Implicit automata in typed A-calculi

Cécilia Prapic
Oxford University
j-w.w. NeuyEn Lé Thanh Diing (a.k.a. Tito) (Paris 13)

LHC, February 5th, 2021

1/15

Simply typed functions on Church numerals

Church encodings of (unary) natural numbers:
e Nat=(0—0) —>0—0

e neN~#n=MM f(... (fx)...): Nat with n times f

o all inhabitants of Nat are equal to some 77 up to =g,

Theorem (Schwichtenberg 1975)
The functions N — N definable by simply-typed X-terms of type Nat — Nat are the extended polynomials
(generated by 0, 1, +, X, id and ifzero).

2/15

Simply typed functions on Church numerals

Church encodings of (unary) natural numbers:
e Nat=(0—0) —>0—0

e neN~#n=MM f(... (fx)...): Nat with n times f

e all inhabitants of Nat are equal to some 77 up to =g,

The functions N — N definable by simply-typed \-terms of type Nat — Nat are the extended polynomials
(generated by 0, 1, +, X, id and ifzero).

Let's add a bit of (meta-level) polymorphism: t = Nat[A] — Nat
where Nat[A] = Nat[A/o] = (A - A) 2 A— A

Choose some simple type A and some term f : Nat[A] — Nat.
What functions N — N can be defined this way?

2/15

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = Stryy
Church encodings of strings over alphabet ¥ = {a, b}:
® Stripy =(0—0) = (0—0) —0—0
e abb € {a,b}* ~ abb = M. M. Ax. fu (fy (fp x)) : Strs
More generally Strs; = (0 — 0) — ... |X| times... — (0 = 0) -0 — 0

Open question
Choose some simple type A and some term f : Strp[A] — Strs.
What functions I'* — ¥~ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

3/15

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = Stryy
Church encodings of strings over alphabet ¥ = {a, b}:
® Stripy =(0—0) = (0—0) —0—0
e abb € {a,b}* ~ abb = M. M. Ax. fu (fy (fp x)) : Strs
More generally Strs; = (0 — 0) — ... |X| times... — (0 = 0) -0 — 0

Open question
Choose some simple type A and some term f : Strp[A] — Strs.
What functions I'* — ¥~ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

An answer for predicates [Hillebrand & Kanellakis 1996]

A subset of X" is decidable by some f : Strs[A] — Bool
if and only if it is a regular language.

Note: unary regular languages = ultimately periodic subsets of N

3/15

A-definable functions are regular

Theorem (Hillebrand & Kanellakis, LICS'96)

For any type A and any simply typed A-term t : Strs[A] — Bool,
the language {w € X* | tw =3 true} is reqular.

Proof by semantic evaluation.
Let [—] stand for the denotational semantics in the CCC of finite sets.

We build an automaton with finite set of states Q = [Strs[A]]

O 0:0=C

tw =g true <= [t]([w]) = [true] <= w accepted

(Proof of («=): if Card([o]]) > 2 then [true] # [false]) O

Similar ideas in higher-order model checking, e.g. Grellois & Mellies

4/15

Regular functions

Assume a A-calculus for linear intuitionistic logic with additives

e \"x.t:A — Bunrestricted function
e \°x.t: A —o Blinear function (exactly one x in t)
e coproducts A @ B and products A & B

Church encoding with linear types [Girard 1987]:
abb = X fo. Xfy. Xx. f (fy (fys X)) : Striapy = (0 —00) = (0 —00) = 0 —00

5/15

Regular functions

Assume a A-calculus for linear intuitionistic logic with additives

e X\ x.t: A — Bunrestricted function
e \°x.t: A —o Blinear function (exactly one x in t)
e coproducts A @ B and products A & B

Church encoding with linear types [Girard 1987]:
abb = X"fo. Xfo. X°x. fo (fy (fs X)) : Strapy = (0 —0) = (0 —0) - 0—0

f: T — X" is a regular function
—
fis defined by some ¢ : Strr[A] —o Strx in the intuitionistic linear A-calculus
with A purely linear, i.e. containing no *—'

5/15

Regular functions

Assume a A-calculus for linear intuitionistic logic with additives

e \'x.t: A — Bunrestricted function
e \°x.t: A —o Blinear function (exactly one x in t)
e coproducts A @ B and products A & B

Church encoding with linear types [Girard 1987]:
abb = X fo. Xfy. Xx. f (fy (fys X)) : Striapy = (0 —00) = (0 —00) = 0 —00

Today's main theorem [Nguyén & P.]

f: " — ¥ is a reqular function
—
fis defined by some f : Strr[A] —o Stry in the intuitionistic linear A-calculus
with A purely linear, i.e. containing no *—'

Regular functions are a classical topic, many equivalent definitions...
One of them: copyless streaming string transducers [Alur & Cerny 2010]
~- sounds suspiciously like affine types!

