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The idea

Suppose the programs of type T in a programming language P
all compute languages, something like T = String — Bool.
(Or functions String — String.)

What class of languages? Depends on P and T.
Many theoretical PLs not Turing-complete, especially typed \-calculi
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Suppose the programs of type T in a programming language P
all compute languages, something like T = String — Bool.
(Or functions String — String.)

What class of languages? Depends on P and T.

Many theoretical PLs not Turing-complete, especially typed \-calculi

Implicit complexity: machine-free characterizations of complexity classes
using high-level programming languages

Big project: the same thing for automata instead of complexity

Plan

1. Alternative justification:
internal motivations from simply typed \-calculus

2. A concrete result: reqular string-to-string functions in an affine A-calculus
(4 brief mention of star-free languages vs non-commutative types)

3. Some abstract nonsense on monoidal closed categories
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Simply typed functions on Church numerals (1)

Church encodings of (unary) natural numbers:
e Nat=(0—0) —0—0

e neN~T =M f(... (fx)...): Nat with n times f
e all inhabitants of Nat are equal to some 77 up to =g,
Theorem (Schwichtenberg 1975)

The functions N — N definable by simply-typed A-terms of type Nat — Nat are the
extended polynomials (generated by 0,1, 4, x, id and ifzero).

3/100



Simply typed functions on Church numerals (1)

Church encodings of (unary) natural numbers:
e Nat=(0—0) —0—0

e ne N~ =M A f(... (fx)...): Nat with n times f

e all inhabitants of Nat are equal to some 77 up to =g,

Theorem (Schwichtenberg 1975)
The functions N — N definable by simply-typed A-terms of type Nat — Nat are the
extended polynomials (generated by 0,1, 4, x, id and ifzero).

Let's add a bit of (meta-level) polymorphism: t = Nat[A] — Nat
where Nat[A] = Nat[A/o] = (A= A) - A— A
Open question

Choose some simple type A and some term f : Nat[A] — Nat.
What functions N — N can be defined this way?
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Simply typed functions on Church numerals (2)

Take mult = An.Am.\f. n (mf) : Nat — Nat — Nat.
mult 2 : Nat — Nat can be iterated by a Nat[Nat]...

— exp2 = An.n (mult 2) T : Nat[Nat] — Nat

which cannot be iterated!
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Take mult = An.Am.\f. n (mf) : Nat — Nat — Nat.
mult 2 : Nat — Nat can be iterated by a Nat[Nat]...

— exp2 = An.n (mult 2) T : Nat[Nat] — Nat
which cannot be iterated! Smaller types, still heterogenous:
exp2 = An.n 2 : Nat[o — o] — Nat

Towers of exponentials of any fixed height Nat[T[A]] — Nat[A].
This is the fastest possible growth for simply typed A-terms.
On the other hand:

Theorem (Statman 198X)
Subtraction cannot be defined by any simply typed t : Nat[A] — Nat[B] — Nat.
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Simply typed functions on Church numerals (3)

Choose some simple type A and some term ¢ : Nat[A] — Nat.
What functions N — N can be defined this way?

Subtraction cannot be defined; some “easy” 1-variable functions,
e.g. n + |y/n], are also undefinable.

Does this even admit a satisfying answer?
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Simply typed functions on Church numerals (3)

Open question
Choose some simple type A and some term f : Nat[A] — Nat.
What functions N — N can be defined this way?

Subtraction cannot be defined; some “easy” 1-variable functions,
e.g. n + |y/n], are also undefinable.

Does this even admit a satisfying answer? There is one for predicates!
Theorem (Joly 2001)
A subset of N¥ is decidable by some t : Nat[A;] — - - - — Nat[A,] — Bool

(where Bool = 0 — 0 — 0) if and only if it is ultimately periodic.

Corollary
Ift : Nat[A] — Nat defines f; : N — N, then
X C N ultimately periodic == f; ' (X) ultimately periodic.

A not quite trivial necessary condition!
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Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = Stryq;
Church encodings of strings over alphabet > = {a, b}:
® Stryppy =(0—0) = (0—0) —0—0
e abb € {a,b}* ~ abb = M. My M\x. fu (fy (fy X)) : Strs,
More generally Strs = (0 — 0) — ... |X| times... = (0 = 0) =0 —0

Open question
Choose some simple type A and some term f : Strp[A] — Strs.
What functions I'* — ¥~ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].
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Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = Stryq;
Church encodings of strings over alphabet > = {a, b}:
® Strigpy =(0—0) = (0—=+0)—=0—0
e abb € {a,b}* ~ abb = M. My M\x. fu (fy (fy X)) : Strs,
More generally Strs = (0 — 0) — ... |X| times... = (0 = 0) =0 —0

Open question
Choose some simple type A and some term f : Strp[A] — Strs.
What functions I'* — ¥~ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

An answer for predicates [Hillebrand & Kanellakis 1996 ]

A subset of X" is decidable by some ¢ : Strs:[A] — Bool
if and only if it is a regular language.

