Implicit automata in typed λ -calculi

Cécilia Pradic Oxford University j.w.w. Nguyễn Lê Thành Dũng (a.k.a. Tito) (Paris 13)

Irif, December 16th, 2020

The idea

Suppose the programs of type *T* in a programming language \mathcal{P} all compute *languages*, something like *T* = String \rightarrow Bool. (Or *functions* String \rightarrow String.)

What class of languages? Depends on \mathcal{P} and T. Many theoretical PLs *not* Turing-complete, especially *typed* λ -calculi

The idea

Suppose the programs of type *T* in a programming language \mathcal{P} all compute *languages*, something like *T* = String \rightarrow Bool. (Or *functions* String \rightarrow String.)

What class of languages? Depends on \mathcal{P} and T. Many theoretical PLs *not* Turing-complete, especially *typed* λ -calculi Implicit complexity: machine-free characterizations of complexity classes using high-level programming languages

Big project: the same thing for automata instead of complexity

The idea

Suppose the programs of type *T* in a programming language \mathcal{P} all compute *languages*, something like *T* = String \rightarrow Bool. (Or *functions* String \rightarrow String.)

What class of languages? Depends on \mathcal{P} and T. Many theoretical PLs *not* Turing-complete, especially *typed* λ -calculi Implicit complexity: machine-free characterizations of complexity classes using high-level programming languages

Big project: the same thing for automata instead of complexity

Plan

- 1. Alternative justification: internal motivations from *simply typed* λ *-calculus*
- A concrete result: regular string-to-string functions in an affine λ-calculus (+ brief mention of star-free languages vs non-commutative types)
- 3. Some abstract nonsense on monoidal closed categories

Church encodings of (unary) natural numbers:

- $Nat = (o \rightarrow o) \rightarrow o \rightarrow o$
- $n \in \mathbb{N} \rightsquigarrow \overline{n} = \lambda f. \ \lambda x. \ f(\dots, (f x) \dots) : \text{Nat with } n \text{ times } f$
- all inhabitants of Nat are equal to some \overline{n} up to $=_{\beta\eta}$

Theorem (Schwichtenberg 1975)

The functions $\mathbb{N} \to \mathbb{N}$ definable by simply-typed λ -terms of type Nat \to Nat are the extended polynomials (generated by 0, 1, +, ×, id and ifzero).

Church encodings of (unary) natural numbers:

- Nat = $(o \rightarrow o) \rightarrow o \rightarrow o$
- $n \in \mathbb{N} \rightsquigarrow \overline{n} = \lambda f. \ \lambda x. \ f(\dots, (f x) \dots) : \text{Nat with } n \text{ times } f$
- all inhabitants of Nat are equal to some \overline{n} up to $=_{\beta\eta}$

Theorem (Schwichtenberg 1975)

The functions $\mathbb{N} \to \mathbb{N}$ definable by simply-typed λ -terms of type Nat \to Nat are the extended polynomials (generated by 0, 1, +, ×, id and ifzero).

Let's add a bit of (meta-level) polymorphism: $t = Nat[A] \rightarrow Nat$ where $Nat[A] = Nat[A/o] = (A \rightarrow A) \rightarrow A \rightarrow A$

Open question

Choose some simple type *A* and some term $t : Nat[A] \rightarrow Nat$. What functions $\mathbb{N} \rightarrow \mathbb{N}$ can be defined this way?

 $\longrightarrow \exp 2 = \lambda n. n (\operatorname{mult} \overline{2}) \overline{1} : \operatorname{Nat}[\operatorname{Nat}] \rightarrow \operatorname{Nat}$

which cannot be iterated!

 $\longrightarrow \exp 2 = \lambda n. n (\operatorname{mult} \overline{2}) \overline{1} : \operatorname{Nat}[\operatorname{Nat}] \rightarrow \operatorname{Nat}$

which cannot be iterated! Smaller types, still heterogenous:

 $\exp 2 = \lambda n. n \overline{2} : \operatorname{Nat}[o \to o] \to \operatorname{Nat}$

 $\longrightarrow \exp 2 = \lambda n. n (\operatorname{mult} \overline{2}) \overline{1} : \operatorname{Nat}[\operatorname{Nat}] \rightarrow \operatorname{Nat}$

which cannot be iterated! Smaller types, still heterogenous:

 $\exp 2 = \lambda n. n \overline{2} : \operatorname{Nat}[o \to o] \to \operatorname{Nat}$

Towers of exponentials of *any fixed height* $Nat[T[A]] \rightarrow Nat[A]$. This is the fastest possible growth for simply typed λ -terms.

