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The idea

Suppose the programs of type T in a programming language P
all compute languages, something like T = String → Bool.
(Or functions String → String.)

What class of languages? Depends on P and T.
Many theoretical PLs not Turing-complete, especially typed λ-calculi

Implicit complexity: machine-free characterizations of complexity classes
using high-level programming languages

Big project: the same thing for automata instead of complexity

Plan

1. Alternative justification:
internal motivations from simply typed λ-calculus

2. A concrete result: regular string-to-string functions in an affine λ-calculus
(+ brief mention of star-free languages vs non-commutative types)

3. Some abstract nonsense on monoidal closed categories
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Simply typed functions on Church numerals (1)

Church encodings of (unary) natural numbers:
• Nat = (o → o) → o → o
• n ∈ N⇝ n = λf. λx. f (. . . (f x) . . .) : Nat with n times f
• all inhabitants of Nat are equal to some n up to =βη

Theorem (Schwichtenberg 1975)
The functions N → N definable by simply-typed λ-terms of type Nat → Nat are the
extended polynomials (generated by 0, 1, +, ×, id and ifzero).

Let's add a bit of (meta-level) polymorphism: t = Nat[A] → Nat
where Nat[A] = Nat[A/o] = (A → A) → A → A

Open question
Choose some simple type A and some term t : Nat[A] → Nat.
What functions N → N can be defined this way?
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Simply typed functions on Church numerals (2)

Take mult = λn.λm.λf. n (m f) : Nat → Nat → Nat.
mult 2 : Nat → Nat can be iterated by a Nat[Nat]…

−→ exp2 = λn. n (mult 2) 1 : Nat[Nat] → Nat

which cannot be iterated!

Smaller types, still heterogenous:

exp2 = λn. n 2 : Nat[o → o] → Nat

Towers of exponentials of any fixed height Nat[T[A]] → Nat[A].
This is the fastest possible growth for simply typed λ-terms.

On the other hand:
Theorem (Statman 198X)
Subtraction cannot be defined by any simply typed t : Nat[A] → Nat[B] → Nat.
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Simply typed functions on Church numerals (3)

Open question
Choose some simple type A and some term t : Nat[A] → Nat.
What functions N → N can be defined this way?

Subtraction cannot be defined; some “easy” 1-variable functions,
e.g. n 7→ b

√
nc, are also undefinable.

Does this even admit a satisfying answer?

There is one for predicates!

Theorem (Joly 2001)
A subset of Nk is decidable by some t : Nat[A1] → · · · → Nat[An] → Bool
(where Bool = o → o → o) if and only if it is ultimately periodic.

Corollary
If t : Nat[A] → Nat defines ft : N → N, then
X ⊆ N ultimately periodic =⇒ f−1

t (X) ultimately periodic.

A not quite trivial necessary condition!
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Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = Str{1}
Church encodings of strings over alphabet Σ = {a, b}:

• Str{a,b} = (o → o) → (o → o) → o → o
• abb ∈ {a, b}∗ ⇝ abb = λfa. λfb. λx. fa (fb (fb x)) : StrΣ

More generally StrΣ = (o → o) → . . . |Σ| times . . . → (o → o) → o → o

Open question
Choose some simple type A and some term t : StrΓ[A] → StrΣ.
What functions Γ∗ → Σ∗ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

An answer for predicates [Hillebrand & Kanellakis 1996]
A subset of Σ∗ is decidable by some t : StrΣ[A] → Bool
if and only if it is a regular language.

Note: unary regular languages ∼= ultimately periodic subsets of N
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λ-definable functions are regular

Theorem (Hillebrand & Kanellakis, LICS'96)
For any type A and any simply typed λ-term t : StrΣ[A] → Bool,
the language {w ∈ Σ∗ | t w =β true} is regular.

Proof by semantic evaluation.
Let J−K stand for the denotational semantics in the CCC of finite sets.

We build an automaton with finite set of states Q = JStrΣ[A]K
(Card(Q) depends on A), acceptation as JtK(−) = JtrueK.

JεK JaK r
ab

z r
abb

z
...a b b

t w =β true ⇐⇒ JtK(JwK) = JtrueK ⇐⇒ w accepted

(Proof of (⇐): if Card(JoK) ≥ 2 then JtrueK ̸= JfalseK)
Similar ideas in higher-order model checking, e.g. Grellois & Melliès
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Towards implicit automata

Recap: in the simply typed λ-calculus,
StrΓ[A] → Bool = regular languages; StrΓ[A] → StrΣ = ???

So what's next?