5/15

Single-state streaming string transducers

Finite set of X*-valued registers e.g. R = {X, Y}

Initial values R — ¥* e.g. Xinit = Yinit = €

X :=Xa {X::Xb
b

Register update function e.g. a
s pdate fu g {Y =aqY Y :=bY

e “output function” e.g. out = XY

6/15

Single-state streaming string transducers

e Finite set of X"-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €

X :=X X :=Xb
o Register update function e.g. a — “he

Y :=aY Y :=bY

e “output function” e.g. out = XY

Execution over abaa: start with

6/15

Single-state streaming string transducers

o Finite set of X*-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €
X :=Xa X:=Xb
o Register update function e.g. a — b—
Y :=aY Y :=bY
e “output function” e.g. out = XY
Execution over abaa:
X=a Y=a

6/15

Single-state streaming string transducers

o Finite set of X*-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €

X :=Xa X:=Xb
o Register update function e.g. a — b—

Y :=aY Y :=bY

e “output function” e.g. out = XY

Execution over abaa:

6/15

Single-state streaming string transducers

o Finite set of X*-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €

X :=Xa X:=Xb
o Register update function e.g. a — b—

Y :=aY Y :=bY

e “output function” e.g. out = XY

Execution over abaa:

X = aba Y = aba

6/15

Single-state streaming string transducers

o Finite set of X*-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €

X :=Xa X:=Xb
o Register update function e.g. a — b—

Y :=aY Y :=bY

e “output function” e.g. out = XY

Execution over abaa:

X = abaa Y = aaba

6/15

Single-state streaming string transducers

o Finite set of X*-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €

X := X X:=Xb
o Register update function e.g. a — e

Y :=aY Y :=bY

e “output function” e.g. out = XY

Execution over abaa: f(abaa) = abaaaaba

X = abaa Y = aaba

6/15

Single-state streaming string transducers

o Finite set of X*-valued registers e.g. R = {X, Y}

e Initial values R — X" e.g. Xinit = Yinit = €

X := X X:=Xb
o Register update function e.g. a — e

Y :=aY Y :=bY

e “output function” e.g. out = XY

Execution over abaa: f(abaa) = abaaaaba, f: w — w - reverse(w)

X = abaa Y = aaba

6/15

Stateful streaming string transducers

SSTs can also have states: their memory is Q x (X*)® (with |Q| < o0)

X < xa
y<y

aeXx

out «—y

X< €
Y€

X< €

I -

out < ¢

X 4—ax
y<y

7/15

Stateful streaming string transducers

SSTs can also have states: their memory is Q x (£*)* (with |Q| < o)

” X< €
out <~y yeux out
sey| X X < ax
y<y y<y
X+ ¢
Yy<e¢€

Each register appears at most once on RHS of <

(for each fixed input letter, at most once among all the associated <)

Intuition: memory M = Q@ X* ® ... ® X, transitions M — M
(Q1¢...41concat : T* ® X" —o X7)

7/15

Categorical automata

A framework for “single-pass” automata [Colcombet & Petrisan 2017]
e internal memory = object of a category C

e transitions = morphisms (and [letter — transition] = functor 7s; — C)

agx

)

T = e——>0——>o — C

e DFA = automata over the category of finite sets

Copyless SSTs ~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)q

8/15

Categorical automata

A framework for “single-pass” automata [Colcombet & Petrisan 2017]
internal memory = object of a category C

transitions = morphisms (and [letter — transition] = functor 7s — C)

agx

)

T, = e—>e—> o — C

e DFA = automata over the category of finite sets

o Copyless SSTs ~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)g

Definition of the free finite coproduct completion Cq

e Objects: formal finite sums P, cu Cu of objects of C

¢ Morphisms: Homc (6, Cu, D, Do) =TI, >, Home (Cu, Do)

