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Abstract. We investigate spaces of spaces in the category of represented
spaces and type-2 computable maps. Concretely, such spaces of spaces
are given by bundles whose bases are names for spaces. We give natural
examples of such bundles for Polish and compact Polish spaces and show
they are essentially equivalent. We then propose definitions of genericity
and computable categoricity, according to which the Cantor space is
computably categorical and generic as a compact Polish space. We also
show that the degree of categoricity of S1 is the Weihrauch degree lim.
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1 Introduction

We want to discuss notions of represented spaces of spaces so that we may
formalize some natural questions such as

– what is a generic X-space? (for X ranging over various adjectives such as
Polish, QuasiPolish, compact Polish. . . )

– is a space computably categorical? If not, what is the (recursion-theoretic)
complexity of computing an isomorphism?

But first, we need to explain what a space of spaces is. Describing a space of
spaces involves coding names for spaces as a space and giving an interpretation
for them consisting of a bundle over the space of names. We are doing this in
the category ReprSp of represented spaces and type-2 computable maps.

Concretely, such bundles are simply computable maps ElA : A• → A between
represented spaces A• and A. The points of A are codes for the spaces we want
to represent and A• is a sum of those spaces. A point x ∈ A represents the fiber
El−1

A (x), so the map ElA should be thought of as a projection∑
x∈A

El−1
A (x) ∼= A• −→ A

(a code x for a space Sx
∼= El−1

A (x), a point of Sx) 7−→ x

This in particular induces a map El−1
A : A → ReprSp, but also carries addi-

tional information about how the individual spaces El−1
A (x) cohere together in

A•, which allows us to talk about, say, maps that take as input a name x for
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a non-empty space and return a point of El−1
A (x), computably in x. This is a

standard approach to internalizing the notion of families in categories with pull-
backs [11,19].

Example 1. One bundle representing finite-dimensional Euclidean spaces is the
first projection of vectors of real numbers onto their dimensions R∗ → N, where
R∗ is represented by δR∗(⟨n, x⟩) = ⟨δN(n), δRn(x)⟩, with δN, δRn being standard
representations for N and Rn.

Example 2. A hyperspace H over some space X is a represented space whose
points are subsets of X. An example is the hyperspace A(X) of closed subsets
of X.

Any hyperspace over X induces a bundle H•
π1−→ H where H• is the subspace

of H×X consisting of those pairs (A, x) such that x ∈ A.

We first investigate bundles that represent Polish spaces and compact Polish
spaces. There are several natural options, which we show to be equivalent in a
suitable sense (Section 2). We then define what it means for a space represented
in such bundles to be computably categorical and, more generally, what the
Weihrauch degree of categoricity of a space is. We then show that {0, 1}N is
computably categorical in the compact Polish spaces and that the degree of
categoricity of the circle S1 is lim (Section 3). Finally we define what it means
for a space to be generic in a bundle and show that {0, 1}N is Π0

2 -generic in the
compact Polish spaces (Section 4).

Related Work An early occurrence of the idea of a represented space of (certain)
represented spaces is found in [17], where the space of Polish spaces is introduced.
A representation of QuasiPolish spaces as an internal category of represented
spaces was investigated by de Brecht [3], who shows that much of the usual
structure over the category of QuasiPolish spaces does computably internalize.

The space C([0, 1]) is not computably categorical as a Banach space [14,
Corollary 4.3] (up to isometry). An early contribution to the question of com-
putable categoricity is [13], where it is e.g. shown that {0, 1}N is computably
categorical in the sense of isometry.

Rather than looking at represented spaces of spaces, another approach is
to investigate numberings of computable spaces of that kind. This approach is
e.g. taken in [5].

Degrees of categoricity of various Lebesgue spaces have been extensively in-
vestigated [12,7].

2 Spaces of spaces as bundles

2.1 Equivalence of bundles

As previously mentioned, a bundle is simply any map ElA : A• → A that we
want to interpret as a space of spaces.
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Given two bundles ElA and ElB , we can define what it means for ElA to be
essentially equivalent to ElB by using the notion of reindexing and pullbacks.

