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Abstract. We characterize the strength, in terms of Weihrauch degrees,
of certain problems related to Ramsey-like theorems concerning colour-
ings of the rationals. The theorems we are chiefly interested in assert the
existence of almost-homogeneous sets for colourings of pairs of rationals
satisfying properties determined by some additional algebraic structure
on the set of colours.
In the context of reverse mathematics, most of the principles we study
are equivalent to Σ0

2 -induction over RCA0. The associated problems in
the Weihrauch lattice are related to TC∗

N, (LPO′)∗ or their product, de-
pending on their precise formalizations.
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1 Introduction

The infinite Ramsey theorem is a central object of study in the field of com-
putability theory. It says that for any colouring c of n-uples of a given arity of
an infinite set X, there exists a infinite subset H ⊆ X such that the set of n-tuples
[H]n of elements of H is homogeneous. This statement is non-constructive: even
if the colouring c is given by a computable function, it is not the case that we can
find a computable homogeneous subset of X. Various attempts have been made
to quantify how non-computable this problem and some of its natural restric-
tions are. This is in turn linked to the axiomatic strength of the corresponding
theorems, as investigated in reverse mathematics [12] where Ramsey’s theorem
is a privileged object of study [7].

This paper is devoted to a variant of Ramsey’s theorem with the following
restrictions: we colour pairs of rational numbers and we require some additional
structure on the colouring, namely that it is additive. A similar statement first
appeared in [11, Theorem 1.3] to give a self-contained proof of decidablity of the
Monadic Second-order logic of (Q, <). We will also analyse a simpler statement
we call the shuffle principle, a related tool appearing in more modern decidability
proofs [4, Lemma 16]. The shuffle principle states that every Q-indexed word
(with letters in a finite alphabet) contains a convex subword in which every letter
appears densely or not at all. Much like the additive restriction of the Ramsey
⋆ The second author was supported by an LMS Early Career Fellowship.
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theorem for pairs over N, studied from the point of view of reverse mathematics
in [8], we obtain a neat correspondence with Σ0

2 -induction (Σ0
2 -IND).

Theorem 1. In the weak second-order arithmetic RCA0, Σ0
2 -IND is equivalent

to both the shuffle principle and the additive Ramsey theorem for Q.

We take this analysis one step further in the framework of Weihrauch re-
ducibility that allows to measure the uniform strength of general multi-valued
functions (also called problems) over Baire space. Let Shuffle and ARTQ be the
most obvious problems corresponding to the shuffle principle and additive Ram-
sey theorem over Q respectively. We relate them, as well as various weakenings
cShuffle, cARTQ, iShuffle and iARTQ that only output sets of colours or intervals,
to the standard (incomparable) problems TCN and LPO′.

Theorem 2. We have the following equivalences

– Shuffle ≡W ARTQ ≡W TC∗
N × (LPO′)∗

– cShuffle ≡W cARTQ ≡W (LPO′)∗

– iShuffle ≡W iARTQ ≡W TC∗
N

2 Background

In this section, we will introduce the necessary background for the rest of the
paper, and fix most of the notation that we will use, except for formal definitions
related to weak subsystems of second-order arithmetic, in particular RCA0 (which
consists of Σ0

1 -induction and recursive comprehension) and RCA0 + Σ0
2 -IND. A

standard reference for that material and, more generally, systems of interest in
reverse mathematics, is [12].

2.1 Generic notations

We identify k ∈ N with the finite set {0, . . . , k − 1}. For every linear order
(X,<X), we write [X]2 for the set of pairs (x, y) with x <X y. In this paper, by
an interval I we always mean a pair (u, v) ∈ [Q]2, regarded as the set ]u, v[ of
rationals; we never use interval with irrational extrema.

2.2 Additive and ordered colourings

For the following definition, fix a linear order (X,<X). For every poset (P,≺P ),
we call a colouring c : [X]2 → P ordered if we have c(x, y) ⪯P c(x′, y′) when
x′ ≤X x <X y ≤X y′. A colouring c : [X]2 → S is called additive with respect
to a semigroup structure (S, ·) if we have c(x, z) = c(x, y) · c(y, z) whenever
x <X y <X z. A subset A ⊆ X is dense in X if for every x, y ∈ A with x <X y
there is z ∈ A such that x <X z <X y. Given a colouring c : [X]n → k and some
interval Y ⊆ X, we say that Y is c-densely homogeneous if there exists a finite
partition of Y into dense subsets Di such that each [Di]

n is monochromatic (that
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is, |c([Di]
n)| ≤ 1). We will call those c-shuffles if c happens to be a colouring of

Q (i.e. X = Q and n = 1). Finally, given a colouring c : Q → k, and given an
interval I ⊆ Q, we say that a colour i < k occurs densely in I if the set of x ∈ Q
such that c(x) = i is dense in I.

Definition 1. The following are statements of second-order arithmetic:

– ORTQ: for every finite poset (P,≺P ) and ordered colouring c : [Q]2 → P ,
there exists a c-homogeneous interval ]u, v[ ⊂ Q.

– Shuffle: for every k ∈ N and colouring c : Q → k, there exists an interval
I = ]x, y[ such that I is a c-shuffle.

– ARTQ: for every finite semigroup (S, ·) and additive colouring c : [Q]2 → S,
there exists an interval I = ]x, y[ such that I is c-densely homogeneous.

As mentioned before, a result similar to ARTQ was originally proved by Shelah
in [11, Theorem 1.3 & Conclusion 1.4] and Shuffle is a central lemma when
analysing labellings of Q (see e.g. [4]). We will establish that ARTQ and Shuffle
are equivalent to Σ0

2 -induction over RCA0 while ORTQ is provable in RCA0.
We introduce some more terminology that will come in handy later on. Given

a colouring c : [Q]n → k, a set C ⊆ k and an interval I = ]u, v[ that is a c-
shuffle, we say that I is a c-shuffle for the colours in C, or equivalently that I is
c-homogeneous for the colours of C, if we additionally have c(I) = C.

2.3 Preliminaries on Weihrauch reducibility

We now give a brief introduction to the Weihrauch degrees of problems and the
operations on them that we will use in the rest of the paper. We stress that here
we are able to offer but a glimpse of this vast area of research, and we refer to
[2] for more details on the topic.

We deal with partial multifunctions f : ⊆NN ⇒ NN, which we call problems,
for short. We will most often define problems in terms of their inputs and of the
outputs corresponding to those inputs. We stress that, differently from [2], we do
not define problems for arbitrary represented spaces (domains and codomains of
the problems we consider admit a straightforward coding as subspaces of NN).

A partial function F : ⊆ NN → NN is called a realizer for f , which we denote
by F ⊢ f , if, for every x ∈ dom(f), F (x) ∈ f(x). Given two problems f and
g, we say that g is Weihrauch reducible to f , and we write g ≤W f , if there
are two computable functionals H and K such that K⟨FH, id⟩ is a realizer for g
whenever F is a realizer for f . We define strong Weihrauch reducibility similarly:
for every two problems f and g, we say that g strongly Weihrauch reduces to
f , written g ≤sW f , if there are computable functionals H and K such that
KFH ⊢ g whenever F ⊢ f . We say that two problems f and g are (strongly)
Weihrauch equivalent if both f ≤W g and g ≤W f (respectively f ≤sW g and
g ≤sW f). We write this ≡W (respectively ≡sW).

There are a number of useful structural operations on problems, which respect
the quotient to Weihrauch degrees, that we need to introduce. The first one is
the parallel product f ×g, which has the power to solve an instance of f and and
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instance of g at the same time. The finite parallelization of a problem f , denoted
f∗, has the power to solve an arbitrary number of instances of f , provided that
number is given as part of the input. Finally, the compositional product of two
problems f and g, denoted f ∗ g, corresponds basically to the most complicated
problem that can be obtained as a composition of f paired with the identity,
a recursive function and g paired with identity (that last bit allows us to keep
track of the initial input when applying f).

Now let us list some of the most important1 problems that we are going to
use in the rest of the paper.

– CN : ⊆ NN ⇒ N (closed choice on N) is the problem that takes as input
an enumeration e of a (strict) subset of N and such that, for every n ∈ N,
n ∈ CN(e) if and only if n ̸∈ ran(e) (where ran(e) is the range of e).

– TCN : ⊆ NN ⇒ N (totalization of closed choice on N) is the problem that
takes as input an enumeration e of any subset of N (hence now we allow the
possibility that ran(e) = N) and such that, for every n ∈ N, n ∈ TCN(e) if
and only if n ̸∈ ran(e) or ran(e) = N.

– LPO : 2N → {0, 1} (limited principle of omniscience) takes as input any
infinite binary string p and outputs 0 if and only if p = 0N.