8/15

Categorical automata

A framework for “single-pass” automata [Colcombet & Petrisan 2017]
internal memory = object of a category C

transitions = morphisms (and [letter — transition] = functor 7s — C)

agx

)

T, = e—>e—> o — C

e DFA = automata over the category of finite sets

o Copyless SSTs ~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)g
Definition of the free finite coproduct completion Cq

e Objects: formal finite sums P, cu Cu of objects of C
formally pairs (U, (Cy)ucu), U a finite set, C,, € Cy

¢ Morphisms: Homc (6, Cu, D, Do) =TI, >, Home (Cu, Do)

8/15

Categorical automata

A framework for “single-pass” automata [Colcombet & Petrisan 2017]
internal memory = object of a category C

transitions = morphisms (and [letter — transition] = functor 7s — C)

agx

)

T, = e—>e—> o — C

e DFA = automata over the category of finite sets

o Copyless SSTs ~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)g

Definition of the free finite coproduct completion Cq

e Objects: formal finite sums P, cu Cu of objects of C
formally pairs (U, (Cy)ucu), U a finite set, C,, € Cy

¢ Morphisms: Homeg, (B, Cu, @, Dy) = IT, 3=, Home (Cu, Do)
= 371, Home (Cu, Dywy)

8/15

Transductions definable in linear A-calculus can be turned into automata over a category L of purely
linear A-terms (w/ constf. : 0 —o o for ¢ € ¥)

L-automata compute the same string functions as A-terms.

Proof: syntactic analysis of normal forms

9/15

Transductions definable in linear A-calculus can be turned into automata over a category L of purely
linear A-terms (w/ constf. : 0 —o o for ¢ € ¥)

L-automata compute the same string functions as A-terms.

Proof: syntactic analysis of normal forms

9/15

Compiling into higher-order transducers

Transductions definable in linear A-calculus can be turned into automata over a category L of purely
linear A\-terms (w/ constf; : 0 — o forc € ¥)

Claim

L-automata compute the same string functions as \-terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear \-definable — regular function
Define a functor £ — Rg preserving enough structure

Useful fact: there is a canonical functor from £ to any symmetric monoidal closed category

Unfortunately Rg is not monoidal closed...

9/15

Toward a monoidal closed category

So far, we encountered:

e [: category of purely linear A-terms (w/ constf. : 0 — o forc € %)
e R: category of finite sets of registers and copyless assignments

® Rg: free finite coproduct completion of the latter (add states)

Now consider:
e the free finite product completion: C — C¢. = ((C?)g)®F
Objects: formal products &7, Cx
o the composite completion C — Cg¢ — (Cg) g
Objects: formal sums of products @, &, Cu.x

similar to de Paiva's Dialectica categories DC, think Ju. Vx. ¢ (u, x)

Goals toward our main theorem
o Structure: (Rg)e has finite products and is monoidal closed

o Conservativity: (Rg)g-automata and Rg-automata are equivalent

10/15

Structure (1): generic remarks (Cg,)

Tensorial products can be lifted to the completions
e The new tensorial products satisfy the additional laws
ARB&C)=(A®B)&(A®C) A®BaeC)=AB)@®(Ax®C)
e In particular, (Cg)g has distributive cartesian products
A& (BaC)=(A&B)® (A&C)

When embedded in (co)presheafs 22 Day convolution

11/15

Structure (1): generic remarks (Cg,)

Tensorial products can be lifted to the completions
e The new tensorial products satisfy the additional laws
ARB&C)=(A®B)&(A®C) A®BaeC)=AB)@®(Ax®C)
e In particular, (Cg)g has distributive cartesian products
A& (BaC)=(A&B)® (A&C)
When embedded in (co)presheafs 2 Day convolution

Lemma ((folklore observation about dependent Dialectica categories?))

If C is symmetric monoidal and (Cg.)gq has the internal homs A — B
forall A,B € C, then (Cg)g is symmetric monoidal closed.

(EB&AX)—o(EB&By) - 8D & Pa—B,

ucl x€Xy veEV YEYy uel veV yeYy xeXy,

11/15

R has the internal homs A — B for all A,B € R.

The construction appears in the original SST paper [Alur & Cerny 2010]
without the categorical vocabulary.

