Synthesizing nested relational queries from implicit specifications

Cécilia Pradic
j-w.w. Michael Benedikt (Oxford University) and Christoph Wernhard (TU Dresden)

November 10" 2022, Swansea theory seminar

1/25

Input: a logical input-output specification ¢(i,0)
Output: a program f obeying the specification

2/25

Input: a logical input-output specification ¢(i,0)
Output: a program f obeying the specification

Reasonable to constrain specifications:

2/25

Extracting programs from specifications

The general setting
Input: a logical input-output specification ¢(i, 0)
Output: a program f obeying the specification

Reasonable to constrain specifications:

o Totality: at least one output per input

e Functionality: at most one output per input

Vi.Jo0.¢(1,0)

Vi.Vo.¥o' .p(i,0) A p(i,0') = 0=0

2/25

Extracting programs from specifications and proofs

The general setting
Input: a logical input-output specification ¢(i, 0)
Output: a program f obeying the specification

Reasonable to constrain specifications:

o Totality: at least one output per input

e Functionality: at most one output per input

(4 some additional certificate)

Vi.Jo0.¢(1,0)

Vi.Vo.¥o' .p(i,0) A p(i,0') = 0=0

2/25

Extracting programs from specifications and proofs

The general setting
Input: a logical input-output specification ¢(i, 0)
Output: a program f obeying the specification

Certificates can help produce programs f:
Automatic synthesis: no additional data

(4 some additional certificate)

2/25

Extracting programs from specifications and proofs

The general setting
Input: a logical input-output specification ¢(i, 0) (+ some additional certificate)
Output: a program f obeying the specification

Certificates can help produce programs f:
Automatic synthesis: no additional data
Curry-Howard approaches: a proof of totality of ¢
» produce a refinement f s.t. Vi. (i, f(7))

2/25

Extracting programs from specifications and proofs

The general setting
Input: a logical input-output specification ¢(i, 0) (+ some additional certificate)
Output: a program f obeying the specification

Certificates can help produce programs f:
Automatic synthesis: no additional data
Curry-Howard approaches: a proof of totality of ¢
» produce a refinement f s.t. Vi. (i, f(7))
Implicit definitions: a proof of functionality of ¢
» produce an extension f s.t. Vi.Vo. ¢(i,0) = f(i) =0

2/25

Extracting programs from specifications and proofs

Input: a logical input-output specification ¢ (i, 0) (+ some additional certificate)
Output: a program f obeying the specification

Certificates can help produce programs f:
Automatic synthesis: no additional data
Curry-Howard approaches: a proof of totality of ¢
» produce a refinement f s.t. Vi. (i, f(7))
Implicit definitions: a proof of functionality of ¢
» produce an extension f s.t. Vi.Vo. p(i,0) = f(i) =0

Go from implicit definitions to transformations of nested sets

2/25

Go from implicit definitions to transformations of nested sets

o Nested relations, set-theoretic specifications and the language (NRC)
e Our work generalizes Beth's theorem for usual “*flat" relational queries

BY/P5

Plan of the talk

Go from implicit definitions to transformations of nested sets

o Nested relations, set-theoretic specifications and the language (NRC)
e Our work generalizes Beth's theorem for usual “*flat" relational queries
e Main result: implicit — explicit NRC definitions

e One easy method for intuitionistic definitions
e One harder method for classical definitions
e Linear-time on cut-free focused proofs

BY/P5

Plan of the talk

Go from implicit definitions to transformations of nested sets

o Nested relations, set-theoretic specifications and the language (NRC)
e Our work generalizes Beth's theorem for usual “*flat" relational queries
e Main result: implicit — explicit NRC definitions

e One easy method for intuitionistic definitions
e One harder method for classical definitions
o Linear-time on cut-free focused proofs

o WIP: generalization to effective rigid categoricity

BY/P5

The nested relational model, logic and
NRC

The nested relational model

We work with typed objects

T,U:==4|Set(T)|1|TxU

Anonymous base type {
Semantics T + [T] determined inductively by [(]:

o Set(T): sets of elements of type T

o finite cartesian products — x ... x —

Taking [4] = string, we have

{(**snake", “slange"), (“pencil”, “blyant"), ...} € [Set(u x)]
{({snake", “serpent"}, {slange", “snog"}),...} € [Set(Set(il) x Set(Ll))]
((), 0, snake", {“slange", “snog"}) € [1 x Set(Set(1)) x & x Set(Ll)]