– LPO′ : ⊆ 2N → {0, 1}: takes as input (a code for) an infinite sequence
⟨p0, p1, . . . ⟩ of binary strings such that the function p(i) = lims→∞ pi(s) is
defined for every i ∈ N, and outputs LPO(p).

The definition of LPO′ could have been obtained by composing the one of LPO
and the definition of jump as given in [2]: we include it for convenience. Intu-
itively, LPO′ corresponds to the power of answering a single binary Σ0

2 -question.
In particular, LPO′ is easily seen to be (strongly) Weihrauch equivalent to both
IsFinite and IsCofinite, the problems accepting as input an infinite binary string
p and outputting 1 if p contains finitely (respectively, cofinitely) many 1s, and 0
otherwise. We will use this fact throughout the paper.

Another problem of combinatorial nature, introduced in [5], will prove to be
very useful for the rest of the paper.

Definition 2. ECT is the problem whose instances are pairs (n, f) ∈ N × NN

such that f : N → n is a colouring of the natural numbers with n colours, and
such that, for every instance (n, f) and b ∈ N, b ∈ ECT(n, f) if and only if

∀x > b ∃y > x (f(x) = f(y)).

Namely, ECT is the problems that, upon being given a function f of the integers
with finite range, outputs a b such that, after that b, the palette of colours used
is constant (hence its name, which stands for eventually constant palette tail).
We will refer to suitable bs as bounds for the function f .

A very important result concerning ECT and that we will use throughout the
paper is its equivalence with TC∗

N.
1 Whereas LPO and CN have been widely studied, TCN is somewhat less known (and

does not appear in [2]): we refer to [9] for an account of its properties, and to [1] for
a deeper study of some principles close to it.
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Lemma 1 ([5, Theorem 9]). ECT ≡W TC∗
N

Another interesting result concerning ECT is the following: if we see it as a
statement of second-order arithmetic (ECT can be seen as the principle asserting
that for every colouring of the integers with finitely many colours there is a
bound), then ECT and Σ0

2 -IND are equivalent over RCA0 (actually, over RCA∗
0).

Lemma 2 ([5, Theorem 7]). Over RCA0, ECT and Σ0
2 -IND are equivalent.

Hence, thanks to the results above, it is clear why TC∗
N appears as a natural

candidate to be a “translation” of Σ0
2 -IND in the Weihrauch degrees.

We end this section with two technical results about Weihrauch degrees. The
first one asserts that the two main problems that we use as benchmarks in the
sequel, namely (LPO′)∗ and TC∗

N, are incomparable in the Weihrauch lattice.

Lemma 3. (LPO′)∗ and TC∗
N are Weihrauch incomparable. Hence, we have that

(LPO′)∗,TC∗
N <W (LPO′)∗ × TC∗

N.

The second result asserts that the sequential composition of LPO′×TCN after
CN can actually be computed by the parallel product of LPO′, TCn

N and CN. As
customary, for every problem P we write Pn to mean P× · · · × P︸ ︷︷ ︸

n times

.

Lemma 4. For every integers a and b and every problem P ≤W CN, it holds
that ((LPO′)a × TCb

N) ∗ P ≤W (LPO′)a × TCb
N × P.

2.4 Green theory

Green theory is concerned with analysing the structure of ideals of finite semi-
groups, be they one-sided on the left or right or even two-sided. This gives rise
to a rich structure to otherwise rather inscrutable algebraic properties of finite
semigroups. We will need only a few related results, all of them relying on the
definition of the Green preorders and of idempotents (recall that an element s
of a semigroup is idempotent when ss = s).

Definition 3. For a semigroup (S, ·), define the Green preorders as follows:
• s ≤R t if and only if s = t or s ∈ tS = {ta : a ∈ S} (suffix order)

• s ≤L t if and only if s = t or s ∈ St = {at : a ∈ S} (prefix order)

• s ≤H t if and only if s ≤R t and s ≤L t
• s ≤J t if and only if s ≤R t or s ≤L t or s ∈ StS = {atb : (a, b) ∈ S2}

(infix order)

The associated equivalence relations are written R, L, H, J ; their equivalence
classes are called respectively R, L, H, and J -classes.

We conclude this section reporting, without proof, the two technical lemmas
that will be needed in Section 4. Although not proved in second-order arithmetic
originally, it is clear that their proofs goes through in RCA0: besides straight-
forward algebraic manipulations, they only rely on the existence, for each finite
semigroup (S, ·), of an index n ∈ N such that sn is idempotent for any s ∈ S.
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Lemma 5 ([10, Proposition A.2.4]). If (S, ·) is a finite semigroup, H ⊆ S
an H-class, and some a, b ∈ H satisfy a · b ∈ H then for some e ∈ H we know
that (H, ·, e) is a group.

Lemma 6 ([10, Corollary A.2.6]). For any pair of elements x, y ∈ S of a
finite semigroup, if we have x ≤R y and x, y J -equivalent, then x and y are also
R-equivalent.

3 The shuffle principle and related problems

3.1 The shuffle principle in reverse mathematics

We start by giving a proof2 of the shuffle principle in RCA0 +Σ0
2 -IND, since, in

a way, it gives a clearer picture of some properties of shuffles that we use in the
rest of the paper.

Lemma 7. RCA0 +Σ0
2 -IND ⊢ Shuffle

Proof. Let c : Q → n be a colouring of the rationals with n colours. For any
natural number k, consider the following Σ0

2 formula φ(k): “there exists a finite
set L ⊆ n of cardinality k and there exist u, v ∈ Q with u < v such that c(w) ∈ L
for every w ∈ ]u, v[”. Since φ(n) is true, it follows from the Σ0

2 minimization
principle that there exists a minimal k such that φ(k) holds. Consider u, v ∈ Q
and the set of colours L corresponding to this minimal k. We now only need to
show that ]u, v[ is a c-shuffle to conclude.

Let a = c(x) for some x ∈ ]u, v[. We need to prove that a occurs densely in
]u, v[. Consider arbitrary x, y ∈ ]u, v[ with x < y. We are done if we show that
there exists some w ∈ ]x, y[ with c(w) = a. So, suppose that there is no such
w. By bounded Σ0

1 -comprehension, there exists a finite set L′ ⊂ n consisting
of exactly those b ∈ n which occur as values of c

∣∣
]x,y[

. Clearly, φ(|L′|) holds.
However, L′ ⊆ L, and by assumption a /∈ L′, so |L′| < k, contradicting the
choice of k as the minimal number such that φ(k) holds. ⊓⊔

The proof above shows an important feature of shuffles: given a certain in-
terval ]u, v[, any of its subintervals having the fewest colours is a shuffle. Inter-
estingly, the above implication reverses, so we have the following equivalence.

Theorem 3. Over RCA0, Shuffle is equivalent to Σ0
2 -IND.

We do not offer a proof of the reversal here; such a proof can easily be done by
taking inspiration from the argument we give for Lemma 11. With this equiva-
lence in mind, we now introduce Weihrauch problems corresponding to Shuffle,
beginning with the stronger one.

2 From Leszek A. Kołodziejczyk, personal communication.
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Definition 4. We regard Shuffle as the problem with instances (k, c) ∈ N× NN

such that c : Q → k is a colouring of the rationals with k colours, and such
that, for every instance (k, c), for every pair (u, v) ∈ [Q]2 and for every C ⊆ k,
(u, v, C) ∈ Shuffle(k, c) if and only if ]u, v[ is a c-shuffle for the colours in C.

Note that the output of Shuffle contains two components that cannot be
easily computed from one another. It is thus natural to define two weakenings
that we also study here.

Definition 5. iShuffle (“i” for “interval”) is the same problem as Shuffle save for
the fact that a valid output only contains the interval ]u, v[ which is a c-shuffle.
Complementarily, cShuffle (“c” for “colour”) is the problem that only outputs a
possible set of colours taken by a c-shuffle.

We will first start analysing the weaker problems cShuffle and iShuffle and
show they are respectively equivalent to (LPO′)∗ and TC∗

N. This will also imply
that Shuffle is stronger than (LPO′)∗ × TC∗

N, but the converse will require an
entirely distinct proof.

3.2 Weihrauch complexity of the weaker shuffle problems

We first start by discussing cShuffle briefly. Showing that it is stronger than
(LPO′)∗ is relatively straightforward.

Lemma 8. (LPO′)∗ ≤W cShuffle

Proof idea. By noting that cShuffle2 ≤W cShuffle by considering pairing of dis-
tinct colourings, it suffices to show LPO′ ≤W cShuffle. The reduction is then
obtained by computing, from the input of LPO′, a map f : Q → N such that
infinite sets are taken to dense sets by f−1. ⊓⊔

The reversal is more difficult; in this case, it is helpful to be more precise,
and give a better estimate of the number of instances of LPO′ necessary to solve
an instance (n, c) of cShuffle.