A pullback square is a commuting square as found in the diagram below, sat-
isfying the following universal property: if there are morphisms α, β as depicted
such that f ◦β = g◦α, then there is a unique γ such that α = k◦γ and β = h◦γ.

Z

A×C B B

A C

∃!γ

α

β
k

h
⌟

g

f

In this diagram A×C B (together with the projections h and k) is a pullback
of f and g. We use the notation around the top-left corner of the commuting
square to indicate we intend this to be a pullback in a diagram. Pullbacks are only
determined up to unique isomorphisms. Concretely, pullbacks in all categories
we are interested in here can be built by taking the cartesian products of the
domains of the maps f and g and restricting to the sets of pairs (a, b) with
f(a) = g(b).

We say that ElA is a pullback of ElB by f : A → B when there is a map
f• : A• → B• such that the square below is a pullback.

A• B•

A B
f

f•

ElBElA ∃
⌟

Essentially, f maps A-codes of spaces to B-codes of spaces and f• gives
us maps El−1

A (a) → El−1
B (f(a)), uniformly in a. The square being a pullback

moreover ensures that those maps are actually homeomorphisms whose inverses
are also computable from codes a ∈ A. To define equivalence of two such bundles,
we do not care if A and B are not isomorphic as long as ElA and ElB describe the
same spaces and we can effectively translate a name for a space in A to a name
for the same space in B and vice-versa. Hence we take the following definition
for equivalence of bundles.

Definition 1. We call two bundles (weakly) equivalent when they are pullbacks
of one another.

2.2 Intensional vs extensional equivalence of bundles

Sometimes we do not want to work extensionally and work with multi-valued
maps. However, the notion of bundle in the category of multi-valued computable
functions does not do what we want, so we are doing something else to deal with
that difficulty: we replace a represented space by the subspace of Baire space



4 Franklin et. al.

consisting of the names of its points. These spaces can actually be character-
ized up to homeomorphism as the regular projective spaces of the category of
represented spaces.

Definition 2. Let us call a computable map between represented spaces a quo-
tient map if it is has a computable multi-valued right-inverse.

A projective reindexing of a bundle ElB : B• → B is a bundle ElA : A• → A
which is a pullback of ElB along a quotient map e : A ↠ B such that A is the
domain of a representation of B.

By our discussion above, any bundle has at least one projective reindexing
determined by the representation map of A and a choice of pullbacks. We avoid
defining this as “the” projective redindexing as we want our constructions to be
closed under bundle equivalence.

Lemma 1. Any two projective reindexings of a bundle are equivalent.

Definition 3. We say that two bundles are intensionally equivalent if any of
their respective projective reindexings are equivalent.

2.3 Bundles of all Polish spaces and compact Polish spaces

We now consider several bundles meant to represent all (non-empty) Polish
spaces.

We can code Polish spaces in the subspace PM of RN2

consisting of the
pseudometrics over N. Then the bundle is defined as PM•

π1−→ PM where PM• is
the obvious quotient of the subspace of PM×NN consisting of those pairs (d, s)
such that s is a fast-converging sequence with respect to d.

The other alternatives are induced by hyperspaces as per Example 2. We
write A(X), V(X) and Π0

2 (X) for the hyperspaces of closed, overt and Π0
2 sub-

spaces of X (see [15], [9] for definitions). Given a hyperspace H over some set, we
write H+ for its restriction to non-empty subspaces. Given H and H′ over the
same set, we write H ∧H′ for the join hyperspace determined by the subspace
of H×H′ of pairs (A,A).

Theorem 1. The bundle PM•
π1−→ PM is intensionally equivalent to each of the

bundles generated by (Π0
2 ∧ V)([0, 1]ω)+, (A ∧ V)(Rω)+ and V(Rω)+.

Lemma 2. For a computable metric space X the computable map f 7→ f−1({0}) :
C(X, [0, 1]) → A(X) has a computable multivalued right-inverse.