4/25

The nested relational model

We work with typed objects

T,U:==4|Set(T)|1|TxU

Anonymous base type {
Semantics T + [T] determined inductively by [(]:
o Set(T): sets of elements of type T

o finite cartesian products — x ... x —

Taking [4] = string, we have

{(**snake", “slange"), (“pencil”, “blyant"), ...} € [Set(u x)]
{({snake", “serpent"}, {slange", “snog"}),...} € [Set(Set(il) x Set(Ll))]
((), 0, snake", {“slange", “snog"}) € [1 x Set(Set(1)) x & x Set(Ll)]

Usual relational model: only tuples of relations (sets of tuples)

4/25

Nested collection transformations

T,U =40 Set(T) | 1| T x U

A transformation of nested sets is a function T — U
— is not part of the type system

Pre-image of a relation R

fib: Set(4l) x Set(&h x &) — Set(L)
(A, R) — R7Y(A)={x|3IycA(xy) €R}

Collect all pre-images of individual elements

fibs : Set({ x &) — Set(L x Set(Ll))
R — {(a,fib({a},R)) | a € cod(R)}

5)/25,

Logical specfications

Queries can be specified in multi-sorted first-order logic:

e variables explicitly typed x : T
e basic predicates x er zand x =r y

e terms for tupling and projections

x,y: Tand z : Set(T)

eg, m(((x,2),()),x)) : (T x Set(T)) x 1

6/25

Queries can be specified in multi-sorted first-order logic:

e variables explicitly typed x : T
e basic predicates x er zand x =r y x,y: Tand z : Set(T)

e terms for tupling and projections eg., m(((x,2), (), %)) : (T x Set(T)) x 1

Consider formulas with only bounded quantifications

o,y = t=rultcrulIxcto|Vxectp|oAY|eV|p

6/25

Logical specfications

Queries can be specified in multi-sorted first-order logic:

e variables explicitly typed x : T
e basic predicates x er zand x =r y x,y: Tand z : Set(T)

e terms for tupling and projections e.g, m(((x,2),()),x)) : (T x Set(T)) x 1
Consider formulas with only bounded quantifications

o, u= t=rulterul|Ieto|Vxetp|oAY|oVY|p

Example of functional and total specifications:

o Every x € Xisrelated to somea € A Vx € X.3a € A. (x,a) €R
e Forevery (x,y) € R,ify € A, thenx € X Vp € R.m(p) € A= mi(p) € X

6/25

Logical specfications

Queries can be specified in multi-sorted first-order logic:
e variables explicitly typed x : T
e basic predicates x er zand x =r y x,y: Tand z : Set(T)

e terms for tupling and projections e.g, m(((x,2),()),x)) : (T x Set(T)) x 1

Consider formulas with only bounded quantifications

o, u= t=rulterul|Ieto|Vxetp|oAY|oVY|p

Example of functional and total specifications:

e Forevery (x,a) € R, there is some (a,X) € Os.t. x € X
Vp € R.Hq € 0. 7l'1(p) € Trz(o)
o Every element of (2, X) € O satisfies ¢ ({a}, R, X)
Vg € O. (Vx € ma(q).(x, m1(q)) € R) A (Vp € R. ma(p) = mi(q) = mi(p) € m(q))

6/25

Our target for synthesis: the nested relational calculus (NRC)

Our programming language for nested transformations I' — T

L,x:T, TV+x:T

Fke : Ty Pke:Tp F'ke:T1 xTp ie{1,2}
F}—():l F}—(61762>:T1><T2 F"T(,‘(L’):T,‘
Tre:T FFC]ZSet(T]) F,x:TlFfziset(Tz)
T+ {e} : Set(T) IH | J{e2 | x €er} : Set(Ty)
It e : Set(T) It ey : Set(T) It e : Set(T) Tt ey : Set(T)
'+ 07 : Set(T) I'Fe Uey : Set(T) Tkep\ep: Set(T)