Lemma 9. Let cShufflen be the restriction of cShuffle to the instances of the
form (n, c). Then, cShufflen ≤W (LPO′)2

n−1

Proof idea. We use one instance of LPO′ for each non-empty subset C of n, to
decide if there is an interval in which only colours from C appear. The ⊆-minimal
C for which it happens are guaranteed to correspond to a c-shuffle. ⊓⊔

Putting the two previous results together, we have the following.

Theorem 4. (LPO′)∗ ≡W cShuffle

Now we move to iShuffle.

Lemma 10. Let iShufflen be the restriction of iShuffle to the instances of the
form (n, c). For every n ∈ N with n ≥ 2, iShufflen ≤sW TCn−1

N .
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Proof idea. Fix an enumeration of the intervals of Q and let (n, c) be an instance
of iShufflen. The idea of the reduction is the following. With the first instance
en−1 of TCN, we look for an interval I on which c takes only n− 1 colours: if no
such interval exists, then this means that every colour is dense in every interval,
and so every inverval would be a valid solution to c. Hence, we can suppose that
such an interval is eventually found: we will then use the second instance en−2

of TCN to look for a subinterval of Ij where c takes only n − 2 values. Again,
we can suppose that such an interval is found. We proceed like this for n − 1
steps, so that in the end the last instance e1 of TCN is used to find an interval I ′
inside an interval I on which we know that at most two colours appear. Again,
we look for c-monochromatic intervals: if we do not find any, then I ′ is already
a c-shuffle, whereas if we do find one, then that interval is a solution.

Although not apparent in the sketch given above, an important part of the
proof is that the n − 1 searches we described can be performed in parallel : the
fact that this can be accomplished relies on the fact that any subinterval of a
shuffle is a shuffle. ⊓⊔

Lemma 11. Let ECTn be the restriction of ECT to the instances of the form
(n, f). For every n ∈ N with n ≥ 2, ECTn ≤sW iShufflen.

Proof. Let (n, f) be an instance of ECTn. We will slightly abuse notation, in the
following sense: we will define a colouring c : D → n of the dyadics, instead of
directly defining a colouring of the rationals. We will then exploit the fact that
there is a computable order-preserving bijection between the dyadic numbers D
and Q, and we will apply iShufflen to (n, c).

We define c : D → n as follows: let d = m
2h

be a dyadic number, then we let
c(d) = f(h). Hence, all the points of the same denominator have the same colour
according to c. Let ( u

2k
, v
2ℓ
) ∈ iShufflen(n, c). Let b be such that 1

2b
< v

2ℓ
− u

2k
.

We claim that b is a bound for f . Suppose not, then there is a colour i < n and
a number x ∈ N such that x > b and f(x) = i, but for no y > x it holds that
f(y) = i. Hence, all the dyadics of the form w

2x are given colour i, but i does not
appear densely often in any interval of D. But by definition of b, there is a z ∈ N
such that z

2x ∈
]

u
2k
, v
2ℓ

[
, which is a contradiction. Hence b is a bound for f . ⊓⊔

We can then relate this to TCN; the next lemma follows directly by inspecting
the second half of [5, Theorem 9].

Lemma 12. For every n ∈ N with n ≥ 2, TCn−1
N ≤W ECTn (and this cannot be

improved to a strong Weihrauch reduction).

Putting things together, we finally have a characterization of iShuffle.

Theorem 5. For every n ≥ 2, we have the Weihrauch equivalence

ECTn ≡W iShufflen ≡W TCn−1
N whence ECT ≡W iShuffle ≡W TC∗

N
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3.3 The full shuffle problem

The main result of this section is that Shuffle ≡W TC∗
N × (LPO′)∗, which will

be proved in Theorem 6. In order to do that, it is convenient to observe that,
similarly to cShuffle and iShuffle, Shuffle is closed under finite parallelization.

Lemma 13. Shuffle× Shuffle ≤W Shuffle. Therefore, Shuffle∗ ≡W Shuffle.

This enables one to easily prove the following lemma.

Lemma 14. TC∗
N × (LPO′)∗ ≤W Shuffle

Proof. From Theorem 4 and Theorem 5, we have that TC∗
N × (LPO′)∗ ≤W

iShuffle× cShuffle, and since clearly iShuffle⊔ cShuffle ≤W Shuffle, by Lemma 13
we have that TC∗

N × (LPO′)∗ ≤W Shuffle. ⊓⊔

For the other direction, again, we want to be precise as to the number of
instances of TCN × (LPO′) needed to solve an instance of Shuffle.

Lemma 15. Let Shufflen be the restriction of Shuffle to the instances of the form
(n, c). Then, Shufflen ≤W (TCN × LPO′)2

n−1

Proof idea. Let (n, c) be an instance of Shuffle. Essentially, the main idea for the
proof of Shufflen ≤W (TCN × LPO′)2

n−1 is to combine the proofs of Lemma 10
and of Theorem 4: we want to use TCN to find a candidate interval for a certain
subset C of n, and on the side we use LPO′ (or equivalently, IsFinite) to check
for every such set C whether a c-shuffle for the colours of C actually exists. The
main difficulty with the idea described above is that the two proofs must be
intertwined, in order to be able to find both a c-shuffle and the set of colours
that appear on it. ⊓⊔

Putting the previous results together, we obtain the following.

Theorem 6. Shuffle ≡W TC∗
N × (LPO′)∗

4 ARTQ and related problems

We now analyse the logical strength of the principle ARTQ. As in the case of
Shuffle, we start with a proof of ARTQ in RCA0+Σ0

2 -IND. This will give us enough
insights to assess the strength of the corresponding Weihrauch problems.

4.1 Additive Ramsey over Q in reverse mathematics

As a preliminary step, we figure out the strength of ORTQ, the ordered Ramsey
theorem over Q. It is readily provable from RCA0 and is thus much weaker than
most other principles we analyse. We can be a bit more precise by considering
RCA∗

0 which is basically the weakening of RCA0 where induction is restricted to
∆0

1 formulas (see [12, Definition X.4.1] for a nice formal definition).
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Lemma 16. RCA∗
0 ⊢ RCA0 ⇔ ORTQ

We now show that the shuffle principle is equivalent to ARTQ. So overall,
much like the Ramsey-like theorems of [8], they are equivalent to Σ0

2 -induction.

Lemma 17. RCA0 + Shuffle ⊢ ARTQ. Hence, RCA0 +Σ0
2 -IND ⊢ ARTQ.

Proof. Fix a finite semigroup (S, ·) and an additive colouring c : [Q]2 → S. Say a
colour s ∈ S occurs in X ⊆ Q if there exists (x, y) ∈ [X]2 such that c(x, y) = s.

We proceed in two stages: first, we find an interval ]u, v[ such that all colours
occurring in ]u, v[ are J -equivalent to one another. Then we find a subinterval of
]u, v[ partitioned into finitely many dense homogeneous sets. For the first step,
we apply the following lemma to obtain a subinterval I1 = ]u, v[ of Q where all
colours lie in a single J -class.

Lemma 18. For every additive colouring c, there exists (u, v) ∈ [Q]2 such that
all colours of c

∣∣
]u,v[

are J -equivalent to one another.

Proof. If we post-compose c with a map taking a semigroup element to its J -
class, we get an ordered colouring. Applying ORTQ yields a suitable interval. ⊓⊔

Moving on to stage two of the proof, we want to look for a subinterval of
I1 partitioned into finitely many dense homogeneous sets. To this end, define a
colouring γ : I1 → S2 by setting γ(z) = (c(u, z), c(z, v)).

By Shuffle, there exist x, y ∈ I1 with x < y such that ]x, y[ is a γ-shuffle. For
l, r ∈ S, define Hl,r : = γ−1({(l, r)}) ⊆ ]x, y[; note that this is a set by bounded
recursive comprehension. Clearly, all Hl,r are either empty or dense in ]x, y[, and
moreover ]x, y[ =

⋃
l,r Hl,r. Since there are finitely many pairs (l, r), all we have

to prove is that each non-empty Hl,r is homogeneous for c.
Let s = c(w, z) such that w, z ∈ Hl,r with w < z. By additivity of c and the

definition of Hl,r,

s · r = c(w, z) · c(z, v) = c(w, v) = r. (1)

In particular r ≤R s. But we also have r J s, which gives r R s by Lemma 6. This
shows that all the colours occurring in Hl,r are R-equivalent to one another. A
dual argument shows that they are all L-equivalent, so they are all H-equivalent.
The assumptions of Lemma 5 are satisfied, so their H-class is actually a group.

