M with P scattered is Π1

1-definable

• Recursion over a decomposition of P along a well-founded ordered trees with arities ⊆ Z
• Relies on the arithmetical definition of monochromatic sets for additive Ramsey
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Evaluating words with finite Π1
1-recursion (dense steps)

Consider the following procedure to compute the value of a word w : P → M
Iterate the following two steps

1. When P is dense in itself, factorize pseudo-shuffles maximally
2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part

Pseudo-shuffles
w : Q → M is a pseudo-shuffle of value e ∈ M if:

• for each convex subword which is a P-shuffle, we have Pκ = e
• for every letter m occuring in w, eme = e
• for each homomorphism ι : Q → Q such that w ◦ ι is a P-shuffle, (P ∪ {e})κ = e

• More general than shuffles
• Note the dependency on the structure of M
• Required to bound the number of iterations by |M|

• Algebraic reasoning on ◦-algebras needed
(compatibility with the monoid structure)

Pκab Pκa

bPκ

Pκ

abPκab

bPκab bPκa

abPκa abPκ

} R-class

}L-class
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Conclusion



The current picture

∆1
3 − CA0

WKL0 ACA0 ATR0 Π1
1 − CA0

Π1
3 − CA0Σ0

2 − IND

MSO(ω,<) MSO(2∗, s0, s1,=)

⇐ ⇐ ⇐

=⇒
=⇒

=⇒

m
⇐Π1

2 − CA0
=⇒

MSO(Q, <)

(Π1
1 − CA0)<ω ⇐

m?

⇑

MSO(ω2, <)

⇓ m
MSO(WF ω-trees)

⇑
MSO(countable scattered orders)

⇓

• We did find an intermediate case…
• …but we do not have a clean equivalence
• Improved characterization of ◦-word languages in terms of topological complexity?

Conjecture on MSO-definable languages
Define the C-hierachy by iterating Suslin A-operation and complementation (Σ1

1 ⊆ C⊊ ∆1
2)

Every MSO(Q, <)-definable language sits in a finite level of the C-hierarchy

(beforehand, ∆1
2 bound via a collapse result in (Carton, Colcombet, Puppis 2011))
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The current picture
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Further questions

• Settle the conjectures!
• Characterize algebras recognizing Borel languages
• Are well-founded trees strictly harder than scattered words/countable ordinals?
• Logical strength related to weak parity games
⇝ Is there a natural alternating automata model for Q-labellings?

• Adapt the techniques for uncountable structures

Thanks for listening! Further questions?
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MSO(Q, <) and C-sets

Fix a Polish space X. Note in particular that the set of words ΣQ always forms a Polish space
(via N ≃ Q)

C-sets
Suslin A-operation takes a map β : N∗ → P(X) and outputs the set

A(β) =
∪
b∈NN

∩
k∈N

β(p ↾ k)

Extend the A operation to pointclasses Γ ⊆ P(X) by setting A(Γ) = {A(β) | β : N∗ → Γ}
C-sets are obtained by iterating the A-operation from the closed sets and closing under complement

We have that A(Π0
1) = Σ1

1 and that C-sets are all ∆1
2

Conjecture on MSO-definable languages
Every MSO(Q, <)-definable language sits in a finite level of the C-hierarchy
For every finite level of the hierarchy of C-sets, there is a complete MSO(Q, <)-definable language

• The first point is the more difficult result
• The second requires (already known) tricks to encode lexicographic products Q×lex Q
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