Note: unary regular languages = ultimately periodic subsets of N
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A-definable functions are regular

Theorem (Hillebrand & Kanellakis, LICS'96)
For any type A and any simply typed A-term t : Strs[A] — Bool,
the language {w € X* | tw =p true} is reqular.

Proof by semantic evaluation.
Let [—] stand for the denotational semantics in the CCC of finite sets.

We build an automaton with finite set of states Q = [Strs[A]]
(Card(Q) depends on A), acceptation as [{](—) = [true].

tw =g true <= [tJ([w]) = [true] <= w accepted

(Proof of («): if Card([o]]) > 2 then [true] # [false]) (]

Similar ideas in higher-order model checking, e.g. Grellois & Melliés
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Towards implicit automata

Recap: in the simply typed A-calculus,
Strr[A] — Bool = regular languages; Strr[A] — Strs = ???

So what's next?
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Strr[A] — Bool = regular languages; Strr[A] — Strs = ???

So what's next? Use restricted types to:

e get an easier problem for string-to-string functions
— regular functions in an affine A-calculus
o characterize smaller classes of languages
— star-free languages (regular expressions without repetition star,
but with complementation)
using non-commutative types (functions must use their arguments
in the order that they are given in)
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A \-calculus with affine types

Typing judgments: {non-affine variables} | {affine variables} -t : A

e X\ x.f: A — Bunrestricted function
e \°x.t: A —o B affine function (at most one x in t)

Dx:Alokx:A F|lx:AFx: A
F'|A+t:A—B T|ohu:A Ix:A|A+t:B

I'|AFtu:B F'|AFXxt:A—>B
F'|AFt:A—B T|AVu:A F|A,x:A+-t:B

I'|AA -tu:B F'|AFXx.t:A—B

The above = Dual Intuitionistic Linear Logic
F|AFt:A

m when A C A': weakening rule

9/100



Church encoding with linear/affine types [Girard 1987]:

abb = X fo. Xfy. X°x. fo (fy (fy X)) = Striapy = (0 —0) = (0 —0) =0 —0
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=
fis defined by some f : Strp[A] —o Stry; in our affine A-calculus
with A purely affine, i.e. containing no *—'
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Regular functions

Church encoding with linear/affine types [Girard 1987]:

abb = X"fo. X'fo. X°x. fo (fy (fs X)) : Strapy = (0 —0) = (0 —0) - 0—0

Today's main theorem [Nguyén & P.]

f: " — X" is a reqular function
<
fis defined by some f : Strp[A] —o Stry; in our affine A-calculus
with A purely affine, i.e. containing no *—'

Regular functions are a classical topic, many equivalent definitions...

beware: sequential functions # rational functions # regular functions

One of them: copyless streaming string transducers [ Alur & Cerny 2010]
~ sounds suspiciously like affine types!
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Single-state streaming string transducers

Finite set of ¥*-valued registers e.g. R = {X, Y}

o Initial values R — X" e.g. Xinit = Yinit = €

Reolst e X :=Xa b X:=Xb
eqQister upaatce funcrion e.g. d +» —
g & & Y :=aY Y :=bY

“output function” e.g. out = XY
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Single-state streaming string transducers

o Finite set of X*-valued registers e.g. R = {X, Y}

o Initial values R — X" e.g. Xinit = Yinit = €

. . X :=Xa X:=Xb
o Register update function e.g. a b—
Y :=aY Y :=bY
e “output function” e.g. out = XY
Execution over abaa: start with
X=¢ Y=c¢
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o Initial values R — X" e.g. Xinit = Yinit = €

Recist ot X:= Xa b X:=Xb
e Register update function e.g. a =

S 4 & Y :=aY Y :=bY
e “output function” e.g. out = XY

Execution over abaa: f(abaa) = abaaaaba

X = abaa Y = aaba
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Single-state streaming string transducers

o Finite set of X*-valued registers e.g. R = {X, Y}

o Initial values R — X" e.g. Xinit = Yinit = €

Recist ot X:= Xa b X:=Xb
e Register update function e.g. a =

S 4 & Y :=aY Y :=bY
e “output function” e.g. out = XY

Execution over abaa:  f(abaa) = abaaaaba, f: w — w - reverse(w)

X = abaa Y = aaba
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Stateful streaming string transducers

SSTs can also have states: their memory is Q x (£*)* (with |Q| < o)

