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o, m=R(h,... . tk) [~ @AY |Ixp|xeX|IX e

o Only unary predicates.
o The structures which we will discuss today:

the natural numbers the rationals the infinite (binary) tree
(w7<) (Qa<) ({0?1}*350751’=)

By default: standard/full models
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Monadic Second-Order logic
Syntax of MSO
e, i=R(t,... k) | "¢ |eAY | Txp|xeX|IX ¢

o Only unary predicates.
e The structures which we will discuss today:

the natural numbers the rationals the infinite (binary) tree
(w, <) @ <) ({0,1}%, 50,51, =)
By default: standard/full models
Typical MSO-definable properties
e The set X is unbounded." (w, <)
e “There is no homomorphism (Q, <) — (X, <) (i.e., X is scattered)." (@ <)
e X intersects infinitely many times exactly one infinite branch." ({0,1}*, 50,51, =)
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MSO(2*, s, 51, =) is decidable.

pr=rAp

T

MSO formulas over automata over 2

m%

P(Z¥)

o L(p(Xi,...Xn)) C [2" — 2"] corresponds to the valuations {p | MSO(2*,s0,51,=) =, ¢}
e Automata construction for each connective; 3 and — present the most difficulty.

e It is decidable to check whether 3t € £(.A) or not.
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MSO/automata correspondance
Rabin's theorem (1971)
MSO(2*, s, s1, =) is decidable.

pr=rAp

T

MSO formulas over X automata over X

P(X¥)
The high-level idea
o L(p(Xi,...Xn)) C [2" — 2"] corresponds to the valuations {p | MSO(2*,s0,51,=) =, ¢}

e Automata construction for each connective; 3 and — present the most difficulty.

It is decidable to check whether 3t € £(.A) or not.

Decidability of MSO(w, <) and MSO(Q, <) can be deduced from Rabin's theorem. (interpretations)
Direct proof for MSO(w, <) using the same high-level approach (Btichi 1962).
e Assuming AC and CH, MSO(R, <) is undecidable (Shelah 1975).
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Automata

A non-deterministic word automaton A : ¥ is a tuple (Q, qo, 9, F) with

e Qis afinite set of states, g0 € Q A run over the inputw € X¢ is a sequence p € Q¥

e a transition function § : ¥ x Q — P(Q) Wifuh = and e Pt €00 p)
0 wy wp

. & é S

e aset F C Q of accepting states o == fal € O, o)) ==z € Ol pr) ==

w € L(A) C X¢ iff there is a run over w hitting F infinitely often. non-recursive!
a,b,c
G
O O—0
a,c
a,b,c

"

““There are infinitely many cs or finitely many bs.
(X ¢)” +x*{a,c}”
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Automata

A non-deterministic word automaton A : ¥ is a tuple (Q, qo, 9, F) with

e Qis afinite set of states, g0 € Q A run over the inputw € X¢ is a sequence p € Q¥

e a transition function § : ¥ x Q — P(Q) Wifuh = e i €000 )
0 wy wp

. & é S

e aset F C Q of accepting states o == fal € O, o)) ==z € Ol pr) ==

w € L(A) C X¢ iff there is a run over w hitting F infinitely often. non-recursive!

“There are infinitely many cs or finitely many bs."
(X"¢)” +X*{a,c}* A tree automaton recognizing
**3! branch with co many bs"
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Complement and projections

Major roadblocks toward proving the decidability theorems for MSO(w, <) and MSO(2*, 59, 51, =)

On w-words
e For every Biichi automaton A : ¥, there is A s.t. L(A) =X\ L(A) (Biichi 1962)

e Biichi automata can be determinized into parity automata (McNaughton 1969)

Modern proofs typically involve weak Konig's lemma and infinite Ramsey for pairs

On labeled trees (Rabin 1971)

e For every non-deterministic parity tree automaton A : X, there is A s.t. L(A°) = ¥27\ L(A)

° Alternating parity tree automata = non-deterministic parity tree automata

Modern proofs typically involve positional determinacy of parity games GS games at level BC(%9)