Corollary 1. For a computable metric space X the computable map f 7→ f−1((0, 1]ω) :
C(X, [0, 1]ω) → Π0

2 (X) has a computable multivalued right-inverse.

Proof (Theorem 1). We show that some of the bundles in the theorem statement,
or projective reindexings thereof, are pullbacks of one another so that we end up
with a cycle of pullbacks witnessing that those bundles are pairwise intensionally
equivalent.
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For each direction, we only describe the maps between the bases of the bun-
dles, leaving the reader to complete the top part of the pullbacks in the obvious
way.

– PM is a pullback of (Π0
2 ∧ V)([0, 1]ω)+:

Without loss of generality, we can assume that the pseudometrics are bounded
by 1. We then map a pseudometric d : N× N → [0, 1] to

{x ∈ [0, 1]ω | ∀k ∃m ∀i ≤ k |xi − d(i,m)| < 2−k}

This immediately yields a Π0
2 -name for the set, and we obtain the overt

information by observing that a basic open set U0×. . .×Uℓ×[0, 1]ω intersects
the set if and only if ∃m ∈ N ∀i ≤ ℓ d(i,m) ∈ Ui.

– Projective reindexings of (Π0
2 ∧V)([0, 1]ω)+ are pullbacks of (A∧V+)(Rω)+:

Given some A ∈ Π0
2 ([0, 1]

ω), we can compute some f : [0, 1]ω → [0, 1]ω such
that A = f−1((0, 1]ω) by Corollary 1. This means that 1

f : A → Rω is well-
defined, where the multiplicative inverse is taken component-wise, and we
can compute 1

f from A. We then map A to Df :=
{(

x, 1
f (x)

)
| x ∈ A

}
⊆

Rω×Rω. Since (x, y) /∈ Df ⇔
(
y ≥ 1ω ∧ f(x) = 1

y

)
, we obtain Df ∈ A(Rω).

Moreover, if we have A ∈ V([0, 1]ω), we can obtain DF ∈ V(Rω), since overt
sets are closed under continuous images.

– (A ∧ V)(Rω)+ is a pullback of V(Rω)+:
We can just forget the closed information.

– Projective reindexings of V+(Rω) are pullbacks of PM:
We can use overt choice to find a dense sequence (xn)n in the given overt
set, and then obtain the pseudometric d(n,m) = dRω (xn, xm).

Given a pseudometric d over N, a witness of total boundedness is a function
t : N → N such that for every k ∈ N and x ∈ N, there exists y < t(k) such that
d(x, y) < 2−k. Call TBPM ⊆ NN2 × NN the subset consisting of pseudometrics
and witnesses of total boundedness and TBPM•

π1−→ TBPM the bundle obtained
by pulling back PM•

π1−→ PM along the first projection TBPM → PM.

Theorem 2. The bundle TBPM•
π1−→ TBPM is intensionally equivalent to the

bundle induced by (K ∧ V)([0, 1]ω)+.

Proof. To show that TBPM•
π1−→ TBPM is a pullback of the bundle induced by

(K ∧ V)([0, 1]ω)+, we can use the same approach as in the proof of Theorem 1
by mapping the pair (d, t) of a pseudometric and a witness of total boundedness
to the set

{x ∈ [0, 1]ω | ∀k ∃m ≤ t(k) ∀i ≤ k |xi − d(i,m)| < 2−k}
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This set is obviously effectively closed in [0, 1]ω, so it is in particular effectively
compact since [0, 1]ω is effectively compact. Note that, by the definition of wit-
ness of total boundedness, this set is the same as the set defined in the proof
of Theorem 1; we can therefore get the overt information in the same way.

To show that any projective reindexing of (K ∧ V)([0, 1]ω)+ is a pullback of
TBPM•

π1−→ TBPM, we can use overt choice as before to find a dense sequence
(xn)n with which to build a pseudometric over N. The corresponding witness of
total boundedness can then be reconstructed using the compact information.

3 Computable categoricity

We can also quantify the hardness of computing isomorphisms.

