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Abstract
In this paper, we show how to integrate linear types with
type dependency, by extending the linear/non-linear calcu-
lus of Benton to support type dependency.

Next, we give an application of this calculus by giving a
proof-theoretic account of imperative programming, which
requires extending the calculus with computationally irrele-
vant quantification, proof irrelevance, and a monad of com-
putations. We show the soundness of our theory by giving
a realizability model in the style of Nuprl, which permits us
to validate not only the β-laws for each type, but also the
η-laws.

These extensions permit us to decompose Hoare triples
into a collection of simpler type-theoretic connectives, yield-
ing a rich equational theory for dependently-typed higher-
order imperative programs. Furthermore, both the type the-
ory and its model are relatively simple, even when all of the
extensions are considered.

Keywords Linear types, dependent types, intersection types,
proof irrelevance, separation logic, Hoare triples

1. Introduction
Two of the most influential research directions in language
design are substructural logic and dependent type theory.

Substructural logics like linear logic [18] and separation
logic [38] offer fine-grained control over the structural rules
of logic (i.e., contraction and weakening), which means types
control not only how a value of a given type is used, but also
how often it is used. This permits giving a logical account
of the notion of resource, and has been tremendously useful
in giving modular and accurate specifications to stateful and
imperative programs.

On the other hand, dependent type theory extends simple
type theory by permitting terms to occur in types, permitting
the expression of concepts like equality in types. This enables
giving types which give a very fine-grained specification of
the functional behaviour of their inhabitants.

We would like to fully integrate dependent and linear
type theory. Linear type theory would permit us to extend
the Curry-Howard correspondence to (for example) imper-
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ative programs, and type dependency permits giving very
precise types to describe the precise functional behavior of
those programs. The primary difficulty we face is precisely
the interaction between type dependency and the structural
rules. Since linear types ensure a variable occurs only once in
a program, and dependent types permit variables to occur in
both types and terms, how should we count occurrences of
variables in types?

The key observation underpinning our approach is that
we do not have to answer this question! We build on the work of
Benton [7], which formulated models of intuitionistic linear
logic in terms of a monoidal adjunction F ⊣ G between a
monoidal closed category L and a cartesian closed category
C. The exponential !A then decomposes as the composition
of the G(F(A)). Syntactically, such a model then corresponds
to a pair of lambda calculi, one intuitionistic, and one linear,
which are related by a pair of modal operators F and G.

In the linear/non-linear (LNL) calculus, we no longer
have to view the intuitionistic function space P → Q through
the lens of the Girard encoding !P ⊸ Q. Instead, the intu-
itionistic arrow, →, is a connective in its own right, inde-
pendent of the linear function space, ⊸. Given such a sep-
aration, we can make the intuitionistic part of the language
dependent, changing the type X→ Y to the pi-type Πx : X. Y,
without altering the linear function space A ⊸ B. We then
end up with a type theory in which linear types may depend
on intuitionistic terms in quite sophisticated ways, but we
never have to form a type dependent on an open linear term.

As an illustration, recall Girard’s [19] classic motivating
example of the resource reading of linear logic in which the
proposition A represents spending a dollar, B represents ob-
taining a pack of Camels, and C obtaining a pack of Marl-
boro. The formula A ⊸ B&C then expresses that one may
spend a dollar and receive the option of a pack of Camels
and of a pack of Marlboro, but only of these options may be
exercised. In LNLD, from that assumption one can type, for
example, a machine M that takes n dollars and produces its
choice of something you can buy:

M : Πn : N. tuplenA⊸ Fm : N,m ′ : N,p : m+m ′ = n.
tuplemB⊗ tuplem ′ C

where tuplenA is the (definable)n-fold linear tensorA⊗· · ·⊗
A. The return type of the linear function space in the type
of M is a linear dependent pair, which generalizes LNL’s F
modality for mapping intuitionistic values into linear ones.
SoM yields two integersm andm ′, a proof that their sum is
n and anm-tuple of Bs together with anm ′-tuple of Cs.