 $\longrightarrow \exp 2 = \lambda n. n (\operatorname{mult} \overline{2}) \overline{1} : \operatorname{Nat}[\operatorname{Nat}] \rightarrow \operatorname{Nat}$

which cannot be iterated! Smaller types, still heterogenous:

 $\exp 2 = \lambda n. n \overline{2} : \operatorname{Nat}[o \to o] \to \operatorname{Nat}$

Towers of exponentials of *any fixed height* $Nat[T[A]] \rightarrow Nat[A]$. This is the fastest possible growth for simply typed λ -terms.

On the other hand:

Theorem (Statman 198X)

Subtraction cannot be defined by any simply typed $t : Nat[A] \rightarrow Nat[B] \rightarrow Nat$.

Simply typed functions on Church numerals (3)

Open question

Choose some simple type *A* and some term $t : Nat[A] \rightarrow Nat$. What functions $\mathbb{N} \rightarrow \mathbb{N}$ can be defined this way?

Subtraction cannot be defined; some "easy" 1-variable functions, e.g. $n \mapsto \lfloor \sqrt{n} \rfloor$, are also undefinable.

Does this even admit a satisfying answer?

Simply typed functions on Church numerals (3)

Open question

Choose some simple type *A* and some term $t : Nat[A] \rightarrow Nat$. What functions $\mathbb{N} \rightarrow \mathbb{N}$ can be defined this way?

Subtraction cannot be defined; some "easy" 1-variable functions, e.g. $n \mapsto \lfloor \sqrt{n} \rfloor$, are also undefinable.

Does this even admit a satisfying answer? There is one for predicates!

Theorem (Joly 2001)

A subset of \mathbb{N}^k is decidable by some $t : \mathsf{Nat}[A_1] \to \cdots \to \mathsf{Nat}[A_n] \to \mathsf{Bool}$ (where $\mathsf{Bool} = o \to o \to o$) if and only if it is ultimately periodic.

Simply typed functions on Church numerals (3)

Open question

Choose some simple type *A* and some term $t : Nat[A] \rightarrow Nat$. What functions $\mathbb{N} \rightarrow \mathbb{N}$ can be defined this way?

Subtraction cannot be defined; some "easy" 1-variable functions, e.g. $n \mapsto \lfloor \sqrt{n} \rfloor$, are also undefinable.

Does this even admit a satisfying answer? There is one for predicates!

Theorem (Joly 2001)

A subset of \mathbb{N}^k is decidable by some $t : \mathsf{Nat}[A_1] \to \cdots \to \mathsf{Nat}[A_n] \to \mathsf{Bool}$ (where $\mathsf{Bool} = o \to o \to o$) if and only if it is ultimately periodic.

Corollary

If $t : \operatorname{Nat}[A] \to \operatorname{Nat} defines f_t : \mathbb{N} \to \mathbb{N}$, then $X \subseteq \mathbb{N}$ ultimately periodic $\Longrightarrow f_t^{-1}(X)$ ultimately periodic.

A not quite trivial necessary condition!

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = $Str_{\{1\}}$

Church encodings of *strings* over alphabet $\Sigma = \{a, b\}$:

•
$$\mathsf{Str}_{\{a,b\}} = (o \to o) \to (o \to o) \to o \to o$$

•
$$abb \in \{a, b\}^* \rightsquigarrow \overline{abb} = \lambda f_a. \lambda f_b. \lambda x. f_a (f_b (f_b x)) : \mathsf{Str}_{\Sigma}$$

More generally $\mathsf{Str}_{\Sigma} = (o \to o) \to \dots |\Sigma|$ times $\dots \to (o \to o) \to o \to o$