All that remains to be proved is that any colour s occurring in Hl,r is actually
the (necessarily unique) idempotent of this H-class. Since r R s, there exists a
such that s = r · a. But then by (1), s · s = s · r · a = r · a = s, so s is necessarily
the idempotent. Thus, all sets Hl,r are homogeneous and we are done. ⊓⊔

We conclude this section by showing that the implication proved in the
Lemma above reverses., thus giving the precise strength of ARTQ over RCA0.

Theorem 7. RCA0 + ARTQ ⊢ Shuffle. Hence, RCA0 ⊢ ARTQ ↔ Σ0
2 -IND.



On the Weihrauch degree of the additive Ramsey theorem over the rationals 11

Proof. Let f : Q → n be a colouring of the rationals. Let (Sn, ·) be the finite
semigroup defined by Sn = n and a · b = a for every a, b ∈ Sn. Define the
colouring c : [Q]2 → Sn by setting c(x, y) = f(x) for every x, y ∈ Q. Since for
every x < y < z, c(x, z) = f(x) = c(x, y) · c(y, z), c is additive. By additive
Ramsey, there exists ]u, v[ which is c-densely homogeneous and thus a f -shuffle.

⊓⊔

4.2 Weihrauch complexity of additive Ramsey

We now start the analysis of ARTQ in the context of Weihrauch reducibility. We
will mostly summarize results, relying on the intuitions we built up so far. First
off, we determine the Weihrauch degree of the ordered Ramsey theorem over Q.

Theorem 8. Let ORTQ be the problem whose instances are ordered colourings
c : [Q]2 → P , for some finite poset (P,≺), and whose possible outputs on input
c are intervals on which c is constant. We have that ORTQ ≡W LPO∗.

Proof idea. LPO∗ ≤sW ORTQ: given n sequences p0, . . . , pn−1 ∈ 2N, build a
coloring c : [Q]2 → 2n such that, for every (x, y) ∈ [Q]2 and l ∈ N such that
2−l−1 ≤ y− x < 2−l, i ∈ c(x, y) if and only if there is k < l such that pi(k) = 1.
This is an ordered coloring, and the color associated to any homogeneous set
gives answer to LPO(pi).

ORTQ ≤W LPO∗: without loss of generality, assume that the input is a col-
oring c : [Q]2 → k where k is ordered as usual. There is a straightforward
procedure that, taking an interval I and a color i ∈ k, checks if there exists a
pair of (x, y) ∈ [I]2 such that c(x, y) < i, and returns that pair if it exists (and
otherwise does not terminate). Now run that procedure for i = k − 1 and some
arbitrary interval Ik−1, and if it returns some (x, y), run it for i = k− 2 and the
interval ]x, y[, and so forth (note that we cannot drop below i = 0 since the col-
oring is ordered). Calling (xs, ys)s∈N the sequence of pairs that are tested, define
the sequences pi for every i < k by pi(s) = 1 ⇔ c(xs, ys) < i. The largest i such
that LPO(pi) = 0 will be the color of some monochromatic interval that can be
determined by the first s such that pi+1(s) = 1 (or is Ik−1 if i = k − 1). ⊓⊔

Now let us discuss Weihrauch problems corresponding to ARTQ.

Definition 6. Regard ARTQ as the following Weihrauch problem: the instances
are pairs (S, c) where S is a finite semigroup and c : [Q]2 → S is an additive
colouring of [Q]2, and such that, for every C ⊆ S and every interval I of Q,
(I, C) ∈ ARTQ if and only if I is c-densely homogeneous for the colours of C.

Similarly to what we did in Definition 5, we also introduce the problems cARTQ
and iARTQ that only return the set of colours and the interval respectively.

We start by noticing that the proof of Theorem 7 can be readily adapted to
show the following.

Lemma 19. – cShuffle ≤sW cARTQ, hence (LPO′)∗ ≤W cARTQ.
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– iShuffle ≤sW iARTQ, hence TC∗
N ≤W iARTQ.

– Shuffle ≤sW ARTQ, hence (LPO′)∗ × TC∗
N ≤W ARTQ.

The rest of the section is devoted to find upper bounds for cARTQ, iARTQ
and ARTQ. The first step to take is a careful analysis of the proof of Lemma 17.
For an additive colouring c : [Q]2 → S, the proof can be summarized as follows:

– we start with an application of ORTQ to find an interval ]u, v[ such that all
the colours of c

∣∣
]u,v[

are all J -equivalent (Lemma 18).
– define the colouring γ : Q → S2 and apply Shuffle to it, thus obtaining the

interval ]x, y[.
– the rest of the proof consists simply in showing that ]x, y[ is a c-densely

homogeneous interval.

Hence, from the uniform point of view, this shows that ARTQ can be computed
via a composition of Shuffle and ORTQ. Whence the next theorem.

Theorem 9. – cARTQ ≤W (LPO′)∗ × LPO∗, therefore cARTQ ≡W (LPO′)∗.
– iARTQ ≤W TC∗

N × LPO∗, therefore iARTQ ≡W TC∗
N.

– ARTQ ≤W (LPO′)∗ × TC∗
N × LPO∗, therefore ARTQ ≡W (LPO′)∗ × TC∗

N.

5 Conclusion and future work

We have analysed the strength of an additive Ramseyan theorem over the ratio-
nals from the point of view of reverse mathematics and found it to be equivalent
to Σ0

2 -induction, and then refined that analysis to a Weihrauch equivalence with
TC∗

N × (LPO′)∗. We have also shown that the problem decomposes nicely: we
get the distinct complexities (LPO′)∗ or TC∗

N if we only require either the set of
colours or the location of the homogeneous set respectively. The same holds true
for another equally and arguably more fundamental shuffle principle.

For further work, we believe it should be straightforward to carry out a
similar analysis for Ramsey theorem over N (known to be equivalent to Σ0

2 -
induction in the context of reverse mathematics [8]). Related to Q, there are
also weaker combinatorial principles of interest to look at like (η)1<∞ from [6].
More generally, it would be interesting to study standard mathematical theorems
that are known to be equivalent to Σ0

2 -IND in reverse mathematics: this can be
considered to contribute to the larger endevour of studying principles already
analyzed in reverse mathematics in the framework of the Weihrauch degrees.
In the particular case of Σ0

2 -IND, it can be interesting to see which degrees are
necessary for such an analysis. We refer to [3] for more on this topic, and for a
more comprehensive study of Ramsey’s theorem in the Weihrauch degrees.

Acknowledgements We are very grateful to Arno Pauly for many inspiring
discussions that led to this work and many technical contributions that cannot
be neatly decoupled from the main results. The first author also warmly thanks
Leszek Kołodziejczyk for the proof of Lemma 7 as well as Henryk Michalewski
and Michał Skrzypczak for numerous discussions on a related project.



On the Weihrauch degree of the additive Ramsey theorem over the rationals 13

References

1. Brattka, V., Gherardi, G.: Completion of choice. Annals of Pure and Applied Logic
172(3), 102914 (2021). https://doi.org/10.1016/j.apal.2020.102914

2. Brattka, V., Gherardi, G., Pauly, A.: Weihrauch Complexity in Computable
Analysis, pp. 367–417. Springer International Publishing, Cham (2021). https:
//doi.org/10.1007/978-3-030-59234-9_11

3. Brattka, V., Rakotoniaina, T.: On the uniform computational content of Ramsey’s
theorem. The Journal of Symbolic Logic 82 (08 2015). https://doi.org/10.1017/
jsl.2017.43

4. Carton, O., Colcombet, T., Puppis, G.: Regular languages of words over countable
linear orderings. In: ICALP 2011 proceedings, Part II. pp. 125–136 (2011). https:
//doi.org/10.1007/978-3-642-22012-8_9

5. Davis, C., Hirschfeldt, D.R., Hirst, J.L., Pardo, J., Pauly, A., Yokoyama, K.: Com-
binatorial principles equivalent to weak induction. Comput. 9(3-4), 219–229 (2020).
https://doi.org/10.3233/COM-180244

6. Frittaion, E., Patey, L.: Coloring the rationals in reverse mathematics. Computabil-
ity 6(4), 319–331 (2017). https://doi.org/10.3233/COM-160067

7. Hirschfeldt, D.R.: Slicing the Truth. World Scientific (2014). https://doi.org/
10.1142/9208

8. Kolodziejczyk, L.A., Michalewski, H., Pradic, C., Skrzypczak, M.: The logical
strength of Büchi’s decidability theorem. Log. Methods Comput. Sci. 15(2) (2019).
https://doi.org/10.23638/LMCS-15(2:16)2019

9. Neumann, E., Pauly, A.: A topological view on algebraic computation models. J.
Complex. 44, 1–22 (2018). https://doi.org/10.1016/j.jco.2017.08.003

10. Perrin, D., Pin, J.E.: Infinite words : automata, semigroups, logic and games. Pure
and applied mathematics (2004)

11. Shelah, S.: The monadic theory of order. Ann. of Math. (2) 102(3), 379–419 (1975)
12. Simpson, S.G.: Subsystems of second order arithmetic. Perspectives in Mathemat-

ical Logic (1999). https://doi.org/10.1007/978-3-642-59971-2

A Proof of Lemma 3

Lemma 3. (LPO′)∗ and TC∗
N are Weihrauch incomparable. Hence, we have that

(LPO′)∗,TC∗
N <W (LPO′)∗ × TC∗

N.