I X< ¢
out <y yeu out ¢ &
X < xa
aeX
y<y
B— e
Yy< ¢ H‘ X4 €

Y=y
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Stateful streaming string transducers

SSTs can also have states: their memory is Q x (£*)* (with |Q| < o)

A~ ” X< €
out <y yeyx out < €
X < xa X < ax
aey
y<y y<y
X<+ €
Y+

Each register appears at most once on RHS of :=

(for each fixed input letter, at most once among all the associated :=)

Intuition: memory M = Q® £* ® ... ® ¥, transitions M — M
Q=21@...d1,concat : T¥ ® T* —o T¥)
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Categorical automata

A framework for “single-pass” automata [ Colcombet & Petrisan 2017]

e internal memory = object of a category C

transitions = morphisms (and [letter — transition| = functor 7= — C)

aex

e DFA = automata over the category of finite sets

Copyless SSTs ~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)q

13/100



Categorical automata

A framework for “single-pass” automata [ Colcombet & Petrisan 2017]
internal memory = object of a category C

transitions = morphisms (and [letter — transition| = functor 7= — C)

aex

e DFA = automata over the category of finite sets

e Copyless SSTs =~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)q

Definition of the free finite coproduct completion Cg

e Objects: formal finite sums €, .; Cu of objects of C

e Morphisms: Home,, (B, Cu, @, Ds) = IT, >, Home (Cu, Do)

13/100



Categorical automata

A framework for “single-pass” automata [ Colcombet & Petrisan 2017]
internal memory = object of a category C

transitions = morphisms (and [letter — transition| = functor 7= — C)

aex

e DFA = automata over the category of finite sets

e Copyless SSTs =~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)q

Definition of the free finite coproduct completion Cg

e Objects: formal finite sums €, .; Cu of objects of C
formally pairs (U, (Cy)ucu), U a finite set, C,, € Cy

e Morphisms: Home,, (B, Cu, @, Ds) = IT, >, Home (Cu, Do)

13/100



Categorical automata

A framework for “single-pass” automata [ Colcombet & Petrisan 2017]
internal memory = object of a category C

transitions = morphisms (and [letter — transition| = functor 7= — C)

aex

e DFA = automata over the category of finite sets

e Copyless SSTs =~ start from a category R of copyless register updates
+ add states by free finite coproduct completion (—)q

Definition of the free finite coproduct completion Cg
e Objects: formal finite sums €, .; Cu of objects of C
formally pairs (U, (Cy)ucu), U a finite set, C,, € Cy

e Morphisms: Home,, (6D, Cu, @, Dy) = [1, 3, Home (Cy, Do)
o Z/.Hu Hom¢ (an Df(u))
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Compiling into higher-order transducers

Transductions definable in affine \-calculus can be turned into automata over
a category L of purely affine A\-terms (w/ constf : 0 — o forc € %)

Claim

L-automata compute the same string functions as A\-terms.

Proof: syntactic analysis of normal forms

14/100



Compiling into higher-order transducers

Transductions definable in affine \-calculus can be turned into automata over
a category L of purely affine A\-terms (w/ constf : 0 — o forc € %)

Claim

L-automata compute the same string functions as A\-terms.

Proof: syntactic analysis of normal forms

14/100



Compiling into higher-order transducers

Transductions definable in affine \-calculus can be turned into automata over
a category L of purely affine A\-terms (w/ constf : 0 — o forc € %)

Claim

L-automata compute the same string functions as A\-terms.

Proof: syntactic analysis of normal forms

Proof strategy for affinely \-definable —> regular function
Define a functor £ — Rg preserving enough structure

Useful fact: there is a canonical functor from £ to any affine symmetric
monoidal closed category

Unfortunately Rg is not monoidal closed...
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Toward a monoidal closed category

So far, we encountered:

e L[: category of purely affine A\-terms (w/ constf. : 0 — 0 forc € %)
e R: category of finite sets of registers and copyless assignments
e Rg: free finite coproduct completion of the latter (add states)
Now consider:
e the free finite product completion: C — Cg, = ((CP)g)F
Objects: formal products &7, Cx
e the composite completion C — Cg¢, — (Cg)a
Objects: formal sums of products @, &, Cux

similar to de Paiva's Dialectica categories DC, think 3u. Vx. ¢(u, x)

Goals toward our main theorem

o Structure: (Rg )e has finite products and is monoidal closed

o Conservativity: (Rg )g-automata and Re-automata are equivalent
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Structure (1): generic remarks (Cg, )

Tensorial products can be lifted to the completions
e The new tensorial products satisfy the additional laws
ARB&C)=(A®B)&(A®C) ARB®C)=(A®B)®(A®C)
e In particular, (Cg.)g has distributive cartesian products
A&BaC)=(A&B)® (A&C)

When embedded in (co)presheafs 2 Day convolution
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Structure (1): generic remarks (Cg, )

Tensorial products can be lifted to the completions
e The new tensorial products satisfy the additional laws
AR B&C)=(A®B)& (A®C) AR(BeC)=(AR®B)®d(AR®C)
e In particular, (Cg.)g has distributive cartesian products
A&BaC)=(A&B)® (A&C)
When embedded in (co)presheafs = Day convolution

Lemma ((folklore observation about dependent Dialectica categories?))