Open question

Choose some simple type *A* and some term $t : \text{Str}_{\Gamma}[A] \to \text{Str}_{\Sigma}$. What functions $\Gamma^* \to \Sigma^*$ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = $Str_{\{1\}}$

Church encodings of *strings* over alphabet $\Sigma = \{a, b\}$:

•
$$\mathsf{Str}_{\{a,b\}} = (o \to o) \to (o \to o) \to o \to o$$

•
$$abb \in \{a, b\}^* \rightsquigarrow \overline{abb} = \lambda f_a. \lambda f_b. \lambda x. f_a (f_b (f_b x)) : \mathsf{Str}_{\Sigma}$$

More generally $\mathsf{Str}_{\Sigma} = (o \to o) \to \dots |\Sigma|$ times $\dots \to (o \to o) \to o \to o$

Open question

Choose some simple type *A* and some term $t : \operatorname{Str}_{\Gamma}[A] \to \operatorname{Str}_{\Sigma}$. What functions $\Gamma^* \to \Sigma^*$ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

An answer for predicates [Hillebrand & Kanellakis 1996]

A subset of Σ^* is decidable by some $t : Str_{\Sigma}[A] \to Bool$ if and only if it is a *regular language*.

Note: unary regular languages \cong ultimately periodic subsets of \mathbb{N}

$\lambda\text{-definable functions are regular}$

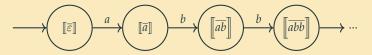
Theorem (Hillebrand & Kanellakis, LICS'96)

For any type A and any simply typed λ -term $t : Str_{\Sigma}[A] \to Bool$, the language { $w \in \Sigma^* \mid t \overline{w} =_{\beta} true$ } is regular.

Proof by semantic evaluation.

Let [-] stand for the denotational semantics in the *CCC of finite sets*.

We build an automaton with *finite* set of states $Q = \llbracket \operatorname{Str}_{\Sigma}[A] \rrbracket$ (Card(Q) depends on A), acceptation as $\llbracket t \rrbracket(-) = \llbracket \operatorname{true} \rrbracket$.



 $t \,\overline{w} =_{\beta} \text{true} \iff \llbracket t \rrbracket (\llbracket \overline{w} \rrbracket) = \llbracket \text{true} \rrbracket \iff w \text{ accepted}$

 $(Proof of (\Leftarrow): if Card(\llbracket o \rrbracket) \ge 2 then \llbracket true \rrbracket \neq \llbracket false \rrbracket)$

Similar ideas in higher-order model checking, e.g. Grellois & Melliès

Recap: in the simply typed λ -calculus, Str_{Γ}[A] \rightarrow Bool = regular languages; Str_{Γ}[A] \rightarrow Str_{Σ} = ??? So what's next? Recap: in the simply typed λ -calculus, Str_{Γ}[A] \rightarrow Bool = regular languages; Str_{Γ}[A] \rightarrow Str_{Σ} = ???

So what's next? Use restricted types to:

• get an easier problem for string-to-string functions

Recap: in the simply typed λ -calculus, Str_{Γ}[A] \rightarrow Bool = regular languages; Str_{Γ}[A] \rightarrow Str_{Σ} = ???

So what's next? Use restricted types to:

• get an easier problem for string-to-string functions

 characterize smaller classes of languages
→ star-free languages (regular expressions without repetition star, but with complementation) using non-commutative types (functions must use their arguments in the order that they are given in) (not covered here) Recap: in the simply typed λ -calculus,

 $\mathsf{Str}_{\Gamma}[A] \to \mathsf{Bool} = \operatorname{regular} \operatorname{languages}; \mathsf{Str}_{\Gamma}[A] \to \mathsf{Str}_{\Sigma} = ???$

So what's next? Use restricted types to:

get an easier problem for string-to-string functions
→ regular functions in an affine λ-calculus

 characterize smaller classes of languages
→ star-free languages (regular expressions without repetition star, but with complementation) using non-commutative types (functions must use their arguments in the order that they are given in) (not covered here)

A λ -calculus with affine types

Typing judgments: {non-affine variables} | {affine variables} $\vdash t : A$

- $\lambda^{\rightarrow} x. t : A \rightarrow B$ unrestricted function
- $\lambda^{\circ} x. t : A \multimap B$ affine function (at most one *x* in *t*)