Definition 4. Given a represented space S, the degree of categoricity CCat(S,ElA)
of S in a bundle ElA : A• → A is given by the following Weihrauch problem:

– Input: (a, b) ∈ A2 such that S, El−1
A (a) and El−1

A (b) are homeomorphic
– Output: a homeomorphism witnessing El−1

A (a) ∼= El−1(b)

We say that S is computably categorical when CCat(S,ElA) ≤W id. We omit
ElA when it is clear from context.

For any S and bundle ElA, note that CCat(S,ElA) is at most Σ1
1 .

Proposition 1. For any space S and two intensionally equivalent bundles ElA
and ElB, CCat(S,ElA) ≡W CCat(S,ElB).

Proof. Trivial.

Theorem 3. {0, 1}N is computably categorical as a compact Polish space.

Proof (Sketch). Given a set X ∈ (K ∧ V) ([0, 1]ω) that is homeomorphic to
Cantor space, we can search for a cover of X by two basic open sets U1, U2, such
that each Ui intersects X and the closures of U1 and U2 are disjoint. This search
must succeed since X is homeomorphic to Cantor space. Now, the closures of U1

and U2 must again be homeomorphic to Cantor space, so that we can iterate this
process, which allows us to construct an explicit isomorphism with the standard
Cantor space {0, 1}N.

The degree of categoricity of the circle

As a somewhat more complicated example, we will investigate the degree of
categoricity of the circle S1. We establish a slightly more general result, using
the notation (K ∧ V)([0, 1]ω)|TC to denote the restriction of (K ∧ V)([0, 1]ω) to
sets which are classically homeomorphic to S1.

Theorem 4. The following operations are Weihrauch equivalent:



Represented spaces of represented spaces 7

1. lim.
2. Image−1 : (K ∧ V)([0, 1]ω)|TC ⇒ C(S1, [0, 1]

ω) mapping S to some f : S1 →
[0, 1]ω with f [S1] = S.

3. Trace : (K ∧ V)([0, 1]ω)|TC ⇒ C(S1, [0, 1]
ω) mapping S to some injective

f : S1 → [0, 1]ω with f [S1] = S.

Corollary 2. CCat(S1) ≡W lim.

Proof. A computable bijection between computably compact computably Haus-
dorff spaces is already a computable isomorphism.

The proof of the theorem follows later, after we have gathered a few crucial
lemmas.

Definition 5. For continuous f : S1 → [0, 1]ω and two disjoint open balls
B1, B2 ∈ O([0, 1]ω), we say that f oscillates between B1 and B2 at least n times
if and only if there are t11 < t21 < t12 . . . < t1n < t2n ∈ [0, 1] such that f(tji ) ∈ Bj

(we view S1 as a quotient of [0, 1] here). We say that f oscillates at most n times
if it does not oscillate at least n+ 1 times.

Lemma 3. Given f ∈ C(S1, [0, 1]ω), x1, x2 ∈ [0, 1]ω and r1, r2 ∈ R with d(x1, x2) >
r1+r2 we can compute some n ∈ N such that f oscillates at most n times between
B1(x1, r1) and B2(x2, r2).

Proof. For some sufficiently large n ∈ N, there must exist t11 < t21 < t12 . . . <
t1n < t2n ∈ S1 such that f([t1i , t

2
i ]) ⊆ B(x1, r1)

C , f([t2i , t2i+1]) ⊆ B(x1, r1)
C (with

modular arithmetic on the indices). By overtness of S1 and the availability of
the compact-open representation on C(S1, [0, 1]ω), this is recognizable. Any such
n is a valid answer, so we can just search for one that works.

Lemma 4. lim ≤W Image−1.

Proof. We actually show that ̂UpperBound ≤ Image−1 for UpperBound :⊆
O(N) ⇒ N. The set we produce initially is a canonic unit circle, and we can
provide its name in (K∧V)([0, 1]ω) as a sequence of “tubes” shrinking with some
known speed to it. For each of the ω-many UpperBound-instances we need to
handle, we assign two open balls intersecting the unit circle, such that all balls
are disjoint and the two balls for the same instance are next to each other. The
situation at the site for a single UpperBound-instance is depicted in Figure 1.