6/27



Complement and projections

Major roadblocks toward proving the decidability theorems for MSO(w, <) and MSO(2*, 59, 51, =)

On w-words
e For every Biichi automaton A : ¥, there is A° s.t. L(A°) = X\ L(A) (Btichi 1962)

e Biichi automata can be determinized into parity automata (McNaughton 1969)

Modern proofs typically involve weak Konig's lemma and infinite Ramsey for pairs

On labeled trees (Rabin 1971)

e For every non-deterministic parity tree automaton A : X, there is A s.t. L(A°) = ¥27\ L(A)

° Alternating parity tree automata = non-deterministic parity tree automata

Modern proofs typically involve positional determinacy of parity games GS games at level BC(X9)

Motivating question
Those arguments are increasingly sophisticated from a combinatorial and logical perspective.
How can we quantify this?
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Reverse Mathematics

o A framework to analyze axiomatic strength
e Vast program [Friedman, Simpson, Steele 70s]

e Many links with recursion theory

Methodology
e Consider a theorem T formulated in second-order arithmetic.
e Work in the weak theory RCA,.
o Target some natural axiom A such that RCA ¥ A.
e Show that RCAy - A & T.

Essentially independence proofs...

e Similar in spirit to statements like

“Tychonoff's theorem is equivalent to the axiom of choice."
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Induction and comprehension

RCA, is defined by restricting induction and comprehension

Comprehension axiom
For every formula ¢(n) (with X ¢ FV(¢))

3X Vn €N [p(n) < n € X]

o RCAy: restricted to A(l) formulas recursive comprehension

Induction axiom
To prove that Vi € N ¢(n) it suffices to show

e ¢(0) holds
e forevery n € N, ¢(n) implies ¢p(n + 1)

e RCA: restricted to X formulas In §(n) with § € A

e [-induction equivalent to I'-comprehension for finite sets
VneN IX Vk<n (ke X< ¢(k))
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The big five

IT} Comprehension

Transfinite Recursion

£ Comprehension

Weak Konig's Lemma

Recursive Comprehension

T —CA,
U
ATR,
U
ACA,
U
WKL,

U
RCA,

Lusin’s separation theorem

Determinacy of open games

Koénig’s Lemma

Brouwer’s fixed point theorem

Outliers: infinite Ramsey for pairs, determinacy statements.
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The big five

IT} Comprehension
Transfinite Recursion
£? Comprehension
Weak Konig's Lemma

Recursive Comprehension

T —CA,
U
ATR,
U
ACA,
U
WKL,

U
RCA,

Lusin’s separation theorem

Determinacy of open games

Koénig’s Lemma

Brouwer’s fixed point theorem

Outliers: infinite Ramsey for pairs, determinacy statements.

~> Where do our decidability theorems sit in this hierarchy?
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Between 2* and w: quick overview




The infinite binary tree

Material covered in How unprovable is Rabin's decidability theorem

Relationship to the big five
Complementation of non-deterministic tree automata and Rabin's theorem are
e provable in H;-comprehension

e unprovable in Al-comprehension

~~ well above I1}-comprehension. . .

Main equivalence

Over ACA, the following are equivalent:

e Determinacy of BC(39) games
o Positional determinacy of parity games
e Closure under complement of regular tree languages

o Decidability of MSO(2*, 59,51, =)

[Kotodziejczyk, Michalewski, 2015]
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Biichi's decidability theorem (over RCA,)

Material covered in The Logical Strength of Biichi's Decidability Theorem [Kotodziejczyk, Michalewski, P.,
Skrzypczak, 2016]

Weak Konig’s lemma Infinite Ramsey theorem

U

¥-induction —»  Additive Ramsey

U f b

MSO(w) <& Compl. of NBA

7 U

Bounded weak Konig’s lemma Determinization of NBA
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Biichi's decidability theorem (over RCA,)

Material covered in The Logical Strength of Biichi's Decidability Theorem [Kotodziejczyk, Michalewski, P.,
Skrzypczak, 2016]