7/25

Our target for synthesis: the nested relational calculus (NRC) + Get

Our programming language for nested transformations I' — T

L,x:T, TV+x:T

Fke : Ty Pke:Tp F'ke:T1 xTp ie{1,2}
F}—():l F}—(61762>:T1><T2 F"T(,‘(L’):T,‘
Thrke:T FFC]ZSet(T]) F,x:TlFfziset(Tz)
T+ {e} : Set(T) IH | J{e2 | x €er} : Set(Ty)
It e : Set(T) It ey : Set(T) It e : Set(T) Tt ey : Set(T)
'+ 07 : Set(T) I'Fe Uey : Set(T) Tkep\ep: Set(T)
I'te: Set(T)
' Get(e) : T

7/25

Expressiveness of NRC

OQurrumningexamples
* (A,R) = U{case(m(p) €u A, {m(p)},0) | p € R}
o R U{{fib(x,R)} [x € {m(p) | p € R}}

Derivable constructs:

e maps {e1(x) | x € e2}
e at type-level, Bool := Set(1)
e basic predicates =r: T x T — Bool, €7: T x Set(T) — Bool

e case analyses

8/25

Expressiveness of NRC

OQurrumningexamples
* (A,R) = U{case(m(p) €u A, {m(p)},0) | p € R}
o R U{{fib(x,R)} [x € {m(p) | p € R}}

Derivable constructs:
e maps {e1(x) | x € e2}
e at type-level, Bool := Set(1)
e basic predicates =r: T x T — Bool, €7: T x Set(T) — Bool
e case analyses
o Ag-separation {x € e | p(x)}

NRC terms e : T — Bool correspond exactly to Ao formulas ¢(x")

8/25

Extraction from A specifications

/

Recall that ¢ (i, 0) is an implicit definition when it is functional: p(i,0) Np(i,o') = o0=0

For every such ¢(i, 0), there is a compatible NRC term e(7)

p(i,0) = o=e(i)

9/25

Our effective result

/

Recall that ¢ (i, 0) is an implicit definition when it is functional: w(i,0) Np(i,0o') = o=o0

For every such ¢(i, 0), there is a compatible NRC term e(7)
e(i,0) = o=e(i)

Further, e(7) may be efficiently computed from a cut-free focused proof

9/25

Our effective result

Recall that ¢ (%, 0) is an implicit definition when it is functional: o(i,0) Np(i,0') = o=0

Extraction from A intuitionistic implicit definitions
For every such ¢(i, 0), there is a compatible NRC term e(7)

p(i,0) = o=e(i)
Further, e(7) may be efficiently computed from a cut-free focused proof

Nota Bene

o Effectivity w/o efficiency: follows from completeness, compactness and an easy NRC/logical
interpreatation correspondence

o Efficiency is the ultimate goal
e Extension of Beth definability for flat queries Set(4%) x ... x Set({") — Set(U")

e Can give some ideas for lower bounds

9/25

Potential use-cases for implicit—explicit

Consider an injective NRC term such as fibs

fibs : Set(& x &) — Set(Ll X Set(Ll))
R — {(a,R7'(a)) | a € cod(f)}

10/25

Potential use-cases for implicit—explicit

Consider an injective NRC term such as fibs

fibs : Set(& x &) — Set(Ll X Set(Ll))
R — {(a,R7'(a)) | a € cod(f)}
e can be converted to an implicit (R, G)

10/25

Potential use-cases for implicit—explicit

Consider an injective NRC term such as fibs

fibs : Set(& x &) — Set(Ll X Set(Ll))
R — {(a,R7'(a)) | a € cod(f)}
e can be converted to an implicit (R, G)
e (R, G) defines a partial function G — R

~~ a NRC-definable inverse of fibs

10/25

Potential use-cases for implicit—explicit

Consider an injective NRC term such as fibs

fibs : Set(& x &) — Set(Ll X Set(Ll))
R — {(a,R7'(a)) | a € cod(f)}
e can be converted to an implicit (R, G)

e (R, G) defines a partial function G — R
~ a NRC-definable inverse of fibs

Assume an imperative extension and a program
x:=e1(i);...;y = ex(i)

When e, is functional in terms of e;:
o Compute e/ (x) from a proof

~- Potential optimization if e; (7) is costly?

10/25

Potential use-cases for implicit—explicit

Consider an injective NRC term such as fibs

fibs : Set(& x &) — Set(Ll X Set(Ll))
R — {(a,R7'(a)) | a € cod(f)}
e can be converted to an implicit (R, G)

e (R, G) defines a partial function G — R
~ a NRC-definable inverse of fibs

Assume an imperative extension and a program
x:=e(i);...;y = ex(i)

When e, is functional in terms of e;:
o Compute e/ (x) from a proof

~- Potential optimization if e; (7) is costly?
Caveat: automation for functionality proofs?