Once a new, larger value n gets enumerated into an UpperBound-instance
we modify our current circle in a way that forces any function spanning it to
oscillate at least n times between the two balls assigned to that instance as shown
in Figure 1.

For each site, we only need to do finitely many updates. This ensures that
we actually end up with a topological circle. From any function f : S1 → [0, 1]ω

having our circle as an image, we can extract upper bounds for how often it is
oscillating at each side by Lemma 3, and these bounds are valid answers to the
UpperBound-instances.
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Fig. 1. The initial stage of the construction for Lemma 4 is shown at the top, the first
update is depicted below. The tube going across the picture is the current approxima-
tion (which keeps shrinking). The actual circle we have in mind is depicted by the line
lying in the tube and the two disjoint balls corresponding to one UpperBound-instance
are depicted lying across the tube.

Recall that a circular chain is a sequence B0, . . . , Bn of open balls such that
Bi and Bi+1 intersect, as do B0 and Bn, and any other pair of balls is formally
disjoint (i.e. the distance between their centres is greater than the sum of their
radii). We will say that a circular chain C0, . . . , Cm refines the circular chain
B0, . . . , Bn without backtracking if there is a partition {0, . . . ,m} =

⋃
j≤n Ij into

intervals such that ∀i ∈ Ij Ci ⊆ Bj . A circular chain B0, . . . , Bn strictly covers
a set S if S ⊆

⋃
i≤n Bn and ∀i ≤ n S ∩ Bn ̸= ∅. A circular chain has scale ε if

each radius of a ball occurring in it is smaller than ε.

Lemma 5. Let S be a topological circle. From a sequence of circular chains
(Bi)i∈N all strictly covering S such that Bi+1 has scale 2−i and refines Bi

without backtracking, we can compute a homeomorphism f : S1 → S.

Lemma 6. Let S be a topological circle and consider a circular chain (B0, . . . , Bn)
strictly covering S. Either there are circular chains strictly covering S and refin-
ing (B0, . . . , Bn) of arbitrarily small positive scale, or there exists a circular chain
(C0, . . . , Cm) strictly covering S such that ∀j ≤ m ∃i ≤ nCj ⊆ Bi such that there
are j0 < j1 < j2 < j3 and i with Cj0 , Cj2 ⊆ Bi \B

C

i+1 and Cj1 , Cj3 ⊆ Bi+1 \B
C

i .

Proof (Proof of Theorem 4). The reduction from (1) to (2) is the statement
of Lemma 4. The reduction from (2) to (3) is trivial. To see that lim suffices
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to actually compute a homeomorphism, we consider the tree of circular chains
strictly covering our circle where all balls have rational centres and radii ordered
by refinement without backtracking on half the scale. By Lemma 5, having an
infinite path through this tree suffices to find the desired homeomorphism. The
basic parent-child relation in our tree is computably enumerable, and moreover,
by invoking Lemma 6 we can recognize all dead ends. Thus, lim suffices to
compute an infinite path.

4 Genericity

For a ∈ A, let Xa = El−1({a}). We say that a, b ∈ A are homeomorphic if
Xa ≃ Xb. Morally, homeomorphic elements are names for the same object.

We call U ⊆ A closed under homeo(morphism) if for all a ∈ U and b ∈ A,
if Xb ≃ Xa then b ∈ U . We call U ⊆ A dense up to homeo(morphism) if it
intersects all open subsets of A which are closed under homeo.

Definition 6. Let ElA : A• → A be a bundle. Let C be a class of sets.
Consider a space X with X ≃ Xa for some a ∈ A. The space X is called

C-generic as an element of A if for all C ⊆ A belonging to C which are closed
under homeomorphism and dense up to homeomorphism, we have a ∈ C.

Morally, in the definition of genericity, we consider the represented space
of homeomorphism types over a given space of spaces. A generic space is one
whose homeomorphism type is contained in every dense set of class C in the space
of homeomorphism types. This definition ensures that intensionally equivalent
bundles have the same generic spaces.