The above = Dual Intuitionistic Linear Logic

$$\frac{\Gamma \mid \Delta \vdash t : A}{\Gamma \mid \Delta' \vdash t : A} \text{ when } \Delta \subseteq \Delta' \text{: weakening rule}$$

Regular functions

Church encoding with linear/affine types [Girard 1987]:

 $\overline{abb} = \lambda^{\rightarrow} f_a. \ \lambda^{\rightarrow} f_b. \ \lambda^{\circ} x. \ f_a \ (f_b \ (f_b \ x)) : \mathsf{Str}_{\{a,b\}} = (o \multimap o) \to (o \multimap o) \to o \multimap o$

Regular functions

Church encoding with linear/affine types [Girard 1987]:

 $\overline{abb} = \lambda^{\rightarrow} f_a. \ \lambda^{\rightarrow} f_b. \ \lambda^{\circ} x. \ f_a \ (f_b \ (f_b \ x)) : \mathsf{Str}_{\{a,b\}} = (o \multimap o) \to (o \multimap o) \to o \multimap o$

Today's main theorem [Nguyễn & P.]

 $f: \Gamma^* \to \Sigma^*$ is a regular function \iff

f is defined by some $t : \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in our affine λ -calculus with A purely affine, i.e. containing no ` \rightarrow '

Regular functions

Church encoding with linear/affine types [Girard 1987]:

 $\overline{abb} = \lambda^{\rightarrow} f_a. \ \lambda^{\rightarrow} f_b. \ \lambda^{\circ} x. \ f_a \ (f_b \ (f_b \ x)) : \mathsf{Str}_{\{a,b\}} = (o \multimap o) \to (o \multimap o) \to o \multimap o$

Today's main theorem [Nguyễn & P.] $f: \Gamma^* \to \Sigma^* \text{ is a regular function}$ \Leftrightarrow $f \text{ is defined by some } t: \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma} \text{ in our affine } \lambda\text{-calculus}$ with A purely affine, i.e. containing no `-->'

Regular functions are a classical topic, many equivalent definitions... beware: sequential functions \neq rational functions \neq regular functions

One of them: **copyless** *streaming string transducers* [Alur & Černý 2010] → sounds suspiciously like affine types!

- Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$
- Initial values $R \to \Sigma^*$ e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases} \qquad b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$$

• "output function" e.g. out = *XY*

- Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$
- Initial values $R \to \Sigma^*$ e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases} \qquad b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$$

Execution over abaa: start with

$$X = \varepsilon \qquad Y = \varepsilon$$

- Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$
- Initial values $R \to \Sigma^*$ e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$

• "output function" e.g. out = *XY*

$$X = a$$
 $Y = a$

- Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$
- Initial values $R \to \Sigma^*$ e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases} \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$$

$$X = ab$$
 $Y = ba$

- Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$
- Initial values $R \to \Sigma^*$ e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases} \qquad b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$$

• "output function" e.g. out = *XY*

$$X = aba$$
 $Y = aba$

- Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$
- Initial values $R \to \Sigma^*$ e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases} \qquad b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$$

• "output function" e.g. out = *XY*

$$X = abaa$$
 $Y = aaba$

- Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$
- Initial values $R \to \Sigma^*$ e.g. $X_{init} = Y_{init} = \varepsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases} \qquad b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$$

• "output function" e.g. **out** = *XY*

Execution over *abaa*: f(abaa) = abaaaaba

$$X = abaa \qquad Y = aaba$$

- Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$
- Initial values $R \to \Sigma^*$ e.g. $X_{init} = Y_{init} = \varepsilon$

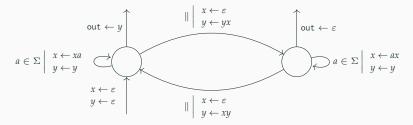
• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases} \quad b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$$

Execution over *abaa*: $f(abaa) = abaaaaba, f: w \mapsto w \cdot reverse(w)$

$$X = abaa \qquad Y = aaba$$

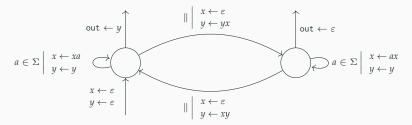
Stateful streaming string transducers

SSTs can also have *states*: their memory is $Q \times (\Sigma^*)^R$ (with $|Q| < \infty$)