10/25

Wilog, we restrict to the following syntax

x| (b u) [m(t) | ()] ()

t=gqu|t#yu|Ixertp|Vxerto|pAY |V

tu

0, P

11/25

Wilog, we restrict to the following syntax

x| (b u) [m(t) | ()] ()

t=gqu|t#yu|Ixertp|Vxerto|pAY |V

tu

0, P

teru = Axcut=ru tCru = Vxet.xeru
t =set(T) U = tCru A uCrt

11/25

Wilog, we restrict to the following syntax

x| (b u) [m(t) | m(f) | ()

t=gqu|t#yu|Ixertp|Vxerto|pAY |V

tu

0, P

teru = Axcut=ru tCru = Vxet.xeru
t =set(T) U = tCru A uCrt

e Bakes the axiom of extensionality in the definition of =t

e No further set-theoretic axioms

11/25

Straightforward variants of the sequent calculus

o Sequents I' = A with I', A lists of A formulas
e Intended semantics: A\, ¢ = Vyeca ¥

e Deduction according to proof rules of the shape

T A Tn kA,
T'FA

Left and right rules for each connectives + structural rules + cut

T,teut ¢t/x], A ¢, A T,0FA
- CuUT AXIOM —M—
Iteut Ix €ug, A T-A T,¢F¢,A

12/25

Formal proofs of functionality

Certificate that ¢(i,0) is an implicit definition: a derivation

) S‘D(Z 0)7 99(17 O/) Fo=o

z€o, x€X, zex; y(X,x,2), y(X,x,2) =>z€0 rz€0
z€eo, x€X, zex; y(X,x,2), Vaex (y(X,x,a) > aco)rzeo

V-L

5

=-SUBST

zeo, xe€X, 2 ex; z=q 2/, y(X,x,2), Vaex (y(X,x,a) > aco)rzeo
3L

z€o0, x€X;z€ex, y(X,x,2), Vaex (y(X,x,a) > ac€o)rzeo
z€o, xe€X; Y(X,x,z), Vaex (y(X,x,a) > aco)rzeo
t z€o, xe€X; y(X,x,z), VyeXVaecy (y(X,y,a) > aco’)rzeo
z€o0, x€X; Y(X,x,2), 2(X,0')rz€o
e t z€o; Ire X Y(X,x,2), 2(X,0)rz€o
. z€o0;VacoIx e X ¢Y(X,x,a), (X, 0)rz€o

cx z€0; 2(X,0), Z(X,0)Fz€0 (2)

A-L

@

13/25

Formal proofs of functionality

Certificate that ¢(i,0) is an implicit definition: a derivation

) SD(Z 0)7 99(17 O/) Fo=o

z€o, x€X, zex; y(X,x,2), y(X,x,2) =>z€0 rz€0
z€eo, x€X, zex; y(X,x,2), Vaex (y(X,x,a) > aco)rzeo
zeo, xe€X, 2 ex; z=q 2/, y(X,x,2), Vaex (y(X,x,a) > aco)rzeo
z€o0, x€X;z€ex, y(X,x,2), Vaex (y(X,x,a) > ac€o)rzeo
z€o, xe€X; Y(X,x,z), Vaex (y(X,x,a) > aco)rzeo
t z€o, xe€X; y(X,x,z), VyeXVaecy (y(X,y,a) > aco’)rzeo
z€o0, x€X; Y(X,x,2), 2(X,0')rz€o
e t z€o; Ire X Y(X,x,2), 2(X,0)rz€o
. z€o0;VacoIx e X ¢Y(X,x,a), (X, 0)rz€o

cx z€0; 2(X,0), Z(X,0)Fz€0 (2)

V-L

5

=-SUBST

3L

A-L

@

Proof idea for efficient extraction: compute an explicit definition by induction over the proof