We call a class C of sets a pointclass if it has the following properties:

1. The class C is closed under preimages of continuous maps.
2. If e : Ã → A is a quotient map, then a set C ⊆ A belongs to C if and only if

C = e
(
C̃
)

for some C̃ ∈ C with C̃ = e−1
(
e
(
C̃
))

.

Thus, a subset C of a represented space X is a member of a pointclass C if and
only if it is the image of a set of names C̃ ∈ C under the representation, where
C̃ is extensional in the sense that a name of x ∈ X belongs to C̃ if and only if
all names of x belong to C̃. For a motivation of this definition, see [8], [10], [16].

Proposition 2. Let C be a pointclass. Let ElA : A• → A and ElB : B• → B be
equivalent bundles. Then a space X is C-generic as an element of A if and only
if it is C-generic as an element of B.

Proof. Assume that X is C-generic as an element of A. We show that X is
C-generic as an element of B. By symmetry, this establishes the claim.

By assumption we have a diagram
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A• B• A•

A B A

f•

ElA

g•

ElB ElA

f g

where all the squares are pullbacks.
Let a ∈ A with X ≃ Xa. Let C ∋ C ⊆ B be closed under homeo and dense up

to homeo. We claim that f−1(C) is closed under homeo and dense up to homeo.
Then a ∈ f−1(C) by assumption, so that f(a) ∈ C with X ≃ Xf(a).

Let a0, a1 be homeomorphic elements of A with f(a0) ∈ C. Then f(a1) is
homeomorphic to f(a0) so that f(a1) ∈ C. Hence, f−1(C) is closed under homeo.

Now, let U ∈ O(A) be an open set which is closed under homeo. Then the
set g−1(U) is closed under homeo. It hence intersects C. Let b ∈ C ∩ g−1(U).
Then g(b) ∈ U . We claim that g(b) ∈ f−1(C). Indeed, Xf◦g(b) ≃ Xb, so that
f ◦ g(b) ∈ C since C is closed under homeo.

Proposition 3. Let C be a pointclass. Let ElA : A• → A be a bundle. Let
ElÃ : Ã• → Ã be a projective reindexing of A. Then a space X is C-generic
as an element of A if and only if it is C-generic as an element of Ã.

Proof. Assume that X is C-generic as an element of A. Pick a ∈ A with X ≃ Xa.
Pick some ã ∈ Ã with eA (ã) = a. Then X ≃ Xã. Let C ∋ C̃ ⊆ Ã be closed under
homeo and dense up to homeo. Since C is closed under homeo it particularly
satisfies C = e−1

A (eA (C)). Hence, since C is a pointclass, we have eA (C) ∈ C. It is
easy to see that eA (C) is closed under homeo and dense up to homeo. It follows
that eA (C) contains a. Hence C = e−1

A (eA (C)) contains ã.
Conversely, assume that X is C-generic as an element of Ã. Pick ã ∈ Ã with

eA (ã) = a. Let C be closed under homeo and dense up to homeo. Then the set
e−1
A (C) is closed under homeo and dense up to homeo. It hence contains ã, so

that C = eA
(
e−1
A (C)

)
contains a.

Corollary 3. Let C be a pointclass. Let ElA : A• → A and ElB : B• → B be
intensionally equivalent bundles. Then a space X is C-generic as an element of
A if and only if it is C-generic as an element of B.

We work with density up to homeo rather than density, because the former
is better behaved under pullbacks. For sufficiently nice bundles, there is a close
connection between density and density up to homeo. Say that El: A• → A is
an open representation if the map

[·] : A → V(A), a 7→ {b ∈ A | Xa ≃ Xb}

is computable.

Proposition 4. Let ElA : A• → A be an open representation. Let X ⊆ A be
closed under homeo. Then X is dense up to homeo if and only if it is dense.
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Proof. Let U ∈ O(A) be an open set. Since ElA is an open representation, the
set

V = {a ∈ A | [a] ∩ U ̸= ∅}

is open. Since X is dense up to homeo, there exists a ∈ V ∩X. By construction,
there exists b ∈ U with Xa ≃ Xb. Since X is closed under homeo we have b ∈ X.