Stateful streaming string transducers

SSTs can also have *states*: their memory is $Q \times (\Sigma^*)^R$ (with $|Q| < \infty$)



Copylessness restriction

Each register appears *at most once* on RHS of :=

(for each fixed input letter, at most once among all the associated :=)

Intuition: memory $M = Q \otimes \Sigma^* \otimes \ldots \otimes \Sigma^*$, transitions $M \multimap M$ $(Q \cong 1 \oplus \ldots \oplus 1, \text{concat} : \Sigma^* \otimes \Sigma^* \multimap \Sigma^*)$

Categorical automata

A framework for "single-pass" automata [Colcombet & Petrişan 2017]

- internal memory = object of a *category* C
- transitions = morphisms (and [letter \mapsto transition] = functor $\mathcal{T}_{\Sigma} \to \mathcal{C}$)

$$\mathcal{T}_{\Sigma} = \bullet \xrightarrow{a \in \Sigma} \bullet \longrightarrow \bullet \quad \longrightarrow \quad \mathcal{C}$$

- DFA = automata over the category of finite sets
- Copyless SSTs ≈ start from a category R of copyless register updates + add states by *free finite coproduct completion* (-)_⊕

Categorical automata

A framework for "single-pass" automata [Colcombet & Petrişan 2017]

- internal memory = object of a *category* C
- transitions = morphisms (and [letter \mapsto transition] = functor $\mathcal{T}_{\Sigma} \rightarrow \mathcal{C}$)

$$\mathcal{T}_{\Sigma} = \bullet \xrightarrow{a \in \Sigma} \bullet \longrightarrow \bullet \quad \longrightarrow \quad \mathcal{C}$$

- DFA = automata over the category of finite sets
- Copyless SSTs \approx start from a category \mathcal{R} of copyless register updates + add states by *free finite coproduct completion* $(-)_{\oplus}$

Definition of the free finite coproduct completion \mathcal{C}_\oplus

- **Objects:** formal finite sums $\bigoplus_{u \in U} C_u$ of objects of C
- Morphisms: $\operatorname{Hom}_{\mathcal{C}_{\bigoplus}} \left(\bigoplus_{u} C_{u}, \bigoplus_{v} D_{v} \right) = \prod_{u} \sum_{v} \operatorname{Hom}_{\mathcal{C}} \left(C_{u}, D_{v} \right)$

Categorical automata

A framework for "single-pass" automata [Colcombet & Petrişan 2017]

- internal memory = object of a *category* C
- transitions = morphisms (and [letter \mapsto transition] = functor $\mathcal{T}_{\Sigma} \to \mathcal{C}$)

$$\mathcal{T}_{\Sigma} = \bullet \xrightarrow{a \in \Sigma} \bullet \longrightarrow \bullet \quad \longrightarrow \quad \mathcal{C}$$

- DFA = automata over the category of finite sets
- Copyless SSTs \approx start from a category \mathcal{R} of copyless register updates + add states by *free finite coproduct completion* $(-)_{\oplus}$

Definition of the free finite coproduct completion \mathcal{C}_\oplus

- **Objects:** formal finite sums $\bigoplus_{u \in U} C_u$ of objects of Cformally pairs $(U, (C_u)_{u \in U}), U$ a finite set, $C_u \in C_0$
- Morphisms: $\operatorname{Hom}_{\mathcal{C}_{\bigoplus}} \left(\bigoplus_{u} C_{u}, \bigoplus_{v} D_{v} \right) = \prod_{u} \sum_{v} \operatorname{Hom}_{\mathcal{C}} \left(C_{u}, D_{v} \right)$

Categorical automata

A framework for "single-pass" automata [Colcombet & Petrişan 2017]

- internal memory = object of a *category* C
- transitions = morphisms (and [letter \mapsto transition] = functor $\mathcal{T}_{\Sigma} \rightarrow \mathcal{C}$)

$$\mathcal{T}_{\Sigma} = \bullet \xrightarrow{a \in \Sigma} \bullet \longrightarrow \bullet \quad \longrightarrow \quad \mathcal{C}$$