Contributions. In this paper, we make the following contri-
butions:

• First, we describe a core type theory LNLD that smoothly
integrates both linearity and full type dependency, by ex-



Γ ok

· ok
Γ ok Γ ⊢ X type

Γ ,x : X ok

Γ ⊢ ∆ ok

Γ ⊢ · ok
Γ ⊢ ∆ ok Γ ⊢A linear

Γ ⊢ ∆,a :A ok

Γ ⊢ X type Γ ⊢A linear

Γ ⊢ X : Ui

Γ ⊢ X type
Γ ⊢A : Li

Γ ⊢A linear

Γ ⊢ X ≡ Y type Γ ⊢A ≡ B linear

Γ ⊢ X ≡ Y : Ui

Γ ⊢ X ≡ Y type
Γ ⊢A ≡ B : Li

Γ ⊢A ≡ B linear

Figure 1. Structural judgements

tending the linear/non-linear calculus [7, 8]. Our type
theory is an extensional type theory, which means that we
consider the full βη-theory of the language, and further-
more, it also has a universe hierarchy, meaning that we
support “full-spectrum” dependent types including large
eliminations (i.e., computing types from terms).
Our approach to linear dependent type theory gives a
simple proof-theoretic explanation of how the ad-hoc
restrictions on the interaction of linearity in earlier ap-
proaches (such as Linear LF [10]) arise, by showing how
they can be modelled in LNLD.

• Second, we show how to turn this calculus into a lan-
guage for dependently-typed imperative programming
(in the style of separation logic). The general idea is to
combine linearity and type dependency to turn separation-
logic style specifications into types, and to take impera-
tive programs to be inhabitants of those types.
Ensuring that programs have the appropriate operational
behavior requires a number of extensions to the type sys-
tem, including pointer types, implicit quantification (in
the style of intersection and union types), and proof irrel-
evance for linear types.

• Once this is done, we not only have a very expressive type
system for higher-order imperative programs, but we also
can systematically give a natural equational theory for
them via the βη-theory for each of the type constructors
we use.

• Next, we give a realizability model in the style of Nuprl [20]
to show the consistency of our calculus. Our model is very
simple and easy to work with, but nevertheless simply
and gracefully justifies the wide variety of the extensions
we consider.

• Finally, we give a small implementation of our extended
type theory, illustrating that it is possible to implement all
of these constructions.

2. Core Dependent Linear Type Theory
In this section, we describe the core dependent linear/nonlinear
calculus. The full grammar of terms and types is given later,
in Figure 10, but here we present the calculus rule by rule.