Our bundles for Polish spaces and compact Polish spaces are open represen-
tations. We illustrate this with two examples

Proposition 5. The bundle PM• → PM is an open representation.

Proof (Sketch). Basic open sets in PM yield constraints on a pseudometric of
the form

d(i1, j1) ∈ [a1, b1] ∧ · · · ∧ d(im, jm) ∈ [am, bm].

All these constraints reveal about a space up to homeomorphism is that the
space has at least k distinct points for some k ≥ 1.

Hence, we can compute the homeomorphism class of such a space as an overt
set essentially as follows: given a basic open set that requires the space to have
k distinct point, accept the set if and only if our space has at least k distinct
points.

Proposition 6. The bundle (V ∧ K) ([0, 1]ω)+,• → (V ∧ K) ([0, 1]ω)+ is an open
representation.

Proof (Sketch). Basic open sets in (V ∧ K) ([0, 1]ω) correspond to minimal covers
of a set by balls with rational centres and radii. All these constraints reveal
about a space up to homeomorphism is that the space has at least k connected
components for some k ≥ 1.

Hence, we can compute the homeomorphism class of a space as an overt set
essentially as follows: given a basic open set that requires the space to have k
connected components, accept the set if and only if our space has at least k
connected components.

We now turn to the problem of classifying generic compact Polish spaces. In
view of Corollary 3 and Theorem 2 we are justified in calling a space C-generic as
a compact Polish space if it is generic as an element of any of our intensionally
equivalent representations of compact Polish spaces. It follows from the proof
of Proposition 6 that O-genericity is rather weak: a compact Polish space is
O-generic if and only if it has infinitely many connected components. We next
show that Cantor space is up to homeomorphism the only Π0

2 -generic compact
Polish space.

Proposition 7. Being homeomorphic to Cantor space is a Π0
2 -property of com-

pact Polish spaces that is closed under homeo and dense up to homeo.
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Proof. We encode compact Polish spaces by the bundle with base (V ∧ K) ([0, 1]ω)+.
Let (xn)n be a computable dense sequence in [0, 1]ω. We denote by B(x, r) ⊆

[0, 1]ω the open ball of radius r and by B(x, r) the corresponding closed ball.
Observe that the closed ball is the closure of the open ball. Consider the following
Π0

2 -property:

∀n ∈ N.∀r ∈ Q>0.∃m ∈ N.∃s ∈ Q>0.∃m′ ∈ N.∃s ∈ Q>0.(
B(xn, r) ∩X ̸= ∅ →

(
B(xn, r) ∩X

)
⊆ B(xm, s) ∪B(xm′ , s′)

∧B(xm, s) ∩X ̸= ∅
∧B(xm′ , s′) ∩X ̸= ∅
∧B(xm, s) ∩B(xm′ , s′) ∩X = ∅

)
.

Less formally, this property is stating that for every non-empty open rational
ball, the corresponding closed ball can be covered by two non-empty open balls
such that the corresponding closed balls are disjoint. It is easy to see that a set
X has the above property if and only if it is homeomorphic to Cantor space.
That this property is closed under homeo is obvious. It is dense up to homeo,
since every open set that is closed under homeo contains a copy of Cantor space.

Proposition 8. Every Π0
2 -subset of (V ∧ K) ([0, 1]ω)+ that is closed under homeo

and dense up to homeo contains a copy (and hence every copy) of Cantor space.

Proof. Proposition 7 establishes that the set C{0,1}N of all spaces homeomorphic
to Cantor space is a dense Π0

2 -subset of (V ∧ K) ([0, 1]ω)+. Let C be a Π0
2 -subset

of (V ∧ K) ([0, 1]ω)+ which is dense up to homeo and closed under homeo. Then
by Proposition 4, C is dense. By the Baire category theorem, C∩C{0,1}N is dense.
If C does not contain a copy of Cantor space, then C∩C{0,1}N = ∅, contradiction!