Weak Konig’s lemma Infinite Ramsey theorem

U

¥-induction —»  Additive Ramsey

U f b

MSO(w) <& Compl. of NBA
Bounded weak Konig’s lemma Determinization of NBA

Let's focus on additive Ramsey (main tool for complementation and algebraic approaches)
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For any linear order (P, <) write [P]* for {(i,j) € P* | i < j} and fix a finite monoid (M, -, e).
Callf: [P)* — M additive when f(i, ) - f(j,k) = f(i,k) foralli <j <k

For any additive f : [P]* — M, there is an unbounded monochromatic X C P (s.t. [f([X]?)| = 1).
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Additive Ramsey over w

For any linear order (P, <) write [P]* for {(i,j) € P* | i < j} and fix a finite monoid (M, -, e).
Call f: [P]* — M additive when f(i, ) - f(j, k) = f(i,k) foralli <j <k

Additive Ramsey

For any additive f : [P]* — M, there is an unbounded monochromatic X C P (s.t. [f([X]?)| = 1).

Theorem

Over RCA,, additive Ramsey over w is equivalent to >3-induction.

Direct proof: ““as usual" for additive Ramsey:. (factored through an ordered variant in the paper)

I1-induction from additive Ramsey

o Consider equivalently comprehension for sets bounded by n for 3°°k (x, k)

(the set of infinite sets is a complete I1J-set)

e Define the coloring f : [w]* — 2" as f(i,)x = max o(x,1)
i<I<j

e Apply additive Ramsey and consider the color X of the monochromatic set. Conclude as

x€eX — 3%k 6(x, k)
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The big picture

WKL, <« ACA, « ATR, « IIl —CA,

7 N

29 — IND Al — CA, I} — CA,

¢ N 7

MSO(w, <) MSO(2*, s¢, s1,=)
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WKLO <~ ACAO <~ ATRO ~ H% —CAO

7 N
20— IND Al — CA, I — CA
0 N 7
MSO(w, <) MSO(Q*,SO,Sl,:)

Intermediate cases?

o RCAg A MSO(w?) = ACAy, and a fortiori, RCAg A MSO(Q, <) = ACA,
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The big picture

WKL, <« ACA, « ATR, « IIl —CA,

7 AN
20— IND Al — CA I — CA,
u N 7
MSO(w, <) MSO(2*, so, $1,=)

Intermediate cases?

Observations

e RCAy A MSO(w?) = ACA,, and a fortiori, RCAg A MSO(Q, <) = ACA,
e RCA) AMSO(Q, <) =TI} — CAp
e (subtle point: RCAg A Dec(MSO(Q, <)) = IT{ — IND)

Motivates studying MSO(Q, <) strictly intermediate?
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Decidability of MSO(Q, <) via algebras




Background on the decidability of MSO(Q, <)

e Initially proven as a corollary of Rabin's theorem (other interesting examples also obtained like this)
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Background on the decidability of MSO(Q, <)

e Initially proven as a corollary of Rabin's theorem (other interesting examples also obtained like this)

o Direct proof using the composition method in The monadic theory of order [S. Shelah, 1975]

e By computing effectively (1, k)-types (n=quantifier depth and k=parameters)
e In particular, coincides with the MSO theory of an Aronszajn line
e Important subcase: scattered linear orders (no homomorphism (Q, <) — (P, <))

o We will follow a modern presentation appearing in

An algebraic approach to MSO-definability on countable linear orderings
[O. Carton, T. Colcombet, G. Puppis, 2011]
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Algebras for countable linear orders

Fix a set LOy, containing all countable linear orders (up to iso) closed under lexicograhic sums »_, Qp

o-monoid
A o-monoid is a pair (M, (ur)reLoy, ) Where
e Mis a (finite) set

e (up)peLoy, is a family of maps pp : [P — M] — M that are associative

=
[1[Qy — M) MP
pEP
y |-
M2 ——— M

and stable under order-isomorphism

(for |[P| < 2 — monoid laws)
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Algebras for countable linear orders