If C is symmetric monoidal and (Cg.)e has the internal homs A — B
forall A,B € C, then (Cg)q is symmetric monoidal closed.

(B&)~ (D& - &D& D5

uel xeXy veEV YEYy uel eV yeYy xeXy,
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Structure (2): combinatorics on strings

Lemma
R has the internal homs A — B for all A, B € R.

The construction appears in the original SST paper [Alur & Cerny 2010]
without the categorical vocabulary.

Y :=ba = Z3

X :=abXcY X = Z1XZY
~»  shape + parameters Z; =ab, ...

copyless SST = finitely many shapes: use as states; registers for params
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Structure (2): combinatorics on strings

Re has the internal homs A —o B forall A,B € R.

The construction appears in the original SST paper [Alur & Cerny 2010]
without the categorical vocabulary.

X :=abXcY X = Z1XZY
~+  shape + parameters Z; =ab, ...
Y :=ba Y:i=12;3

copyless SST = finitely many shapes: use as states; registers for params

(Rg)e is symmetric monoidal closed (and almost affine).
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Conservativity

(Cs) @ automata are equivalent to non-deterministic Cq automata.

A determinization theorem is enough to conclude

(Rg)@-automata are equivalent to standard SSTs.

e Determinization already known [ Alur & Deshmuk 2011]
e Argument implicitly based on monoidal closure!

[o SEE——e TR ) n
o a 3
s [ 0 a o Ds
o o
o Dy
a a
e

For any monoidal category C, if Cg has all the internal homsets A —o B for
A, B € C, then (Cg)e-automata and Cg-automata are equivalent.

i.e., Cq-automata can be determinized
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I have just discussed

definable by some ¢ : Strp[A] —o Strs

lar string function <=
reguiar stng tunction in affine ILL with A purely affine
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Main results

I have just discussed

definable by some f : Strp[A] —o Strs

lar string function <
reguiar string function in affine ILL with A purely affine

Using similar tools, analogous result for trees over ranked alphabets

definable by some ¢ : Treep[A] —o Treey
in affine ILL with A purely affine

regular tree function <=
Specific ingredients:

o Bottom-up categorical tree automata over SMCs
o A comparison of C¢ with a kind of coherence completion similar to [Hu, Joyal]
o A reasonably elegant multicategory of tree registers transition
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Additive connectives: why (not)?

Additives are required for trees

Copyless streaming tree transducers C regular tree functions;
conjectured to be a strict inclusion.

To recover an equality: ad-hoc relaxation called “single use restriction”.
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Additive connectives: why (not)?

Additives are required for trees

Copyless streaming tree transducers C regular tree functions;
conjectured to be a strict inclusion.

To recover an equality: ad-hoc relaxation called “single use restriction”.

Principled explanation via linear logic:
just allow the additive conjunction in the internal memory!

eg. M=0Q®TX X &X)= Dol ® (2" &X7)

String functions without additive
e Still an equivalence, but non-trivial (solution via Krohn--Rhodes)
o Allows Gol-style interpretation in categories of diagrams

~> Interpretation as bidirectional automata (w/o registers)

Planar diagrams
~>

FO fragments
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Conclusion

Today:

e Church encodings lead to connections with automata
o Additive connectives are important for trees
e Application of categorical semantics (Dialectica, Gol)

Strs; [A] —o Bool with A affine (adapted as needed):

A-calculus | languages || status

simply typed regular v/ [Hillebrand & Kanellakis 1996]
linear or affine regular v

non-commutative linear or affine | star-free v

Strp[A] —o Stry, with A affine (adapted as needed):

A-calculus transducers | | status

linear (without additives) nothing interesting (?) v (?)

affine regular functions v (coming soon)
non-commutative affine first-order regular fn. v?

linear/affine with additives regular functions v

parsimonious polyregular 2?2

simply typed variant of CPDA??? 2?7
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parsimonious polyregular 2?2
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+ a characterization of Str[A] — Str as comparison-free polyregular functions

Thanks for listening! 1,100