Proof. TC∗
N ̸≤W (LPO′)∗: to do this, we actually show the stronger result that

CN ̸≤W (LPO′)∗. Suppose for a contradiction that a reduction exists, as witnessed
by the computable functionals H and K: this means that, for every instance e
of CN, H(e) is an instance of (LPO′)∗, and for every solution σ ∈ (LPO′)∗(H(e)),
K(e, σ) is a solution to e, i.e. K(e, σ) ∈ CN(e). We build an instance e of CN
contradicting this.

We start by letting e enumerate the empty set. At a certain stage s, by def-
inition of instances of (LPO′)∗, H(e|s) converges to a certain n, the number of
applications of LPO′ that are going to be used in the reduction. Hence, how-
ever we continue the construction of e, there are at most 2n possible values for
(LPO′)∗(H(e)), call them σ0, . . . , σ2n−1. It is now simple to diagonalize against
all of them, one at a time, as we now explain. We let e enumerate the empty

https://doi.org/10.1016/j.apal.2020.102914
https://doi.org/10.1016/j.apal.2020.102914
https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1017/jsl.2017.43
https://doi.org/10.1017/jsl.2017.43
https://doi.org/10.1017/jsl.2017.43
https://doi.org/10.1017/jsl.2017.43
https://doi.org/10.1007/978-3-642-22012-8_9
https://doi.org/10.1007/978-3-642-22012-8_9
https://doi.org/10.1007/978-3-642-22012-8_9
https://doi.org/10.1007/978-3-642-22012-8_9
https://doi.org/10.3233/COM-180244
https://doi.org/10.3233/COM-180244
https://doi.org/10.3233/COM-160067
https://doi.org/10.3233/COM-160067
https://doi.org/10.1142/9208
https://doi.org/10.1142/9208
https://doi.org/10.1142/9208
https://doi.org/10.1142/9208
https://doi.org/10.23638/LMCS-15(2:16)2019
https://doi.org/10.23638/LMCS-15(2:16)2019
https://doi.org/10.1016/j.jco.2017.08.003
https://doi.org/10.1016/j.jco.2017.08.003
https://doi.org/10.1007/978-3-642-59971-2
https://doi.org/10.1007/978-3-642-59971-2


14 C. Pradic and G. Soldà

set until, for some s0 and i0, K(e|s0 , σi0) converges to a certain m0: notice that
such an i0 has to exist, by our assumption that H and K witness the reduction
of CN to (LPO)∗. Then, we let e enumerate m0 at stage s0 + 1: this implies that
σi0 cannot be a valid solution to H(e), otherwise K(e, σi0) would be a solu-
tion to e. We then keep letting e enumerating {m0} until, for certain s1 and i1,
K(e|s1 , σi1) converges to m1. We then let e enumerate {m0,m1}, and continue
the construction in this fashion. After 2n many steps, we will have diagonalized
against all the σi, thus reaching the desired contradiction.

(LPO′)∗ ̸≤W TC∗
N: we use the fact that TC∗

N ≡W ECT (see [5]). We will show
a stronger result, namely that IsFiniteS ̸≤W ECT, where IsFiniteS : 2N → S is
the following problem, as defined in [9]: for every p ∈ 2N, IsFiniteS(p) = ⊤ if p
contains only finitely many occurrences of 1 and IsFiniteS(p) = ⊥ otherwise 3.

Notice that IsFiniteS ≤W LPO′: given any string p ∈ 2N, we consider the
instance ⟨p0, p1, . . . ⟩ of LPO′ defined as follows: for every i, pi takes value 1 until
(and if) the ith occurrence of 1 is found in p, after which point it takes value 0.
Then, LPO′(⟨p0.p1 . . . ⟩) = 1 if and only if IsFiniteS(p) = ⊥. Hence, if we show
that IsFiniteS ̸≤W ECT, we have in particular that (LPO′)∗ ̸≤W TC∗

N.
Suppose for a contradiction that a reduction exists and is witnessed by func-

tionals H and K. We build an instance p of IsFiniteS contradicting this.
Let us consider the colouring H(0N), and let b0 ∈ ECT(H(0N)) be a bound

for it. Since IsFiniteS(0
N) = ⊤, there is an n0 such that the following two condi-

tions hold: K(0n0 , b0) converges and gives as output ⊤, and moreover, the partial
colouring H(0n0) is such that, for every colour j showing up after b0 in H(0N)
(i.e., every colour in the constant palette of H(0N)), there is an m > b0 such
that H()n0)(m) = j. We then consider the colouring H(0n010N), and a bound
b1 for it. Again by the fact that IsFiniteS(0

n010N) = ⊤, there is an n1 satisfy-
ing the following two conditions: K(0n010n1 , b1) converges to ⊤ and moreover,
the partial colouring H(0n010n1) is such that, for every colour j in the con-
stant palette of H(0n010N), there are two numbers m > m′ > b1 such that
H(0n010n1)(m) = H(0n010n1)(m′) = j. We then move to consider the colouring
H(0n010n110N). We iterate the procedure infinitely many times.

Let p ∈ 2N be the infinite binary string obtained as the limit of the process
described in the previous paragraph, and notice that IsFiniteS(p) = ⊥.

Let us consider the colouring H(p) and a bound b ∈ ECT(H(p)) for this
colouring. If there exists an i such that b ≤ bi, where bi is a bound found in
the construction of p, then bi is also a valid bound for H(p). But then, by the
construction, K(p, bi) = ⊤, which cannot happen.

Hence, every bound b for H(p) is larger than every bound bi found during
the construction. But then, there is a b′ < b such that for infinitely many i,
b′ = bi. We claim that b′ is a valid bound for H(p). Suppose not: then, there is a
colour j of H(p) that appears only finitely many times after b′, say k times. But
since at stage s of the construction of p we forced every colour appearing after
bs to occur at least s+ 1 times after the bound bs, by the fact that b′ is chosen

3 S is the Sierpinski space {⊤,⊥}, where ⊤ is coded by the binary strings containing
at least one 1, and ⊥ is coded by 0N. IsFiniteS is strictly weaker than IsFinite
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as bound infinitely many times we can find a stage where we have forced j to
appear k+1 times after b′, thus proving that b′ is a valid bound. Then, as in the
previous case, we have that K(p, b′) = ⊤, yielding the desired contradiction. ⊓⊔

B Proof of Lemma 4

Lemma 4. For every integers a and b and every problem P ≤W CN, it holds
that ((LPO′)a × TCb

N) ∗ P ≤W (LPO′)a × TCb
N × P.

Proof. Clearly, it is sufficient to prove that ((LPO′)a×TCb
N) ∗CN ≤W (LPO′)a×

TCb
N ×CN, or, equivalently, that (IsFinitea ×TCb

N) ∗CN ≤W IsFinitea ×TCb
N ×CN.

Let minCN be the single-valued problem whose instances are the instances of
CN, and whose solution for every instance e is the minimal n such that n ̸∈ ran(e).
Since it is easy to see that minCN ≡W CN, we can prove that (IsFinitea × TCb

N) ∗
CN ≤W IsFinitea × TCb

N ×minCN.
Let (e, i) ∈ NN×NN be an instance of TCN ∗CN, where e is an instance of CN

and, for every n ∈ CN(e), Φ(n, i) is an instance of IsFinitea × TCb
N, where Φ is a

universal Turing functional. For notational convenience, we will rephrase this by
saying that there are a + b functionals Γ 0, Γ 1, . . . , Γ a−1 and ∆0, ∆1, . . . ,∆b−1

such that, for every j < a, every k < b and every n ∈ CN(e), Γ j(n, i) is an
instance of IsFinite and ∆k(n, i) is an instance of TCN.