- DFA = automata over the category of finite sets
- Copyless SSTs \approx start from a category \mathcal{R} of copyless register updates + add states by *free finite coproduct completion* $(-)_{\oplus}$

Definition of the free finite coproduct completion \mathcal{C}_\oplus

- **Objects:** formal finite sums $\bigoplus_{u \in U} C_u$ of objects of Cformally pairs $(U, (C_u)_{u \in U}), U$ a finite set, $C_u \in C_0$
- Morphisms: $\operatorname{Hom}_{\mathcal{C}_{\oplus}} \left(\bigoplus_{u} C_{u}, \bigoplus_{v} D_{v} \right) = \prod_{u} \sum_{v} \operatorname{Hom}_{\mathcal{C}} \left(C_{u}, D_{v} \right)$

 $\cong \sum_{f} \prod_{u} \operatorname{Hom}_{\mathcal{C}} (C_{u}, D_{f(u)})$

Compiling into higher-order transducers

Transductions definable in affine λ -calculus can be turned into automata over a category \mathcal{L} of purely affine λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)

Claim

 \mathcal{L} -automata compute the same string functions as λ -terms.

Proof: syntactic analysis of normal forms

Compiling into higher-order transducers

Transductions definable in affine λ -calculus can be turned into automata over a category \mathcal{L} of purely affine λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)

Claim

 \mathcal{L} -automata compute the same string functions as λ -terms.

Proof: syntactic analysis of normal forms

Compiling into higher-order transducers

Transductions definable in affine λ -calculus can be turned into automata over a category \mathcal{L} of purely affine λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)

Claim

 \mathcal{L} -automata compute the same string functions as λ -terms.

Proof: syntactic analysis of normal forms

Proof strategy for affinely λ **-definable** \implies **regular function**

Define a *functor* $\mathcal{L} \to \mathcal{R}_{\oplus}$ preserving enough structure

Useful fact: there is a canonical functor from \mathcal{L} to any *affine symmetric monoidal closed category*

Unfortunately R_{\oplus} is **not** monoidal closed...

So far, we encountered:

- \mathcal{L} : category of purely affine λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)
- \mathcal{R} : category of finite sets of registers and copyless assignments
- \mathcal{R}_{\oplus} : free finite coproduct completion of the latter (add states)

Now consider:

• the free finite *product* completion: $\mathcal{C} \mapsto \mathcal{C}_{\&} = ((\mathcal{C}^{op})_{\oplus})^{op}$

Objects: formal products $\&_x C_x$

• the composite completion $\mathcal{C} \mapsto \mathcal{C}_{\&} \mapsto (\mathcal{C}_{\&})_{\oplus}$

Objects: formal sums of products $\bigoplus_{u} \&_{x} C_{u,x}$

similar to de Paiva's *Dialectica* categories **DC**, think $\exists u. \forall x. \varphi(u, x)$

Goals toward our main theorem

- Structure: $(\mathcal{R}_{\&})_{\oplus}$ has finite products and is monoidal closed
- Conservativity: $(\mathcal{R}_{\&})_{\oplus}$ -automata and \mathcal{R}_{\oplus} -automata are equivalent

Structure (1): generic remarks $(\mathcal{C}_{\&})_{\oplus}$

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

 $A \otimes (B \& C) \equiv (A \otimes B) \& (A \otimes C) \qquad A \otimes (B \oplus C) \equiv (A \otimes B) \oplus (A \otimes C)$

• In particular, $(\mathcal{C}_{\&})_{\oplus}$ has distributive cartesian products

 $A \& (B \oplus C) \equiv (A \& B) \oplus (A \& C)$

When embedded in (co) presheafs \cong Day convolution

Structure (1): generic remarks $(\mathcal{C}_{\&})_{\oplus}$

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

 $A \otimes (B \& C) \equiv (A \otimes B) \& (A \otimes C) \qquad A \otimes (B \oplus C) \equiv (A \otimes B) \oplus (A \otimes C)$

• In particular, $(\mathcal{C}_{\&})_{\oplus}$ has distributive cartesian products

 $A \& (B \oplus C) \equiv (A \& B) \oplus (A \& C)$

When embedded in (co) presheafs \cong Day convolution

Lemma ((folklore observation about dependent Dialectica categories?))