13/25

Formal proofs of functionality

Certificate that ¢(i,0) is an implicit definition: a derivation

) SD(Z 0)7 99(17 O/) Fo=o

z€o, x€X, zex; y(X,x,2), y(X,x,2) =>z€0 rz€0
z€eo, x€X, zex; y(X,x,2), Vaex (y(X,x,a) > aco)rzeo
zeo, xe€X, 2 ex; z=q 2/, y(X,x,2), Vaex (y(X,x,a) > aco)rzeo
z€o0, x€X;z€ex, y(X,x,2), Vaex (y(X,x,a) > ac€o)rzeo
z€o, xe€X; Y(X,x,z), Vaex (y(X,x,a) > aco)rzeo
t z€o, xe€X; y(X,x,z), VyeXVaecy (y(X,y,a) > aco’)rzeo
z€o0, x€X; Y(X,x,2), 2(X,0')rz€o
e t z€o; Ire X Y(X,x,2), 2(X,0)rz€o
. z€o0;VacoIx e X ¢Y(X,x,a), (X, 0)rz€o

cx z€0; 2(X,0), Z(X,0)Fz€0 (2)

V-L

5

=-SUBST

3L

A-L

@

Proof idea for efficient extraction: compute an explicit definition by induction over the proof
Problem: what invariant?

13/25

Cut-free, intuitionistic, focused

o All of the proofs we are going to be considering are cut-free
e We will ultimately drop the restriction to intuitionistic proofs...

e ...but ultimately enforce focusing anyway

14/25

Cut-freeness

TH¢,A T,pFA
T-A

e Intuition: allows to introduce a lemma ¢

o Other intuition: allows to compose proofs

Cut-elimination (Gentzen)

The cut rule does not allow to prove more sequents

o Effective argument, but cut-elimination is expensive

(lower bound in Gz (Buss), i.e. above non-elementary)

Related to computation in the A-calculus (Curry-Howard)

o (Easier to define in the sequent calculus than in other systems)

Cut-free proofs have a nice subformula property

o We will require cut-freeness essentially everywhere in the sequel

15/25

At the intuitive level, reject the law of excluded middle/reasoning ad absurdum

¢V o ¢ =0

16 /25

At the intuitive level, reject the law of excluded middle/reasoning ad absurdum
dV g ¢ = ¢

Technically: restrict to sequents I' = A with |A] < 1.

16 /25

At the intuitive level, reject the law of excluded middle/reasoning ad absurdum
dV g g = ¢

Technically: restrict to sequents I' = A with |A] < 1.

e Nicer to work with

o Classical logic can be embedded in it anyway

16 /25

Intuitionism

At the intuitive level, reject the law of excluded middle/reasoning ad absurdum
dV o g = ¢

Technically: restrict to sequents I' = A with |A] < 1.

e Nicer to work with

o Classical logic can be embedded in it anyway

If ¢(i,0) is functional, then there is a formula x(¥) such that the conjoined formula
¢ (i,0) AVE. X(¥) V —x(X)

can be proved to be functional in intuitionistic logic

16 /25

Intuitionism

At the intuitive level, reject the law of excluded middle/reasoning ad absurdum
dV o g = ¢

Technically: restrict to sequents I' = A with |A] < 1.

e Nicer to work with

o Classical logic can be embedded in it anyway

If ¢(i,0) is functional, then there is a formula x(¥) such that the conjoined formula
¢ (i,0) AVE. X(¥) V —x(X)

can be proved to be functional in intuitionistic logic

Actually non-trivial!! (I don't know a corresponding efficient algorithm)

16 /25

A normal form for proofs refining cut-freeness (Andreoli 90s)

Decompose proofs by forcing saturations by certain rules in positive and negative phase.

o Initially motivated by proof-search
o Like cut-elim, does not change provable statements

e To us: restricts the shape of proofs so much it allows to use simpler inductive invariants

(probably a crutch, but we don't know how to work without it for now)

17/25

Focusing

A normal form for proofs refining cut-freeness (Andreoli 90s)

Rough idea

Decompose proofs by forcing saturations by certain rules in positive and negative phase.

o Initially motivated by proof-search
o Like cut-elim, does not change provable statements

e To us: restricts the shape of proofs so much it allows to use simpler inductive invariants

(probably a crutch, but we don't know how to work without it for now)

Complexity-wise (to the best of my knowledge)

A cut-free proof can be turned into a focused cut-free proof in exponential time.

17/25

Preliminary: Craig interpolation

ole,l) ————— Y(c,r) If ¢ = 1, there exists 6 such that

4 . p=0 and 0=

Further, # mentions only variables/relation symbols common to ¢

and 2.