We now describe the forward functional of the reduction, i.e. we describe
how to obtain the instances e′k of TCb

N and pj of (IsFinite)a that will be passed
to (IsFinite)a × TCb

N × CN.
For every k < b, we define the instance e′k of TCN in stages as follows. Let

a computable bijection ⟨·, ·⟩ : N × N → N be given. At step s, we check what
(finite) set is being enumerated by e(s), and we take the minimal element of the
complement of it, call it ns. Then, we run ∆k

s(ns, i)(0), . . . ,∆
k
s(ns, i)(s), i.e. we

run the first s steps of the computation of ∆k(ns, i)(ℓ) for every ℓ ≤ s. Let ms

be the minimal number that does not appear in any of the ∆k
s(ns, i)(ℓ), and let

e′ enumerate ⟨s, h⟩ for every h ̸= ms (if all of the ∆k
s(ns, i)(ℓ) are empty, then

let e′ enumerate all of the ⟨s, h⟩). Moreover, for s > 0, if ms ̸= ms−1, we let e′

enumerate ⟨t,ms−1⟩ as well, for all t < s. Iterate the procedure for every s ∈ N.
Similarly, for every j < a, we define an instance pj of IsFinite in stages as

follows: at every stage s, we will define a finite approximation pj,s ∈ 2<N of the
final string pj . All of these strings are constituted by two parts, pgj,s (the “garbage”
part of the string) and puj,s (the “useful” part of the string), and at every stage
pj,s = pgj,s

⌢puj,s. We start stage 0 by putting pgj,0 = puj,0 = ∅. For every stage s,
we check what (finite) set is being enumerated by e(s), and we take the minimal
element of the complement of it, call it ns. We run Γ j

s (ns, i)(0), . . . , Γ
j
s (ns, i)(s)

(notice that we can always suppose that Γ j(ns, i)(ℓ + 1) ↓→ Γ j(ns, i)(ℓ) ↓).
Then, there are two cases.

– If ns = ns−1, we let

pgj,s+1 = pgj,s and puj,s+1 = Γ j
s (ns, i)(0)

⌢ . . .⌢Γ j
s (ns, i)(s),
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i.e., we let the “garbage” part of the string unchanged and we extend the
“useful” part by the new elements enumerated by Γ j .

– If instead ns ̸= ns−1, we let

pgj,s+1 = pgj,s
⌢puj,s and puj,s+1 = Γ j

s (ns, i)(0)
⌢ . . .⌢Γ j

s (ns, i)(s),

i.e., we extend the “garbage” part of the string to include what previously
was the “useful” part, and we start with a new “useful” part obtained by
running the computation Γ j(ns, i).

We iterate the procedure for every integer s.
After a sufficiently large step s, ns stabilizes to the actual n such that n ∈

minCN(e), and so Γ j(ns, i) and ∆k(ns, i) produce actual instances pj and the e′k
of LPO′ and TCN, respectively (the case of LPO′ is maybe less than obvious: the
fundamental fact is that, for a sufficiently large stage s, the “garbage” part of
every string stops growing, and so we are just extending the “useful” part from
that stage on).

Then, for every j < a, IsFinite(pj) = IsFinite(Γ j(ns, i)), since pj is exactly
Γ j(ns, i)) plus a finite initial segment (namely, the “garbage” part of the string”).
Moreover, for every k < b, it is easy to see that, if ∆k(ns, i) enumerates all of
N, then so does e′, whereas if m is minimal such that m ̸∈ ran

(
∆k(ns, i)

)
, then

e′ enumerates all of N except for numbers of the form ⟨t,m⟩, for t large enough.
Hence, if we consider some

(c0, . . . , ca−1, d0, . . . , db−1, n) ∈
IsFinitea × TCb

N ×minCN(p0, . . . , pa−1, e
′
0, . . . , e

′
b−1, e),

we see that (c0, . . . , ca−1, π2(d0), . . . , π2(db−1), n) ∈ (IsFinitea × TCb
N) ∗ CN(e, i),

thus proving the reduction (by πi we denote the projection on the ith component,
so ⟨π1(x), π2(x)⟩ = x)). ⊓⊔

C The Weihrauch complexity of cShuffle

First, we note that cShuffle is closed under finite products.

Lemma 20. cShuffle× cShuffle ≤W cShuffle. Hence, cShuffle∗ ≤W cShuffle.

Proof. Let (n0, f0) and (n1, f1) be instances of cShuffle. Let us fix a computable
bijection ⟨·, ·⟩ : n0 × n1 → n0n1 and define the colouring f : Q → n0n1 by
f(x) = ⟨f0(x), f1(x)⟩ for every x ∈ Q. Hence, (n0n1, f) is a valid instance of
cShuffle. Let C ∈ cShuffle(n0n1, f): this means that there is an interval I that
is a f -shuffle for the colours of C. For i < 2, let Ci := {j : ∃c ∈ C(j = πi(j))},
where πi is the projection on the ith component. Then, Ci ∈ cShuffle(nifi), as
witnessed by the interval I. ⊓⊔

We are now ready to gauge the strength of cShuffle. We start with the easy
direction.
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Lemma 8. (LPO′)∗ ≤W cShuffle

Proof. Thanks to Lemma 20, it is enough to prove that LPO′ ≤W cShuffle.
We will prove that IsFinite ≤sW cShuffle. Let p ∈ 2N be an infinite binary

string, we define a colouring of the rationals as follows: we define a colouring of
the dyadic numbers c : D → 2, and, using the fact that there exists a computable
order-preserving bijection q : Q → D, we will then consider c ◦ q, and apply
cShuffle to that colouring.

We now construct c by setting c(d) = p(n) for every d ∈ D with rank(d) = n.
Apply cShuffle to c ◦ q, and let C ∈ cShuffle(c ◦ q). Since density implies infinity,
if 1 ∈ C, then p had infinitely many occurrences of 1. On the other hand, if for
infinitely many n p(n) = 1, then all the dyadics of the form a

2n are coloured 1 by
c, which implies that the colour 1 occurs densely in every interval. Hence, 1 ∈ C
if and only if 1 appeared in p infinitely often, which proves the claim. ⊓⊔

Next, we move to the more difficult reduction.

Lemma 9. Let cShufflen be the restriction of cShuffle to the instances of the
form (n, c). Then, cShufflen ≤W (LPO′)2

n−1

Proof. We actually show that cShufflen ≤W IsFinite2
n−1. Let (n, c) be an instance

of cShuffle. The idea is that we will use one instance of IsFinite for every non-
empty subset C of the set of colours n, in order to determine for which such Cs
there exists an interval IC such that c(IC) = C. We will then prove that any
⊆-minimal such C is a solution for (n, c).

Let Ci, for i < 2n − 1, be an enumeration of the non-empty subsets of n. Let
Ij be an enumeration of the open intervals of Q, and let qh be an enumeration of
Q. For every i < 2n−1, we build an instance pi of IsFinite in stages in parallel. At
every stage s, for every component i < 2n − 1, there will be a “current interval”
Ijis and a “current point” qhi

s
. We start the construction by setting the current

interval to I0 and the current point to q0 for every component i.
For every component i, at stage s we do the following:

– if qhi
s
̸∈ Ijis or if c(qhi

s
) ∈ Ci, we set Ijis+1

= Ijis and qhi
s+1

= qhs+1. Moreover,
we set pi(s) = 0. In practice, this means that if the colour of the current
point is in Ci, or if the current point is not in the current interval, no special
action is required, and we can move to consider the next point.

– If instead qhi
s
∈ Ijis and c(qhi

s
) ̸∈ Ci, we set Ijis+1

= Ijs+1 and qhi
s+1

= q0.
Moreover, we set pi(s) = 1. In practice, this means that if the current point
is in the current interval and its colour is not a colour of Ci, then, we need
to move to consider the next interval in the list, and therefore we reset the
current point to the first point in the enumeration. Moreover, we record this
event by letting pi(s) take value 1.

We iterate the construction for every s ∈ N. After infinitely many steps, we
obtain an instance ⟨p0, p1, . . . , p2n−2⟩ of IsFinite2

n−1. Let σ ∈ 22
n−1 be such that

σ ∈ IsFinite2
n−1(⟨p0, p1, . . . , p2n−2⟩).
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To find a set of colours C for which there is a c-shuffle, we proceed s follows.
We start checking σ(i) for i such that Ci is a singleton: if, for any such i, σ(i) = 1,
it means that the corresponding pi has only finitely many 1s, which implies that
the second case in the construction was triggered only finitely many times. Hence,
there is a stage s such that, for every t > s, Ijis = Ijit . This means that Ijis is
c-homogeneous, and thus, in particular, a c-shuffle. Hence, Ci is a valid solution.