If C is symmetric monoidal and $(C_{\&})_{\oplus}$ has the internal homs $A \multimap B$ for all $A, B \in C$, then $(C_{\&})_{\oplus}$ is symmetric monoidal closed.

$$\left(\bigoplus_{u\in U} \bigotimes_{x\in X_u} A_x\right) \multimap \left(\bigoplus_{v\in V} \bigotimes_{y\in Y_v} B_y\right) = \bigotimes_{u\in U} \bigoplus_{v\in V} \bigotimes_{y\in Y_v} \bigoplus_{x\in X_u} A_x \multimap B_y$$

Lemma

 \mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.

The construction appears in the original SST paper [Alur & Černý 2010] without the categorical vocabulary.

$$\begin{cases} X := abXcY \\ Y := ba \end{cases} \longrightarrow \text{ shape } \begin{cases} X := Z_1XZ_2Y \\ Y := Z_3 \end{cases} + \text{ parameters } Z_1 = ab, \dots \end{cases}$$

copyless SST \implies finitely many shapes: use as states; registers for params

Lemma

 \mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.

The construction appears in the original SST paper [Alur & Černý 2010] without the categorical vocabulary.

$$\begin{cases} X := abXcY \\ Y := ba \end{cases} \longrightarrow \text{ shape } \begin{cases} X := Z_1XZ_2Y \\ Y := Z_3 \end{cases} + \text{ parameters } Z_1 = ab, \dots \end{cases}$$

 $\mathit{copyless}\ \mathrm{SST} \implies \mathit{finitely}\ \mathrm{many}\ \mathrm{shapes:}\ \mathrm{use}\ \mathrm{as}\ \mathrm{states;}\ \mathrm{registers}\ \mathrm{for}\ \mathrm{params}$

Conclusion

 $(\mathcal{R}_{\&})_{\oplus}$ is symmetric monoidal closed (and almost affine).

Conservativity

Lemma

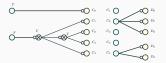
 $(\mathcal{C}_{\&})_{\oplus}$ automata are equivalent to non-deterministic \mathcal{C}_{\oplus} automata.

A determinization theorem is enough to conclude

Conservativity

 $(\mathcal{R}_{\&})_{\oplus}$ -automata are equivalent to standard SSTs.

- Determinization already known [Alur & Deshmuk 2011]
- Argument implicitly based on monoidal closure!



Theorem

For any monoidal category C, if C_{\oplus} has all the internal homsets $A \multimap B$ for $A, B \in C$, then $(C_{\&})_{\oplus}$ -automata and C_{\oplus} -automata are equivalent.

i.e., $\mathcal{C}_\oplus\text{-}automata$ can be determinized

Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function \iff

definable by some $t : \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in affine ILL with A purely affine

Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function \iff

definable by some $t : \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in affine ILL with A purely affine

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn & P.]

regular *tree* function \iff

definable by some t : $Tree_{\Gamma}[A] \multimap Tree_{\Sigma}$ in affine ILL with A purely affine

Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function \iff

definable by some $t : \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in affine ILL with *A* purely affine

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn & P.]

regular *tree* function \iff definable by some $t : \mathsf{Tree}_{\Gamma}[A] \multimap \mathsf{Tree}_{\Sigma}$ in affine ILL with A purely affine

Specific ingredients:

- Bottom-up categorical tree automata over SMCs
- A comparison of $C_{\&}$ with a kind of *coherence completion* similar to [Hu, Joyal]
- A reasonably elegant multicategory of tree registers transition

Additive connectives: why (not)?

Additives are required for trees

Copyless streaming *tree* transducers ⊂ regular *tree* functions;

conjectured to be a *strict inclusion*.

To recover an equality: ad-hoc relaxation called "single use restriction".

Additive connectives: why (not)?

Additives are required for trees

Copyless streaming *tree* transducers \subset regular *tree* functions; conjectured to be a *strict inclusion*.