18/25

Preliminary: Craig interpolation

ole,l) ————— Y(c,r) If ¢ = 1, there exists 0 such that
\\ /(
« 7 o=0 and 0=
t(c)

Further, # mentions only variables/relation symbols common to ¢

and 2.

e Robust result
- Ay-interpolation, intuitionistic/linear logic...

18/25

Preliminary: Craig interpolation

ole,l) ————— Y(c,r) If ¢ = 1, there exists 0 such that

4 . p=0 and 0=

Further, # mentions only variables/relation symbols common to ¢
and .

e Robust result
- Ay-interpolation, intuitionistic/linear logic...

o f linear-time computable from cut-free proofs

o Interpolation = effective Beth definability

18/25

Our extraction procedure

Suppose I'(c, 1), A(c,r) F 9.
L(e D), Ale,r) F 1Cr Then we can compute ¢(c) in NRC such that

- o ifyisl=r,thenT,A=l=eAr=c¢
o ifepisl Cr,thenT,AEIlCeAneCr

o ifypisler, thenT,Al=l€e

AN Je. ICelc)Cr Stronger than standard interpolation
RHS depends on /

19/25

Our extraction procedure

Suppose I'(c, 1), A(c,r) F 9.
L(e D), Ale,r) F 1Cr Then we can compute ¢(c) in NRC such that

- o ifyisl=r,thenT,A=l=eAr=c¢
o ifepisl Cr,thenT,AEIlCeAneCr

o ifypisler, thenT,Al=l€e

AN Je. ICelc)Cr Stronger than standard interpolation
RHS depends on /

Extraction procedure: apply with I := ¢(i,0), A := ¢(i,0') and ¢) := 0 =0’

19/25

Our extraction procedure

Suppose I'(c, 1), A(c,r) F 9.
L(e D), Ale,r) F 1Cr Then we can compute ¢(c) in NRC such that

- o ifpisl=r then,A=l=eAr=e
o iftpisl Cr,thenT,A=IlCeAeCr

o ifypisler, thenT,Al=l€e

AN Je. ICelc)Cr Stronger than standard interpolation
RHS depends on /

Extraction procedure: apply with ' := ¢(i,0), A := ¢(i,0') and ¢p := 0 =0’

Induction over the proof-tree; at some key steps
e A interpolation

o NRC-definability of Ag-separation

19/25

Our extraction procedure

Suppose I'(c, 1), A(c,r) F 9.
L(e D), Ale,r) F 1Cr Then we can compute ¢(c) in NRC such that

- o ifisl=r,thenT,Al=l=eAr=c¢
o iftpisl Cr,thenT,A=IlCeAeCr

o ifypisler, thenT,Al=l€e

AN Je. ICelc)Cr Stronger than standard interpolation
RHS depends on /

Extraction procedure: apply with ' := ¢(i,0), A := ¢(i,0') and ¢p := 0 =0’

Induction over the proof-tree; at some key steps
e A interpolation

o NRC-definability of Ag-separation

Problem: does not generalize well to sequents with multiple conclusions

19/25

Handling classical proofs

New strategy: induction over the output type, some tedious proof theory and

(New and somewhat exciting!) NRC parameter collection theorem
Let L, R be sets of variables with C = L N R and

e ¢ and \(z) Ag formulas over L e ¢r and p(z,y) Ao formulas over R
e 1 avariable of R and c a variable of C.
Suppose that we have a proof of ¢ A¢pr = Jy €, rVz ec. A(z) <= p(z,y)

Then one may compute in polynomial time a NRC expression E with free variables in C such that

dLANgr = {z€c|\z)}€E

e By induction over focused proofs

e Eis a set of candidate definitions for A parameterized over the input

(reminiscent of a theorem of Chang and Makkai that yields definabilty from a proof of fewness rather than uniqueness)

20/25

More specifically

Lemma
Let L, R be sets of variables with C = L N R and

o ¢r and \(z) A formulas over L e ¢r and p(z,y) Ap formulas over R

e ra variable of R and c a variable of C.

Suppose that we have a proof of ¢ A¢r = Jy €, rVz €c. A(z) <= p(z,y)

Then one may compute in polynomial time a NRC expression E and a A 6 over C s.t.