If instead for all is such that Ci is a singleton σ(i) = 0: then, we know that
no interval I is c-monochromatic, otherwise we would be in the previous case.
We move to consider the is such that |Ci| = 2. Suppose that for one such i,
σ(i) = 1: again, this means that, for a sufficiently large stage s, the current
interval Ijis is such that, for every q ∈ Ijis , c(q) ∈ Ci, since the second case in the
construction is triggered only finitely many times. But since we know that there
are no c-monochromatic intervals, the two colours of Ci occur densely in Ijis ,
which then is a c-shuffle for the colours in Ci. Hence, any Ci such that σ(i) = 1
is a valid solution for c.

This argument can be iterated for every number of colours. Since, by the
theory, a c-shuffle exists, at least one of the pi instances above contains only
finitely many 1s. To compute a solution to c, it is thus sufficient to look for the
minimal k such that, for some i, σ(i) = 1 and |Ci| = k, and output Ci. ⊓⊔

Putting the two previous results together, we have the following.

Theorem 4. (LPO′)∗ ≡W cShuffle

Proof. (LPO′)∗ ≤W cShuffle is given directly by Lemma 8. For the other di-
rection, notice that cShuffle ≡W

d
n∈N cShufflen. The result then follows from

Lemma 9. ⊓⊔

D Proof of Lemma 10

Lemma 10. Let iShufflen be the restriction of iShuffle to the instances of the
form (n, c). For every n ∈ N with n ≥ 2, iShufflen ≤sW TCn−1

N .

Proof. Fix an enumeration Ij of the intervals of Q, an enumeration qh of Q, a
computable bijection ⟨·, ·⟩ : N×N → N, and let (n, c) be an instance of iShufflen.

The idea of the reduction is the following: with the first instance en−1 of
TCN, we look for an interval Ij on which c takes only n − 1 colours: if no such
interval exists, then this means that every colour is dense in every interval, and
so every Ij is a valid solution to c. Hence, we can suppose that such an interval is
eventually found: we will then use the second instance en−2 of TCN to look for a
subinterval of Ij where c takes only n−2 values. Again, we can suppose that such
an interval is found. We proceed like this for n− 1 steps, so that in the end the
last instance e1 of TCN is used to find an interval I ′ inside an interval I on which
we know that at most two colours appear: again, we look for c-monochromatic
intervals: if we do not find any, then I ′ is already a c-shuffle, whereas if we do find
one, then that interval is now a solution to c, since c-monochromatic intervals
are trivially c-shuffles..
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More formally, we proceed as follows: we define n−1 instances e1, . . . , en−1 of
TCN as follows. For every stage s, every instance ei will have a “current interval”
Ijis and a “current point” qhi

s
and a “current list of colours” Lki

s
. We start the

construction by the setting the current interval equal to I0, the current point
equal to q0 and the current list of points equal to ∅ for every i.

At stage s, there are two cases:

– if, for every i, qhi
s
̸∈ Ijis or |Lki

s
∪ {c(qhi

s
)}| ≤ i, we set Ijis+1

= Ijis , qhi
s+1

=

qhi
s+1 and Lki

s+1
= Lki

s
∪{c(qhi

s
)}. Moreover, we let every ei enumerate every

number of the form ⟨s, a⟩, for every a ∈ N, except for ⟨s, jis⟩. We then move
to stage s+ 1.
In practice, this means that if the set of colours of the points of the current
interval seen so far does not have cardinality larger than i, no particular
action is required, and we can move to check the next point on the list.

– otherwise: let i′ be maximal such that qhi
s
∈ Ijis and |Lki

s
∪ {c(qhi

s
)}| > i.

Then, for every i > i′ we proceed as in the previous case (i.e., the current
interval, current point, current list of colours and enumeration are defined as
above). For the other components, we proceed as follows: we first look for the
minimal ℓ > ji

′

s such that Iℓ ⊆ I
ji

′+1
s

(if i′ = n− 1, just pick ℓ = jn−1
s + 1).

Then, for every i ≤ i′, we set Ijis+1
= Iℓ, qhi

s+1
= q0 and Lki

s+1
= ∅. Moreover,

we let ei enumerate every number of the form ⟨t, a⟩ with t < s that had not
been enumerated so far, and also every number of the form ⟨s, a⟩, with the
exception of ⟨s, jis⟩. We then move to stage s+ 1.
In practice, this means that if, for a certain component i′, we found that the
current interval has too many colours, then, for all the components i ≤ i′,
we move to consider intervals strictly contained in the current interval of
component i′.

We iterate the procedure for every s ∈ N, thus obtaining the TCn−1
N -instance

⟨e1, . . . , en−1⟩.
Let σ ∈ Nn−1 be such that σ ∈ TCn−1

N (⟨e1, . . . , en−1⟩). Then, we look for the
minimal i such that Iπ2(σ(i)) ⊆ Iπ2(σ(i+1)) ⊆ · · · ⊆ Iπ2(σ(n−1)) (by πi we denote
the projection on the ith component, so ⟨π1(x), π2(x)⟩ = x)). We claim that
Iπ2(σ(i)) is a c-shuffle, which is sufficient to conclude that iShufflen ≤sW TCn−1

N .
We now prove the claim. First, suppose that en−1 enumerates all of N. Then,

the second case of the construction was triggered infinitely many times with
i′ = n − 1: hence, no interval contains just n − 1 colours, and so, as we said at
the start of the proof, this means that every interval is a c-shuffle. In particular,
this imples that Iπ2(σ(i)) is a valid solution. Hence we can suppose that en−1

does not enumerate all of N.
Next, we notice that for every m > 1, if em enumerates all of N, the so

does em−1, by inspecting the second case of the construction. Let m be minimal
such that em does not enumerate all of N. For such an m, it is easy to see that
Iπ2(σ(m)) is a valid solution to c: indeed, we know from the construction that c
takes m colours on Ipi2(σ(m)), and that for no interval contained in Iπ2(σ(m)) c
takes m−1 colours, which means that Iπ2(σ(m)) is a c-shuffle. Moreover, it is easy
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to see that Iπ2(σ(m)) ⊆ Iπ2(σ(m+1)) ⊆ . . . Iπ2(σ(n−1)), which implies that i ≤ m.
Since every subinterval of a c-shuffle is a c-shuffle, Iπ2(σ(i)) is a valid solution to
c, as we wanted. ⊓⊔

E Proof of Lemma 13

Lemma 13. Shuffle× Shuffle ≤W Shuffle. Therefore, Shuffle∗ ≡W Shuffle.

Proof idea. The Lemma is proved exactly as Lemma 20. ⊓⊔

F Proof of Lemma 15

Lemma 15. Let Shufflen be the restriction of Shuffle to the instances of the form
(n, c). Then, Shufflen ≤W (TCN × LPO′)2

n−1

Proof. Let (n, c) be an instance of Shuffle. The idea of the proof of Shufflen ≤W

(TCN × LPO′)2
n−1 is, in essence, to combine the proofs of Lemma 10 and of

Theorem 4: we want to use TCN to find a candidate interval for a certain subset
C of n, and on the side we use LPO′ (or equivalently, IsFinite) to check for
every such set C whether a c-shuffle for the colours of C actually exists. The
main difficulty with the idea described above is that the two proofs must be
intertwined, in order to be able to find both a c-shuffle and the set of colours
that appears on it.

We proceed as follows: let Ci be an enumeration of the non-empty subsets
of n. Moreover, let us fix some computable enumeration Ij of the intervals of
Q, some computable enumeration qh of the points of Q, and some computable
bijection ⟨·, ·⟩ : N × N → N. For every Ci, we will define an instance ⟨pi, ei⟩ of
IsFinite× TCN in stages as follows: at every stage s, for every index i, there will
be a “current interval” Ijis and a “current point” qhi

s
. We begin stage 0 by setting

the current interval to I0 and the current point to q0 for every index i.
At stage s, for every component i, there are two cases:

– if qhi
s
̸∈ Ijis or if c(qhi

s
) ∈ Ci, we set Ijis+1

= Ijis and qhi
s+1

= qhi
s+1. Moreover,

we set pi(s) = 0 and we let ei enumerate all the integers of the form ⟨s, a⟩,
except ⟨s, jis+1⟩. We then move to stage s+ 1.
In plain words, for every component i, we check if the colour of the current
point is in Ci, or if the current point is not in the current interval: if this
happens, no special action is required.