Γ ⊢ Ui : Ui+1 Γ ⊢ Li : Ui+1

Γ ⊢ X : Ui Γ ,x : X ⊢ Y : Ui

Γ ⊢ Πx : X. Y : Ui

Γ ⊢ X : Ui Γ ,x : X ⊢ Y : Ui

Γ ⊢ Σx : X. Y : Ui

Γ ⊢ 1 : Ui

Γ ⊢A : Li

Γ ⊢ GA : Ui

Γ ⊢ X : Ui Γ ⊢ e : X Γ ⊢ e′ : X

Γ ⊢ e =X e
′ : Ui

Γ ⊢ I : Li

Γ ⊢A : Li Γ ⊢ B : Li

Γ ⊢A⊗B : Li

Γ ⊢A : Li Γ ⊢ B : Li

Γ ⊢A⊸ B : Li

Γ ⊢ X : Ui Γ ,x : X ⊢A : Li

Γ ⊢ Πx : X.A : Li

Γ ⊢ X : Ui Γ ,x : X ⊢A : Li

Γ ⊢ Fx : X.A : Li

Γ ⊢ ⊤ : Li

Γ ⊢A : Li Γ ⊢ B : Li

Γ ⊢A&B : Li

Figure 2. Type Well-formedness

Γ ,x : X, Γ ′ ⊢ x : X

Γ ⊢ e : Y Γ ⊢ X ≡ Y type
Γ ⊢ e : X Γ ⊢ () : 1

Γ ⊢ e : X Γ ⊢ e′ : [e/x]Y

Γ ⊢ (e,e′) : Σx : X. Y
Γ ⊢ e : Σx : X. Y
Γ ⊢ π1 e : X

Γ ⊢ e : Σx : X. Y
Γ ⊢ π2 e : [π1 e/x]Y

Γ ⊢ Πx : X. Y type Γ ,x : X ⊢ e : Y

Γ ⊢ λx. e : Πx : X. Y

Γ ⊢ e : Πx : X. Y Γ ⊢ e′ : X

Γ ⊢ e e′ : [e′/x]Y

Γ ⊢ e ≡ e′ : X

Γ ⊢ refl : e =X e
′

Γ ; · ⊢ e :A

Γ ⊢ Ge : GA

Figure 3. Intuitionistic Typing

The basic structural judgements are given in Figure 1. The
judgement Γ ok is the judgement that a context Γ of intuition-
istic hypotheses is well-formed. As is standard, a well-formed
context is either empty, or a context Γ ′, x : X where Γ ′ is
well-formed and X is an intuitionistic type well-formed in
Γ . The judgement Γ ⊢ ∆ ok says that ∆ is a well-formed lin-
ear context, whose linear types may depend (only) upon the
intuitionistic variables in Γ . The judgements Γ ⊢ X type and
Γ ⊢ A linear judge when a term is an intuitionistic or linear
type, respectively. The equality judgements Γ ⊢ X ≡ Y type
and Γ ⊢ A ≡ B linear determine whether two intuitionistic
or linear types are definitionally equal, respectively.

Both Γ ⊢ X type and Γ ⊢ A linear work by immedi-
ately appealing to an ordinary typing judgement for an in-
tuitionistic universe Ui and a linear universe Li. The type
well-formedness rules are given in Figure 2, and the intro-
duction and elimination rules are given in Figure 3, with the
judgement Γ ⊢ e : X.

Both linear and intuitionistic universes Li and Ui are el-
ements of the larger universe Ui+1. Note that Li is an ele-
ment of Ui+1 — this is because a linear type is an intuitionis-
tic term, since we do not wish to restrict how often type vari-
ables ranging over linear types can occur. (That is, we want
polymorphic types like Πα : Li. α⊸ α to be well-formed.)



Γ ;a :A ⊢ a :A

Γ ;∆ ⊢ e : B Γ ⊢A ≡ B linear
Γ ;∆ ⊢ e :A

Γ ; · ⊢ () : I
Γ ;∆ ⊢ e : I Γ ;∆′ ⊢ e′ : C

Γ ;∆,∆′ ⊢ let () = e in e′ : C

Γ ;∆ ⊢ e :A Γ ;∆′ ⊢ e′ : B

Γ ;∆,∆′ ⊢ (e,e′) :A⊗B

Γ ;∆ ⊢ e :A⊗B Γ ;∆′,a :A,b : B ⊢ e′ : C

Γ ;∆,∆′ ⊢ let (a,b) = e in e′ : C

Γ ;∆,a :A ⊢ e : B

Γ ;∆ ⊢ λa. e :A⊸ B

Γ ;∆ ⊢ e :A⊸ B Γ ;∆′ ⊢ e′ :A

Γ ;∆,∆′ ⊢ e e′ : B

Γ ,x : X;∆ ⊢ e :A

Γ ;∆ ⊢ λ̂x. e : Πx : X.A
Γ ;∆ ⊢ e : Πx : X.A Γ ⊢ e′ : X

Γ ;∆ ⊢ e e′ : [e′/x]A

Γ ;∆ ⊢ () : ⊤

Γ ;∆ ⊢ e1 :A1 Γ ;∆ ⊢ e2 :A2

Γ ;∆ ⊢ (e1,e2) :A1 &A2

Γ ;∆ ⊢ e :A&B
Γ ;∆ ⊢ π1 e :A

Γ ;∆ ⊢ e :A&B
Γ ;∆ ⊢ π2 e : B

Γ ⊢ e : X Γ ;∆ ⊢ t : [e/x]A
Γ ;∆ ⊢ F (e, t) : Fx : X.A

Γ ;∆ ⊢ e : Fx : X.A Γ ,x : X;∆′,a :A ⊢ e′ : C

Γ ;∆,∆′ ⊢ let F (x,a) = e in e′ : C

Γ ⊢ e : GA
Γ ; · ⊢ G−1 e :A

Figure 4. Linear Typing

The intuitionistic types we consider are the dependent
function spaceΠx : X. Y, with a lambda-abstraction and func-
tion application as its introduction and elimination rules; the
dependent pair Σx : X. Y, with pairing (e, e ′) as its introduc-
tion, and the projective (or “strong”) eliminations π1 e and
π2 e; the unit type 1; and the equality type e =X e

′. Equality
is introduced with refl, but has no explicit elimination form,
since we are giving an extensional type theory with equal-
ity reflection. These rules are all standard for dependent type
theory. Similarly, it is possible to add inductive types (such as
natural numbers) to the calculus, including support for large
eliminations, though we omit them from the rules in the pa-
per for space reasons (rules and proofs are in the companion
tech report).