X :=abXcY X =1 XZY
~+ shape + parameters Z; =ab, ...
Y :=ba Y :=7Z;

copyless SST = finitely many shapes: use as states; registers for params

12/15

R has the internal homs A — B for all A,B € R.

The construction appears in the original SST paper [Alur & Cerny 2010]
without the categorical vocabulary.

X :=abXcY X =1 XZY
~+ shape + parameters Z; =ab, ...
Y :=ba Y :=7Z;

copyless SST = finitely many shapes: use as states; registers for params

(Re)e is symmetric monoidal closed (and almost affine).

12/15

(Cs.) @ automata are equivalent to non-deterministic Cq automata.

A uniformization (~ determinization) theorem is enough to conclude

(Rg)@-automata are equivalent to standard SSTs.

e Uniformization already known [Alur & Deshmuk 2011]
e Argument implicitly based on monoidal closure!

oO— o a D
a G Dy
s v v (=1 (=1 Dy

o

a

For any monoidal category C, if Cq, has all the internal homsets A —o B for A, B € C, then (Cg.) -automata

and Cg-automata are equivalent.
i.e., ND Cg-automata can be uniformized

13/15

I have just discussed

definable by some ¢ : Strp[A] —o Strg

lar string function <=
Fegitat stEng functon in ILL with A purely linear

14/15

Main results

I have just discussed

definable by some ¢ : Strp[A] —o Strg

lar string function <=
reguiar string tunction in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

definable by some ¢ : Treep[A] —o Trees

lar tree function <—-
reguiar tree function in ILL with A purely linear

14/15

Main results

I have just discussed

definable by some ¢ : Strp[A] —o Strg

lar string function <=
reguiar string tunction in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

definable by some ¢ : Treep[A] —o Trees

lar tree function <—-
reguiar tree function in ILL with A purely linear

Specific ingredients:

e Bottom-up categorical tree automata over SMCs
e A comparison of Cg¢ with a kind of coherence completion similar to [Hu, Joyal]

o A reasonably elegant multicategory of tree registers transition

14/15

Conclusion

Today:

e Church encodings lead to connections with automata
o Additive connectives are important for trees
o Application of categorical semantics (Dialectica, Gol)

Strs; [A] —o Bool with A linear (adapted as needed):

A-calculus | languages || status

simply typed regular v [Hillebrand & Kanellakis 1996]
linear or affine regular v

non-commutative linear or affine | star-free v

Strp[A] —o Stry; with A affine (adapted as needed):

A-calculus transducers | | status

linear (without additives) nothing interesting (?) v (?)

affine regular functions v (coming soon)
non-commutative affine first-order regular fn. v?

linear/affine with additives regular functions v

parsimonious polyregular 2?2

simply typed variant of CPDA??? 22?7

15/15

Conclusion

Today:

e Church encodings lead to connections with automata
o Additive connectives are important for trees
o Application of categorical semantics (Dialectica, Gol)

Strs; [A] —o Bool with A linear (adapted as needed):

A-calculus | languages || status

simply typed regular v [Hillebrand & Kanellakis 1996]
linear or affine regular v

non-commutative linear or affine | star-free v

Strp[A] —o Stry; with A affine (adapted as needed):

A-calculus transducers | | status

linear (without additives) nothing interesting (?) v (?)

affine regular functions v (coming soon)
non-commutative affine first-order regular fn. v?

linear/affine with additives regular functions v

parsimonious polyregular 2?2

simply typed variant of CPDA??? 22?7

+ a characterization of Str[A] — Str as comparison-free polyregular functions

15/15

Conclusion

Today:

e Church encodings lead to connections with automata
o Additive connectives are important for trees
o Application of categorical semantics (Dialectica, Gol)

Strs; [A] —o Bool with A linear (adapted as needed):

A-calculus | languages || status

simply typed regular v [Hillebrand & Kanellakis 1996]
linear or affine regular v

non-commutative linear or affine | star-free v

Strp[A] —o Stry; with A affine (adapted as needed):

A-calculus transducers status

linear (without additives) nothing interesting (?) v (?)

affine regular functions v (coming soon)
non-commutative affine first-order regular fn. v?

linear/affine with additives regular functions v

parsimonious polyregular 2?2

simply typed variant of CPDA??? 22?7

+ a characterization of Str[A] — Str as comparison-free polyregular functions

Thanks for listening!

15/15