Propositions 7 and 8 together establish:

Theorem 5. Cantor space is, up to homeomorphism, the unique Π0
2 -generic

compact Polish space.

5 Further questions

Further classes of represented spaces where finding suitable representations as
bundles would be of immense interest include the QuasiPolish and the coPolish
spaces. For the former, much of the groundwork was laid in [6], where it was
shown that we can represent QuasiPolish spaces as spaces of ideals of preorders.
Subsequent work by de Brecht ([3], [2], [4]) showed that many of the constructions
we would want to perform on QuasiPolish spaces are indeed effective using this
encoding.

The setting for coPolish spaces is less well understood. In particular, it is
not even completely clear what a “computable coPolish space” should be. The
primary objective here is to check to what extend the various characterizations
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(such as those provided in [18]) of coPolish spaces still work in the effective set-
ting. The investigation needed here will require a representation of the QuasiPol-
ish spaces, as we would want the representation of a coPolish space X to enable
us to compute the QuasiPolish space C(X,Y) for any given QuasiPolish space
Y.

Brattka discusses how to define computability of separable and some non-
separable Banach spaces in [1], with a key insight being that if we represent
separable Banach spaces as Polish spaces with additional structure, their duals
naturally carry a coPolish topology. By expressing this in our framework, we
would then have a general framework to study Banach spaces and their generic-
ity, computable categoricity and so on.
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Appendix: proof of Lemma 1

Before moving on to the proof of Lemma 1, we first explain how the notions
of Section 2.2 are actual general categorical notions. Then we use that to prove
Lemma 1 via abstract nonsense. We hope this demonstrates in particular that
the approach we use for represented spaces of represented spaces could be also
done mutatis mutandi for other similar settings such as multirepresented spaces
of multirepresented spaces.

Definition 7. In a category, a regular epimorphism is a coequalizer of some
pair of morphisms.

In less categorical terms, regular epimorphisms are those surjections that
arise from quotient maps. A characterization of regular epimorphisms in (multi)-
represented spaces is that they have a multi-valued inverse; this is what we called
quotient maps in Definition 2.

Example 3. The injections 2 ↣ S are epimorphic but not regular.

Definition 8. An object X of a category is called (regular) projective when it
has the left lifting property against regular epimorphisms, that is, whenever we
have a regular epimorphism e : Z ↠ Y and a map f : X → Y , there exists some
g : X → Z such that f = e ◦ g.

Z

X Y

e

f
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A (regular) projective cover of an object X is a projective object X̃ together
with a regular epimorphism X̃ ↠ X

In represented spaces, regular projective objects coincide with subspaces of
NN. It is also the case that a representation map δX :⊆ NN ↠ X determines a
regular projective cover of the space X by its domain. Hence Definition 2 says
that a projective reindexing is really a pullback along a regular projective cover.

Remark 1. In represented spaces, for any projective cover c : X̃ ↠ X and mul-
tivalued function f : X ⇒ Y , a computable realizer for f allows to build a
computable map f̃ : X̃ → Y such that f̃(z) ∈ f(c(z)) for every z ∈ X̃.

Lemma 1. Any two projective reindexings of a bundle are equivalent.

Proof. Let ElA : A• → A be a bundle and ElB ,ElC be projective reindexings,
so we have regular epimorphisms eB and eC as in the following diagram.

B• A• C•

B A C

ElB
⌟

ElA

⌟

ElC

eB eC

To conclude, it suffices to show that ElB embeds into ElC . Since B is regular
projective and eC is a regular epimorphism, there is a map f : B → C such that
eC ◦ f = eB . Then, using the fact that the right square is a pullback, we know
there exists f• such that the following diagram commute.

B• A• C•

B A C

f•

ElB
⌟

ElA

⌟

ElC

eB

f

eC

Then it remains to show that f, f•,ElB and ElC form a pullback square; this
follows easily from the fact that the left square in the original diagram is a
pullback.
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