The first place that linearity arises is with the the adjoint
embedding of linear types into intuitionistic types GA. Its
(intuitionistic) introduction rule is G e, which checks that e
has linear type A, in the empty linear context. (Intuitively,
this reflects the fact that closed linear terms can be freely
duplicated.) It is worth noting that our intuitionistic types
are also essentially the same types as are found in the non-
dependent LNL calculus, only we have changed X → Y to a
pi-type, and X× Y to a sigma-type.

The typing judgement Γ ;∆ ⊢ e : A for linear terms says
that e has type A, assuming intuitionistic variables Γ and
linear variables ∆. The well-formedness and typing rules for
the MALL connectives (I,⊗,⊸, & ,⊤) are all standard. The
elimination form of the type GA is G−1 e, which yields an A
in an empty linear context, which is the same as in Benton
[7].

Γ ⊢ e ≡ e′ : X Γ ;∆ ⊢ t ≡ t′ :A

Γ ⊢ p : e =X e
′

Γ ⊢ e ≡ e′ : X

Γ ⊢ (λx. e) e′ ≡ [e′/x]e : X Γ ⊢ e ≡ λx. e x : Πx : X. Y

Γ ⊢ π1 (e,e′) ≡ e : X Γ ⊢ π2 (e,e′) ≡ e′ : X

Γ ⊢ e ≡ (π1 e,π2 e) : Σx : X. Y

Γ ⊢ e ≡ e′ : 1

Γ ⊢ G (G−1 e) ≡ e : GA

Γ ; · ⊢ G−1 (G t) ≡ t :A Γ ;∆ ⊢ (λx. e) e′ ≡ [e′/x]e : C

Γ ;∆ ⊢ e ≡ λx. e x :A⊸ B

Γ ;∆ ⊢ (λ̂x. e) e′ ≡ [e′/x]e : C Γ ;∆ ⊢ e ≡ λ̂x. e x : Πx : X.A

Γ ;∆ ⊢ e ≡ e′ : ⊤

Γ ;∆ ⊢ π1 (e,e′) ≡ e :A Γ ;∆ ⊢ π1 (e,e′) ≡ e′ : B

Γ ;∆ ⊢ e ≡ (π1 e,π2 e) :A&B

Γ ;∆ ⊢ let () = () in e ≡ e : C

Γ ;∆ ⊢ let () = t in [()/x]t′ ≡ [t/x]t′ : C

Γ ;∆ ⊢ let (a,b) = (t1, t2) in t′ ≡ [t1/a, t2/b]t
′ : C

Γ ;∆ ⊢ let (a,b) = t in [(a,b)/x]t′ ≡ [t/x]t′ : C

Γ ;∆ ⊢ let F (x,a) = F (e, t) in t′ ≡ [e/x, t/a]t′ : C

Γ ;∆ ⊢ let F (x,a) = t in [F (x,a)/y]t′ ≡ [t/y]t′ : C

Figure 5. βη-Equality

We depart from propositional LNL when we reach the de-
pendent version of the other adjoint connective. Instead of a
unary modal connective F(X), we introduce the linear depen-
dent pair type Fx : X. A[x]. Its introduction form F (e, t) con-
sists of a pair consisting of an intuitionistic term e of type X,
and a linear term t of typeA[e] — observe the type of the lin-
ear term may depend on the intuitionistic first component.
However, just as in the LNL calculus, this pair has a pattern
matching eliminator let F (x,a) = e in e ′. Also, we add a de-
pendent linear function space Πx : X. A, which is a function
which takes an intuitionistic argument and returns a linear
result (whose type may depend on the argument). We add
this for essentially hygienic reasons — it gives us syntax for
the equivalence (Fx : X. A)⊸ C ≃ Πx : X. A⊸ C.

The equality theory of our language is given in Figure 5.
This gives the β and η rules for each of the connectives, in-
cluding commuting conversions for all of the positive con-
nectives (i.e., ⊗, I and F). We also include the equality reflec-
tion rule of extensional type theory. For space reasons, we do
not include any of the congruence rules, or the equivalence
relation axioms (they are given in the technical report).