To recover an equality: ad-hoc relaxation called "single use restriction".

Principled explanation via linear logic: just allow the *additive conjunction* in the internal memory!

e.g.
$$M = Q \otimes \Sigma^* \otimes (\Sigma^* \& \Sigma^*) = \bigoplus_{q \in Q} \Sigma^* \otimes (\Sigma^* \& \Sigma^*)$$

Additive connectives: why (not)?

Additives are required for trees

Copyless streaming *tree* transducers \subset regular *tree* functions;

conjectured to be a *strict inclusion*.

To recover an equality: ad-hoc relaxation called "single use restriction".

Principled explanation via linear logic: just allow the *additive conjunction* in the internal memory!

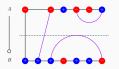
e.g.
$$M = Q \otimes \Sigma^* \otimes (\Sigma^* \& \Sigma^*) = \bigoplus_{q \in Q} \Sigma^* \otimes (\Sigma^* \& \Sigma^*)$$

String functions without additive

• Still an equivalence, but non-trivial

(solution via Krohn--Rhodes)

- Allows GoI-style interpretation in categories of diagrams
- → Interpretation as bidirectional automata (w/o registers)



Planar diagrams ↔ FO fragments

Conclusion

Today:

- Church encodings lead to connections with automata
- Additive connectives are important for trees
- Application of categorical semantics (Dialectica, GoI)

Broader picture

$Str_{\Sigma}[A] \longrightarrow Bool with A affine (adapted as needed):$			
λ -calculus	languages	status	
simply typed	regular	√[Hillebrand & Kanellakis 1996]	
linear or affine	regular	\checkmark	
non-commutative linear or affine	star-free	\checkmark	

 $\operatorname{Str}_{\Gamma}[A] \longrightarrow \operatorname{Str}_{\Sigma}$ with *A* affine (adapted as needed):

λ -calculus	transducers	status
linear (without additives)	nothing interesting (?)	√(?)
affine	regular functions	\checkmark (coming soon)
non-commutative affine	first-order regular fn.	√?
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

Conclusion

Today:

- Church encodings lead to connections with automata
- Additive connectives are important for trees
- Application of categorical semantics (Dialectica, GoI)

Broader picture

$\operatorname{Str}_{\Sigma}[A] \longrightarrow \operatorname{Bool}$ with A affine (adapted as needed):				
λ -calculus	languages	status		
simply typed	regular	√[Hillebrand & Kanellakis 1996]		
linear or affine	regular	\checkmark		
non-commutative linear or affine	star-free	\checkmark		

 $\operatorname{Str}_{\Gamma}[A] \longrightarrow \operatorname{Str}_{\Sigma}$ with *A* affine (adapted as needed):

λ -calculus	transducers	status	
linear (without additives)	nothing interesting (?)	√(?)	
affine	regular functions	\checkmark (coming soon)	
non-commutative affine	first-order regular fn.	√?	
linear/affine with additives	regular functions	\checkmark	
parsimonious	polyregular	??	
simply typed	variant of CPDA???	???	

+ a characterization of $Str[A] \rightarrow Str$ as comparison-free polyregular functions

Conclusion

Today:

- Church encodings lead to connections with automata
- Additive connectives are important for trees
- Application of categorical semantics (Dialectica, GoI)

Broader picture

$\operatorname{Str}_{\Sigma}[A] \longrightarrow \operatorname{Bool} \operatorname{with} A$ affine (adapted as needed):				
λ -calculus	languages	status		
simply typed	regular	✓ [Hillebrand & Kanellakis 1996]		
linear or affine	0			
linear or amine	regular	✓		
non-commutative linear or affine	star-free	\checkmark		

 $\operatorname{Str}_{\Gamma}[A] \longrightarrow \operatorname{Str}_{\Sigma}$ with *A* affine (adapted as needed):

λ -calculus	transducers	status
linear (without additives)	nothing interesting (?)	√(?)
affine	regular functions	\checkmark (coming soon)
non-commutative affine	first-order regular fn.	√?
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

+ a characterization of $Str[A] \rightarrow Str$ as comparison-free polyregular functions