Fix a set LOy, containing all countable linear orders (up to iso) closed under lexicograhic sums »_, Qp

o-monoid
A o-monoid is a pair (M, (ur)reLoy, ) Where
e Mis a (finite) set

e (up)peLoy, is a family of maps pp : [P — M] — M that are associative

=
[1[Qy — M) MP
pEP
y |-
M2 ——— M

and stable under order-isomorphism

Typical examples: (1, 7)-types of countable linear orders

(for |[P| < 2 — monoid laws)
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Recognizing o-words

A countable word (o-word) over ¥ is a map P — X with P € LOy,
Recognition by o-monoids
Fix a finite alphabet ¥ and a tuple (M, p, ¢, F) with

e (M, 1) a o-monoid
e p: X —MandFCM

Say w € XF is recognized by (M, u, @, F) iff jup(p o w) € F

o Generalizes the algebraic approach to (in)finite word automata

(recognition via (w)-monoids)
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Recognizing o-words

A countable word (o-word) over ¥ is a map P — X with P € LOy,
Recognition by o-monoids
Fix a finite alphabet ¥ and a tuple (M, p, ¢, F) with

e (M, 1) a o-monoid
e p: X —MandFCM

Say w € XF is recognized by (M, u, @, F) iff jup(p o w) € F

o Generalizes the algebraic approach to (in)finite word automata (recognition via (w)-monoids)
e o-word languages trivially closed under boolean operations

e Closure under 3 via a powerset operation over o-monoid

e Caution, the multiplication need not be effective!

Challenges toward decidability

Find a finitary representation of o-monoids such that

e emptiness of a language restricted to domains (Q, <) may be checked algorithmically

o the powerset operation remains computable
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A o-algebra is a tuple (M, -, e, (=), (=)™, (—)*) where
e (M, -e) is a (finite) monoid
e the operations (—)7, (—)"" : M — Mand (—)* : P(M) \ § — M satisfy associativity equations
[omitted ]
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Finitary presentation o-algebra

o-algebra
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o-algebra

op

A o-algebra is a tuple (M, -,e,(—)", (—=)" , (—)") where

e (M, -e) is a (finite) monoid
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Finitary presentation o-algebra

A o-algebra is a tuple (M, -,e, (—), (=)™, (=)") where

e (M, e) is a (finite) monoid
e the operations (—)7, (—)"" : M — Mand (—)* : P(M) \ § — M satisfy associativity equations

[omitted |
Given an alphabet 3,2 € 3, P € P(X) \ 0 write
e a“ and a*” for the constant maps — — a with domain w and w*
e K" for amap Q — K where each p € P appears densely (unique up to iso)

We call these words K-shuffles

op

A o-monoid maps to a o-algebra by setting a” = i, (a%) a7 = pior (11“’ ) and P = pug (P")

Every finite o-algebra has a unique lift to a o-monoid.
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Representability: the impredicative argument

Every finite o-algebra M has a unique lift to a o-monoid.

A convex subset Q Ceony PisasetQ C Psuchthat x,y €c Q A x<z<y = z€Q
Say that a countable word w : P — M has value m if there is an associative

| [MQ—>M]

Q Ceonv P

compatible with M such that pp(w) = m
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Representability: the impredicative argument

Theorem (representability)

Every finite o-algebra M has a unique lift to a o-monoid.

A convex subset Q Ceony Pisaset Q C Psuchthat x,y € Q A x<z<y = z€Q
Say that a countable word w : P — M has value m if there is an associative

W H [MQ%M]

Q QCOH\' P
compatible with M such that pp(w) = m

Outline of the argument

1. Assume a word w : P — M and define x ~ y for x < y iff w | [x, y[ has a value

(convex equivalence relation)

2. Each equivalence class X is convex and w | X has a value; this induces a word @/,
(additive Ramsey, cofinality < w important here)
3. P /~ is necessarily a subsingleton

e If two successive elements in P/, contradiction because of binary multiplication
e Otherwise, P /~ is dense and there is a shuffle in @/, contradiction because of (—)*~
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The additional fine combinatorial ingredient: shuffle principle/additive Ramsey over Q

The shuffle principle
Forany n € Nand c : Q — n, there is I Ceony Q such that ¢ | I is a shuffle.