Γ ⊢ Loc : Ui

Γ ⊢ e : Loc Γ ⊢ X : Ui

Γ ⊢ e 7→ X : Li

Γ ⊢A : Li

Γ ⊢ T (A) : Li

Γ ⊢A : Li

Γ ⊢ [A] : Li

Γ ⊢ X : Ui Γ ,x : X ⊢ Y : Ui

Γ ⊢ ∀x : X. Y : Ui

Γ ⊢ X : Ui Γ ,x : X ⊢ Y : Li

Γ ⊢ ∀x : X. Y : Li

Γ ⊢ X : Ui Γ ,x : X ⊢ Y : Ui

Γ ⊢ ∃x : X. Y : Ui

Γ ⊢ X : Ui Γ ,x : X ⊢ Y : Li

Γ ⊢ ∃x : X. Y : Li

Γ ⊢ ⊤I : Ui

Figure 6. Well-formedness of extensions

Γ ,x : X ⊢ e : Y x ̸∈ FV(e)

Γ ⊢ e : ∀x : X. Y
Γ ⊢ e : ∀x : X. Y Γ ⊢ e′ : X

Γ ⊢ e : [e′/x]Y

Γ ,x : X,y : Y ⊢ e : Z x ̸∈ FV(e)

Γ ,y : ∃x : X. Y ⊢ e : Z

Γ ,x : X ⊢ Y type Γ ⊢ e′ : X Γ ⊢ e : [e′/x]Y

Γ ⊢ e : ∃x : X. Y

Γ ,x : X;∆ ⊢ e :A x ̸∈ FV(e)

Γ ;∆ ⊢ e : ∀x : X.A

Γ ;∆ ⊢ e : ∀x : X.A Γ ⊢ e′ : X

Γ ;∆ ⊢ e : [e′/x]A

Γ ,x : X;∆,a :A ⊢ e : C x ̸∈ FV(e)

Γ ;∆,a : ∃x : X.A ⊢ e : C

Γ ,x : X ⊢ Y linear Γ ⊢ e′ : X Γ ;∆ ⊢ e : [e′/x]Y

Γ ;∆ ⊢ e : ∃x : X. Y

Γ ,n : N ⊢ Πx : X[n]. Y[n] type Γ , f : ⊤I,x : X(0) ⊢ e : Y(0)
Γ ,n : N, f : Πx : X[n]. Y[n],x : X[s(n)] ⊢ e : Y[s(n)]

n ̸∈ FV(fix f x = e)

Γ ⊢ fix f x = e : ∀n : N. Πx : X[n]. Y[n]

Figure 7. Intersection and Union Types

3. Internal Imperative Programming
There have been a number of very successful applications of
dependent type theory to verify imperative programs using
dependent types, such as XCAP, Bedrock and the Verified
Software Toolchain [4, 11, 31]. These approaches all have the
common feature that they are “external” methodologies for
imperative programming. That is, within the metalogic of
dependent type theory, an imperative language (such as C or
assembly) and its semantics is defined, and a program logic
for that language is specified and proved correct. So the type
theory remains pure, and imperative programs are therefore
objects of study rather than programs of the type theory.

We would like to investigate an internal, “proofs as pro-
grams”, methodology for imperative programming, where
we write functional programs which (a) have effects, but (b)
nonetheless are inhabitants of the appropriate types.

Pointers, Computations, and Proof Irrelevance In order to
program with mutable state, we need types to describe both
state and computation that manipulate it. To do this, we will
follow the pattern of L3 [2], and introduce a type of locations,
and a type of reference capabilities.

Γ ⊢ e : Loc Γ ;∆ ⊢ t : [e 7→ X] Γ ,x : X;∆′,a : [e 7→ X] ⊢ t′ : C
Γ ;∆,∆′ ⊢ let (x,a) = get(e, t) in t′ : C

Γ ;∆ ⊢ e :A

Γ ;∆ ⊢ vale : T (A)

Γ ;∆ ⊢ e : T (A) Γ ;∆′,a :A ⊢ e′ : T (C)

Γ ;∆,∆′ ⊢ let vala = e in e′ : T (C)

Γ ⊢ e : X

Γ ; · ⊢ newX e : T ((Fx : Loc. [x 7→ X]))

Γ ⊢ e : Loc Γ ;∆ ⊢ t : [e 7→ X]

Γ ;∆ ⊢ free (e, t) : T (I)

Γ ⊢ e : Loc Γ ;∆ ⊢ t : [e 7→ X] Γ ⊢ e′ : Y

Γ ;∆ ⊢ e :=t e
′ : T ([e 7→ Y])

Γ ;∆ ⊢ e÷A
Γ ;∆ ⊢ ∗ : [A]