Use restricted types to:

• get an easier problem for string-to-string functions

−→ regular functions in an affine λ-calculus

• characterize smaller classes of languages
−→ star-free languages (regular expressions without repetition star,

but with complementation)
using non-commutative types (functions must use their arguments

in the order that they are given in)
(not covered here)
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A λ-calculus with affine types

Typing judgments: {non-affine variables} | {affine variables} ` t : A

• λ�x. t : A → B unrestricted function
• λ◦x. t : A⊸ B affine function (at most one x in t)

Γ, x : A | ∅ ` x : A Γ | x : A ` x : A

Γ | ∆ ` t : A → B Γ | ∅ ` u : A
Γ | ∆ ` t u : B

Γ, x : A | ∆ ` t : B
Γ | ∆ ` λ�x. t : A → B

Γ | ∆ ` t : A⊸ B Γ | ∆′ ` u : A
Γ | ∆,∆′ ` t u : B

Γ | ∆, x : A ` t : B
Γ | ∆ ` λ◦x. t : A⊸ B

The above = Dual Intuitionistic Linear Logic

Γ | ∆ ` t : A
Γ | ∆′ ` t : A

when ∆ ⊆ ∆′: weakening rule

9/100



Regular functions

Church encoding with linear/affine types [Girard 1987]:

abb = λ�fa. λ�fb. λ◦x. fa (fb (fb x)) : Str{a,b} = (o⊸ o) → (o⊸ o) → o⊸ o

Today's main theorem [Nguyễn & P.]

f : Γ∗ → Σ∗ is a regular function
⇐⇒

f is defined by some t : StrΓ[A]⊸ StrΣ in our affine λ-calculus
with A purely affine, i.e. containing no `→'

Regular functions are a classical topic, many equivalent definitions…
beware: sequential functions ̸= rational functions ̸= regular functions

One of them: copyless streaming string transducers [Alur & Černý 2010]
⇝ sounds suspiciously like affine types!
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Single-state streaming string transducers

Definition

• Finite set of Σ∗-valued registers e.g. R = {X,Y}
• Initial values R → Σ∗ e.g. Xinit = Yinit = ε

• Register update function e.g. a 7→

X := Xa
Y := aY

b 7→

X := Xb
Y := bY

• “output function” e.g. out = XY

Execution over : start with

X = ε Y = ε
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Stateful streaming string transducers

SSTs can also have states: their memory is Q× (Σ∗)R (with |Q| < ∞)

x← ε

y← ε

out← y out← ε
∥
∣∣∣∣ x← ε

y← yx

a ∈ Σ

∣∣∣∣ x← ax
y← y

∥
∣∣∣∣ x← ε

y← xy

a ∈ Σ

∣∣∣∣ x← xa
y← y

Copylessness restriction
Each register appears at most once on RHS of :=

(for each fixed input letter, at most once among all the associated :=)

Intuition: memory M = Q⊗ Σ∗ ⊗ . . .⊗ Σ∗, transitions M⊸ M
(Q ∼= 1⊕ . . .⊕ 1, concat : Σ∗ ⊗ Σ∗ ⊸ Σ∗)
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Categorical automata

A framework for “single-pass” automata [Colcombet & Petrişan 2017]

• internal memory = object of a category C

• transitions = morphisms (and [letter 7→ transition] = functor TΣ → C)

TΣ = • // •

a∈Σ

�� // • −→ C

• DFA = automata over the category of finite sets
• Copyless SSTs ≈ start from a category R of copyless register updates

+ add states by free finite coproduct completion (−)⊕

Definition of the free finite coproduct completion C⊕

• Objects: formal finite sums
⊕

u∈U Cu of objects of C

formally pairs (U, (Cu)u∈U), U a finite set, Cu ∈ C0

• Morphisms: HomC⊕
(⊕

u Cu,
⊕

v Dv
)
=

∏
u
∑

v HomC (Cu,Dv)

∼=
∑

f
∏

u HomC
(
Cu,Df(u)

)
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Compiling into higher-order transducers

Transductions definable in affine λ-calculus can be turned into automata over
a category L of purely affine λ-terms (w/ const fc : o⊸ o for c ∈ Σ)

Claim
L-automata compute the same string functions as λ-terms.

Proof: syntactic analysis of normal forms

Proof strategy for affinely λ-definable =⇒ regular function
Define a functor L → R⊕ preserving enough structure

Useful fact: there is a canonical functor from L to any affine symmetric
monoidal closed category

Unfortunately R⊕ is not monoidal closed…
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Useful fact: there is a canonical functor from L to any affine symmetric
monoidal closed category

Unfortunately R⊕ is not monoidal closed…
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Toward a monoidal closed category

So far, we encountered:

• L: category of purely affine λ-terms (w/ const fc : o⊸ o for c ∈ Σ)
• R: category of finite sets of registers and copyless assignments
• R⊕: free finite coproduct completion of the latter (add states)

Now consider:

• the free finite product completion: C 7→ C& = ((Cop)⊕)
op

Objects: formal products
˘

x Cx

• the composite completion C 7→ C& 7→ (C&)⊕

Objects: formal sums of products
⊕

u
˘

x Cu,x

similar to de Paiva's Dialectica categories DC, think ∃u. ∀x. φ(u, x)

Goals toward our main theorem

• Structure: (R&)⊕ has finite products and is monoidal closed
• Conservativity: (R&)⊕-automata and R⊕-automata are equivalent
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Structure (1): generic remarks (C&)⊕

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

A⊗ (B& C) ≡ (A⊗ B) & (A⊗ C) A⊗ (B⊕ C) ≡ (A⊗ B)⊕ (A⊗ C)

• In particular, (C&)⊕ has distributive cartesian products

A& (B⊕ C) ≡ (A& B)⊕ (A& C)

When embedded in (co)presheafs∼= Day convolution

Lemma ((folklore observation about dependent Dialectica categories?))
If C is symmetric monoidal and (C&)⊕ has the internal homs A⊸ B
for all A,B ∈ C, then (C&)⊕ is symmetric monoidal closed.

(⊕
u∈U

¯
x∈Xu

Ax

)
⊸
(⊕

v∈V

¯
y∈Yv

By

)
=

¯
u∈U

⊕
v∈V

¯
y∈Yv

⊕
x∈Xu

Ax ⊸ By
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Structure (2): combinatorics on strings

Lemma
R⊕ has the internal homs A⊸ B for all A,B ∈ R.

The construction appears in the original SST paper [Alur & Černý 2010]
without the categorical vocabulary.X := abXcY

Y := ba
⇝ shape

X := Z1XZ2Y
Y := Z3

+ parameters Z1 = ab, . . .

copyless SST =⇒ finitely many shapes: use as states; registers for params

Conclusion
(R&)⊕ is symmetric monoidal closed (and almost affine).
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Conservativity

Lemma
(C&)⊕ automata are equivalent to non-deterministic C⊕ automata.

A determinization theorem is enough to conclude
Conservativity
(R&)⊕-automata are equivalent to standard SSTs.

• Determinization already known [Alur & Deshmuk 2011]
• Argument implicitly based on monoidal closure!

C0

U C2

C3

C1

V

C4

T

S

C0

C2

C3

C1

C4

D0

D2

D1

D3

D4

Theorem
For any monoidal category C, if C⊕ has all the internal homsets A⊸ B for
A,B ∈ C, then (C&)⊕-automata and C⊕-automata are equivalent.

i.e., C⊕-automata can be determinized
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Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function ⇐⇒ definable by some t : StrΓ[A]⊸ StrΣ
in affine ILL with A purely affine

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn & P.]

regular tree function ⇐⇒ definable by some t : TreeΓ[A]⊸ TreeΣ
in affine ILL with A purely affine

Specific ingredients:

• Bottom-up categorical tree automata over SMCs
• A comparison of C& with a kind of coherence completion similar to [Hu, Joyal]
• A reasonably elegant multicategory of tree registers transition
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Additive connectives: why (not)?

Additives are required for trees
Copyless streaming tree transducers ⊂ regular tree functions;
conjectured to be a strict inclusion.
To recover an equality: ad-hoc relaxation called “single use restriction”.

Principled explanation via linear logic:
just allow the additive conjunction in the internal memory!

e.g. M = Q⊗ Σ∗ ⊗ (Σ∗ &Σ∗) =
⊕

q∈Q Σ∗ ⊗ (Σ∗ &Σ∗)

String functions without additive

• Still an equivalence, but non-trivial (solution via Krohn--Rhodes)

• Allows GoI-style interpretation in categories of diagrams
⇝ Interpretation as bidirectional automata (w/o registers)

+

+

−−

−+ +

+ −

−

−

+ +

A

B

Planar diagrams
⇝

FO fragments
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Conclusion

Today:

• Church encodings lead to connections with automata
• Additive connectives are important for trees
• Application of categorical semantics (Dialectica, GoI)

Broader picture
StrΣ[A]⊸ Bool with A affine (adapted as needed):
λ-calculus languages status
simply typed regular ✓[Hillebrand & Kanellakis 1996]
linear or affine regular ✓
non-commutative linear or affine star-free ✓

StrΓ[A]⊸ StrΣ with A affine (adapted as needed):
λ-calculus transducers status
linear (without additives) nothing interesting (?) ✓(?)
affine regular functions ✓(coming soon)
non-commutative affine first-order regular fn. ✓?
linear/affine with additives regular functions ✓
parsimonious polyregular ??
simply typed variant of CPDA??? ???

+ a characterization of Str[A]→ Str as comparison-free polyregular functions
Thanks for listening!
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