Compare and contrast with the key combinatorial principle in Shelah's argument

Shelah's additive Ramseyan theorem

For every additive map f : [Q]* — M, there exists

o [ Ceonv Q

o finitely many dense sets D; with I = (J; D;

such that fis constant over each [D;]?
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Define the operation (M, u) ~— (P(M), u”) as

pb (w) = {p(u) | u € M",¥x € P u(x) € w(x)}

This o-monoid is important as allows to produce

e Atuple (P(M), u”, »?, F7) recognizing a projection of L(M, 1, ¢, F)
e Go from the (1, k + 1)-types to (n + 1, k)-types
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Define the operation (M, 1) P(M), u¥) as

m?(w) = {n(u) | u € M",Vx € P u(x) € w(x)}

This o-monoid is important as allows to produce

e Atuple (P(M), u”, »?, F7) recognizing a projection of L(M, 1, ¢, F)
e Go from the (1, k + 1)-types to (n + 1, k)-types

The underlying map of o-algebra is computable

MSO(Q, <) is decidable
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Reverse Mathematics of MSO(Q, <)




The fine combinatorial principles?

Do the more obvious combinatorial principles contribute to the logical complexity once again?
Not really

Theorem

Over RCA, the following are equivalent:

e the shuffle principle
e Shelah's additive Ramseyan theorem over Q

e induction for ) formulas

(Recall that RCAg A MSO(Q, <) == I1;CA)
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The fine combinatorial principles?

Do the more obvious combinatorial principles contribute to the logical complexity once again?
Not really

Theorem

Over RCA, the following are equivalent:

e the shuffle principle
e Shelah's additive Ramseyan theorem over Q

e induction for ) formulas

(Recall that RCAg A MSO(Q, <) == I1;CA)

The implications = X{ — IND are proven similarly as before using the map

21 l0<k<2"'} — N
2k+1
271

— n

density <= infinity
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An upper bound and a conjectural upper bound

Adapting the approach above, with the following caveats:

e Some lemmas cannot be stated in the language of second-order arithmetic as-is
(adapted statements: talk about infinitary syntax trees and algebras only)

e Swept the effectivization of (P (M), /LP) under the rug (needs to be reformulated anyways)

e We would at several points use conservativity of choice for certain classes of formualas

Theorem

IT;-comprehension proves decidability of MSO(Q, <)
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An upper bound and a conjectural upper bound

Adapting the approach above, with the following caveats:

e Some lemmas cannot be stated in the language of second-order arithmetic as-is
(adapted statements: talk about infinitary syntax trees and algebras only)

e Swept the effectivization of (P (M), /LP) under the rug (needs to be reformulated anyways)

e We would at several points use conservativity of choice for certain classes of formualas
Theorem

IT;-comprehension proves decidability of MSO(Q, <)

e This shows that this is strictly easier than Rabin's theorem, strictly harder than Biichi's

o We have reasons to suspect this is not optimal

22/27



Operating conjecture

VY IX.Xo =0 AVk <nVz (z € Xey1 < ¢z, Xk))

o Always true in standard models of H% — CA,.

o This is equivalent to determinacy of weak parity games BC(=) GS games

Finite ITj-recursion proves the soundness of the standard decision algorithm for MSO(Q)

e So far, we know how to prove the analogue of the representation lemma
e We miss the soundness of the definition of the powerset algebra

e Enough to derive a descriptive set theoretic result
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Evaluating words with finite II}-recursion (scattered vs dense)

Now let us sketch the argument for a representability theorem. Fix a o-algebra M.
Consider the following procedure to compute the value of a word w : P — M

1. When P is dense in itself, factorize pseudo-shuffles maximally

2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part
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Evaluating words with finite II}-recursion (scattered vs dense)