– If instead qhi
s
∈ Ijis and c(qhi

s
) ̸∈ Ci, we set Ijis+1

= Ijis+1 and qhi
s+1

= q0.
Moreover, we set pi(s) = 1, and we let ei enumerate all the numbers of the
form ⟨t, a⟩, for t < s, that had not been enumerated at a previous stage, and
also all the numbers of the form ⟨s, a⟩, with the exception of ⟨s, jis+1⟩. We
then move to stage s+ 1.
In plain words: if we find that for some component i the colour of the current
point is not in Ci, then, from the next stage, we start considering another
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interval, namely the next one in the fixed enumeration. We then reset the
current point to q0 (so that all rationals are checked again), and we record
the event by letting pi(s) = 1 and changing the form of the points that ei is
enumerating.

We iterate the procedure for every integer s. Let σ ∈ (2× N)2n−1 be such that

σ ∈ (IsFinite× TCN)
2n−1(⟨⟨p1, e1⟩ . . . , ⟨p2n−1, e2n−1⟩)⟩

Let k be the minimal cardinality of a subset Ci ⊆ n such that IsFinite(pi) = 1:
notice that such a k must exist, because c-shuffle exist. Then, we claim that the
corresponding Iπ2(σ(i)) is a c-shuffle (by πi we denote the projection on the ith
component, so ⟨π1(x), π2(x)⟩ = x)). If we do this, it immediately follows that
Shuffle ≤W ((LPO′)× TCN)

2n−1.
Hence, all that is left to be done is to prove the claim. By the fact that

IsFinite(pi) = 1, we know that the second case of the construction is triggered
only finitely many times. Hence, ei does not enumerate all of N, and so Iπ2(σ(i))

is an interval containing only colours from Ci. Moreover, by the minimality of
|Ci|, we know that no subinterval of Iπ2(σ(i)) contains fewer colours, which proves
that Iπ2(σ(i)) is a c-shuffle. ⊓⊔

G Proof of Theorem 8

Theorem 8. Let ORTQ be the problem whose instances are ordered colourings
c : [Q]2 → P , for some finite poset (P,≺), and whose possible outputs on input
c are intervals on which c is constant. We have that ORTQ ≡W LPO∗.

Proof. LPO∗ ≤sW ORTQ: let ⟨n, p0, . . . , pn−1⟩ be an instance of LPO∗. Let (P,≺)
be the poset such that P = 2n, the set of subsets of n, and ≺=⊃, i.e. ≺ is reverse
inclusion.

We define an ordered colouring c : [Q]2 → P in stages by deciding, at stage
s, the colour of all the pairs of points (x, y) ∈ [Q]2 such that |x− y| > 2−s.

At stage 0, we set c(x, y) = ∅ for every (x, y) ∈ [Q]2 such that |x− y| > 1. At
stage s > 0, we check pi

∣∣
s

for every i < n (i.e., for every i, we check the sequence
pi up to pi(s − 1)), and for every (x, y) ∈ [Q]2 with 2−s+1 ≥ |x − y| > 2−s, we
let

c(x, y) = {i < n : ∃t < s(pi(t) = 1)}.

It is easily seen that c defined as above is an ordered colouring: if x ≤ x′ < y′ ≤
y′, then |x′ − y′| ≤ |x− y|, which means that to determine the colour of (x′, y′)
we need to examine a longer initial segment of the pis. Let I ∈ ORTQ(P, c),
and let ℓ ∈ N be least such that the length of I is larger that 2−ℓ: since I is
c-homogeneous, we know that for every i < n, ∃t(pi(t) = 1) ⇔ ∃t < ℓ(pi(t) = 1).
Hence, for every pair of points (x, y) ∈ [I]2, the colour of c(x, y) is exactly the
set of i such that LPO(pi) = 1.

ORTQ ≤W LPO∗: Let (P, c) be an instance of ORTQ, for some finite poset
(P,≺P ). Let <L be a linear extension of ≺P , and notice that c : Q → (P,<L) is
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still an ordered colouring. Let r0 <L r1 <L · · · <L r|P |−1 be the elements of P .
The idea of the proof is to have one instance of LPO per element of P , and to
check in parallel the intervals of the rationals to see if they are c-homogeneous
for the corresponding element of P . Anyway, one has to be careful as to how
these intervals are chosen: to give an exampe, if we find that a certain interval
I is not c-homogeneous for the <L-maximal element r|P |−1, because we found,
say, x < y such that c(x, y) ̸= r|P |−1, then not only do we flag the corresponding
instance of LPO by letting it contain a 1, but we also restrict the research of all
the other components so that they only look at intervals contained in ]x, y[. By
proceeding similarly for all the components, since c is ordered, we are sure that
we will eventually find a c-homogeneous interval.

We define the |P | instances p0, p1, . . . , p|P |−1 of LPO in stages as follows. Let
an be an enumeration of the ordered pairs of rationals, i.e. an enumeration of
[Q]2, with infinitely many repetitions. At every stage s, some components i will
be “active”, whereas the remaining components will be “inactive”: if a component
i is inactive, it can never again become active. Moreover, at every stage s, there
is a “current pair” ans

and a “current interval” ams
(for this proof, it is practical

to see ordered pairs of rational as both pairs and as denoting extrema of an open
interval). We begin stage 0, by putting the current pair and the current interval
equal to a0. Moreover, every component is set to be active.

At stage s, for every inactive component j < |P |, we set pj(s) = 1. For every
active component i, there are two cases:

– if, for every active component i, c(ans
) ≥L ri, then we look for the smallest

ℓ > ns such that aℓ ⊆ ams
(i.e., we look for a pair of points contained in the

current interval), and set ans+1 = aℓ, and ams+1 = ams . We set pi(s) = 0
and no component is set to inactive. We then move to stage s+ 1.

– suppose instead there is an active component i such that c(ans
) <L ri: let i

be the minimal such i, then we set every j ≥ i to inactive (the ones that were
already inactive remain so) and we let pj(s) = 1. We then let ams+1 = ans ,
and we look for the least ℓ > ns such that aℓ ⊂ ans

: we set ans+1
= aℓ, and

we set pk(s) = 0 for every active component k < |P |. We then move to stage
s+ 1.

We iterate the procedure above for every integer s.
Let σ ∈ 2|P | be such that σ ∈ LPO∗(⟨|P |, p0, . . . , p|P |−1⟩). Notice that σ(0) =

0, since no pair of points can attain colour <L-below r0. Moreover, notice that
σ(i) = 0 if and only if the component i was never set inactive. Hence, let i be
maximal such that σ(i) = 0, and let t be a state such all components j > i
have been set inactive by step t. Hence, after step t, the current interval I never
changes, and thus we eventually check the colour of all the pairs in that interval.
Since the second case of the construction is never triggered, it follows that I is
a c-homogeneous interval. Hence, in order to find it, we know we just have to
repeat the construction above until all the components of index larger than i are
set inactive. This proves that ORTQ ≤W LPO∗. ⊓⊔
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H Proof of Theorem 9

Theorem 9. – cARTQ ≤W (LPO′)∗ × LPO∗, therefore cARTQ ≡W (LPO′)∗.
– iARTQ ≤W TC∗

N × LPO∗, therefore iARTQ ≡W TC∗
N.

– ARTQ ≤W (LPO′)∗ × TC∗
N × LPO∗, therefore ARTQ ≡W (LPO′)∗ × TC∗

N.

Proof. The three results are all proved in a similar manner. Before starting the
proof, we recall that LPO∗ ≤W CN, which is a known fact. This enables us to
use Lemma 4 with LPO∗ in place of P.

For x ∈ {c, i, s} and every n ∈ N, let xARTQ,n be the restriction of xARTQ to
instances of the form (S, c) with S of cardinality n. Hence, by the considerations
preceding the statement of the theorem in the body of the paper, we have the
following facts:

– cARTQ,n ≤W cShufflen2 ∗ ORTQ, hence, by Lemma 9 and Theorem 8, we

have that cARTQ,n ≤W (LPO′)2
n2

−1 ∗ LPO∗. By Lemma 4, we have that

cARTQ,n ≤W (LPO′)2
n2

−1 × LPO∗, from which the claim follows.
– iARTQ,n ≤W iShufflen2 ∗ORTQ, hence, by Lemma 10 and Theorem 8, we have

that iARTQ,n ≤W TCn2−1
N ∗ LPO∗. By Lemma 4, we have that iARTQ,n ≤W

TCn2−1
N × LPO∗, from which the claim follows.

– ARTQ,n ≤W Shufflen2 ∗ ORTQ, hence, by Lemma 15 and Lemma 4, we have

that ARTQ,n ≤W (LPO′ × TCN)
2n

2
−1 ∗ LPO∗. By Lemma 4, we have that

ARTQ,n ≤W (LPO′ × TCN)
2n

2
−1 × LPO∗, from which the claim follows.

⊓⊔
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