N0 = {zec|\z)}€eE and ¢r 0

Intuitions:

e 0 is an interpolant for a proof we are also computing on the fly

e Focusing allows to keep the invariant rather specific w.r.t. the r.h.s. formula

21/25

Key step: existential rule introducing the “*main" formula

With G =3y €, r.Vz € c. A(z) <= p(z,y)

Or,Or,x € ¢+ AL, Ar, —p(x,w), \(x),G Or,0r,x € ¢ Ar, Ag, =\ (), p(x,w), G
YO, e ek AL A p(r,w) = Ax), G O1,0r,x € cF Ar, Ag, A(x) = p(x,w), G
: O,0r,x € c - AL, Ar, A\(x) < p(x,w), G

"0, 0k F AL A Vz e C. (A2) S plz0)), G
3 Or,0r F AL, AR, G

e Shape around the root of the tree guaranteed by focusing

e Applying the induction hypothesis we have

OnxeckE Ax),AL0"VvAecE! and O, xeckE-Ax),AL0 VAeEY
and Ok = —p(x, w), Ag, -0} and Or = plx,w), Ag, -0

e Sof:=3xecco'AnOy and E:={{xec|6'}} u U{EMUES|xe€c} works

22/25

Interpretations and multi-sorted
definability

Interpretations

Nested collections can be regarded as multi-sorted structures

Sorts: 4, Set(&f), 4 x Set(Ll)
Function symbols: 7, m, (—, —)
Relation symbol: €
Semantics: subobjects of X

23/25

Interpretations

Nested collections can be regarded as multi-sorted structures

Sorts: 4, Set(&f), 4 x Set(Ll)
Function symbols: 7, m, (—, —)
Relation symbol: €
Semantics: subobjects of X

Interpretations: maps between finite structures defined by FO formulas

Can express
e product, disjoint union of structures M, N — M x N, M+ N

o definable substructures and quotients

23/25

Interpretations

Nested collections can be regarded as multi-sorted structures

Sorts: 4, Set(&f), 4 x Set(Ll)
Function symbols: 7, m, (—, —)
Relation symbol: €
Semantics: subobjects of X

Interpretations: maps between finite structures defined by FO formulas

Can express
e product, disjoint union of structures M, N — M x N, M+ N

o definable substructures and quotients

For structures corresponding to nested collections,
NRC and A¢-interpretations coincide

Remark: efficient translation from interpretations to NRC

23/25

From multi-sorted implicit definitions to explicit interpretations

Fix a theory ¥ over two sorts 7 and o
Wilog: two sets of sorts

Multi-sorted implicit definability

o is implicitly definable from 7 when, for every 91, M’ = ¥ and bijective homomorphism

9ﬁ|T = M|, there is a unique extension 9 = M
m o’
~
a |- | O
~
T | — | 7

24/25

From multi-sorted implicit definitions to explicit interpretations

Fix a theory ¥ over two sorts 7 and o

Wilog: two sets of sorts

Multi-sorted implicit definability

o is implicitly definable from 7 when, for every 91, M’ = ¥ and bijective homomorphism

m| =’

T

m o’
g Ta g
T _— T

i there is a unique extension Mt = m’

Reduction for implicit definition of nested transformations: single
model where

e 7 contains the input and &

e o contains the output

possibly more complex than the input

24/25

From multi-sorted implicit definitions to explicit interpretations

Fix a theory ¥ over two sorts 7 and o

Wilog: two sets of sorts
Multi-sorted implicit definability

o is implicitly definable from 7 when, for every 91, M’ = ¥ and bijective homomorphism

9ﬁ|T =34 _, there is a unique extension 90 = m’

m o’ Reduction for implicit definition of nested transformations: single
o~ model where
ag RN g . .
e 7 contains the input and &
- ~ - e o contains the output
possibly more complex than the input

Theorem

If o is implicitly definable from 7, there is an interpretation of X into X|

24/25

Further perspectives

Can we make the multi-sorted theorem effective?

o There is a natural notion of implicitly definable (although non-obvious)
o Effectivity is not an issue, but efficiency is

e (the intuitionistic case is easy)

o Coq formalization with extraction

o Curry-Howard approach to the extraction of NRC terms
“untyped NRC" treated by Sazonov

o Other settings for extraction from implicit definitions?

25/25

	The nested relational model, logic and NRC
	Extraction from 0 specifications
	Interpretations and multi-sorted definability