Now let us sketch the argument for a representability theorem. Fix a o-algebra M.
Consider the following procedure to compute the value of a word w : P — M

1. When P is dense in itself, factorize pseudo-shuffles maximally

2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part

2. relies on
Hausdorff's theorem I} — (Clote 1989)

Every linear order is isomorphic to a IT;{-definable decomposition > sep Pa where

e D is dense in itself (if countable, either 0,1 or Q up to endpoints)

e every P; is non-empty and scattered

Evaluation of scattered words

The value of words w : P — M with P scattered is II-definable

e Recursion over a decomposition of P along a well-founded ordered trees with arities C Z

o Relies on the arithmetical definition of monochromatic sets for additive Ramsey
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Evaluating words with finite II}-recursion (dense steps)

Consider the following procedure to compute the value of a word w : P — M

1. When P is dense in itself, factorize pseudo-shuffles maximally

2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part

Pseudo-shuffles
w : Q — M is a pseudo-shuffle of value e € M if:

e for each convex subword which is a P-shuffle, we have P* = ¢

e for every letter m occuring in w, eme = e

e for each homomorphism ¢ : Q — Q such that w o ¢ is a P-shuffle, (P U {e})" =e

e More general than shuffles
o Note the dependency on the structure of M
e Required to bound the number of iterations by |M]|

e Algebraic reasoning on o-algebras needed

(compatibility with the monoid structure)

L-class
=

bP"al

abP*a

abP*

bP"ab

bP"a

bP*

Prab

Pra

pr
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Conclusion




The current picture

MSO(countable scattered orders)

13 fr
MSO(w?, <) MSO(WF w-trees)
4 ¢
WKLy <« ACA, « ATR, <« IIl — CA,
Va L
¢ — IND (I} - CA)<¥ «= II} — CAy «= A} —CAp I3 - CAg
1 t 7 N 7
MSO(w, <) MSO(Q, <) MSO0(2", 50, 51,=)

e We did find an intermediate case...
e ...but we do not have a clean equivalence

e Improved characterization of o-word languages in terms of topological complexity?
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1 t 7 N 7
MSO(w, <) MSO(Q, <) MSO0(2", 50, 51,=)

e We did find an intermediate case...
e ...but we do not have a clean equivalence

e Improved characterization of o-word languages in terms of topological complexity?

Conjecture on MSO-definable languages
Define the C-hierachy by iterating Suslin A-operation and complementation (2] CCC A))
Every MSO(Q, <)-definable language sits in a finite level of the C-hierarchy

(beforehand, A} bound via a collapse result in (Carton, Colcombet, Puppis 2011))
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Further questions

o Settle the conjectures!

Characterize algebras recognizing Borel languages

Are well-founded trees strictly harder than scattered words/countable ordinals?

Logical strength related to weak parity games

~» Is there a natural alternating automata model for Q-labellings?

Adapt the techniques for uncountable structures
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Characterize algebras recognizing Borel languages

Are well-founded trees strictly harder than scattered words/countable ordinals?

Logical strength related to weak parity games

~» Is there a natural alternating automata model for Q-labellings?

Adapt the techniques for uncountable structures

Thanks for listening! Further questions?
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MSO(Q, <) and C-sets

Fix a Polish space X. Note in particular that the set of words ~? always forms a Polish space
(viaN ~ Q)

C-sets
Suslin A-operation takes a map § : N* — P(X) and outputs the set

AB) = U NBwIH
beNN keN

Extend the A operation to pointclasses I' C P(X) by setting A(I') = {A(8) | 5: N* = T'}
C-sets are obtained by iterating the A-operation from the closed sets and closing under complement

We have that A(II?) = %} and that C-sets are all A}

Conjecture on MSO-definable languages

Every MSO(Q, <)-definable language sits in a finite level of the C-hierarchy
For every finite level of the hierarchy of C-sets, there is a complete MSO(Q, <)-definable language

o The first point is the more difficult result

e The second requires (already known) tricks to encode lexicographic products Q Xiex Q
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