Γ ;∆ ⊢ e :A

Γ ;∆ ⊢ e÷A

Γ ;∆ ⊢ e : [A] Γ ;∆′,x :A ⊢ e′ ÷C
Γ ;∆,∆′ ⊢ let [x] = e in e′ ÷C

Γ ;∆ ⊢ e : [I] Γ ;∆′ ⊢ e′ : C

Γ ;∆,∆′ ⊢ let [] = e in e′ : C

Γ ;∆ ⊢ e : [A⊗B] Γ ;∆′,a : [A],b : [B] ⊢ e′ : C

Γ ;∆,∆′ ⊢ let [a,b] = e in e′ : C

Figure 8. Typing of Imperative Programs

Γ ,x : X ⊢ e ≡ e′ : Y

Γ ⊢ e ≡ e′ : ∀x : X. Y
Γ ⊢ e ≡ e′ : ∀x : X. Y Γ ⊢ t : X

Γ ⊢ e ≡ e′ : [t/x]Y

Γ ⊢ e ≡ e′ : [t/x]Y Γ ⊢ t : X
Γ ⊢ e ≡ e′ : ∃x : X. Y

Γ ,x : X,y : Y ⊢ e ≡ e′ : Z x ̸∈ FV(e,e′,Z)
Γ ,y : ∃x : X. Y ⊢ e ≡ e′ : Z

Γ ;∆ ⊢ let valx = val t in t′ ≡ [t/x]t′ : T (C)

Γ ;∆ ⊢ let valx = t in valx ≡ t : T (C)

Γ ;∆ ⊢
let valy = (let valx = t1 in t2) in t3

≡
let valx = t1 in let valy = t2 in t3

: T (C)

Γ ;∆ ⊢ e ≡ e′ : [A]

Γ ,x : X;∆ ⊢ e ≡ e′ :A

Γ ;∆ ⊢ e ≡ e′ : ∀x : X. Y
Γ ;∆ ⊢ e ≡ e′ : ∀x : X.A Γ ⊢ t : X

Γ ;∆ ⊢ e ≡ e′ : [t/x]A

Γ ;∆ ⊢ e ≡ e′ : [t/x]A Γ ⊢ t : X
Γ ;∆ ⊢ e ≡ e′ : ∃x : X.A

Γ ,x : X;∆,a :A ⊢ e ≡ e′ : C x ̸∈ FV(e,e′,C)

Γ ⊢ ∆,a : ∃x : X.A ≡ e : e′C

Γ ⊢ (fix f x = e) e′ ≡ [(fix f x = e)/f,e′/x]e : Z

Figure 9. Imperative Equality



The type Loc is an intuitionistic type of locations. This
is a type of addresses, which may be freely duplicated and
stored in data structures. Testing locations for equality is a
pure computation, and for simplicity we do not consider
address arithmetic. However, merely having a location is not
sufficient to dereference it, since a priori we do not know if
that location points to allocated memory.

The right to access a pointer is encoded in the capability
type e 7→ X. This says that the location e holds a value of type
X. This differs slightly from separation logic, whose points-
to assertion e 7→ v says that e points to the specific value
v. However, since we have dependent types at our disposal,
we can easily recover the separation logic assertion with the
encoding e 7→ v ≡ e 7→ (Σx : X. x = v).

At this point, much of the descriptive power of separation
logic is already available to us: as soon as we have locations
and pointer capabilities, we can use the tensor product P⊗Q
just like the separating conjunction P ∗Q.1

Next, we introduce a type T (A) of computations. That is,
if A is a linear type, then T (A) is a computation type which
produces a result of type A. Note that T (A) is itself a linear
type; intuitively, executing a computation modifies the cur-
rent state so that it becomes a post-state of typeA. The reason
we treat computations monadically is because, naively, allo-
cation and deallocation of memory violates linearity: for ex-
ample, if we typed allocation as Fx : Loc. x 7→ X, the points-
to assertion is “created from nothing”. Since one of our de-
sign goals is precisely to keep the semantics (see section 4) as
naive as possible, we introduce a linear computation type.

With the features we have introduced so far, a stateful
computation emight be given the type G (P⊸ T (Q)), repre-
senting a linearly-closed term which takes a pre-state of type
P, and computes a result of type Q. While this is perfectly
adequate from a props-as-types point of view, it is not quite
right computationally.

In our approach, we encode reasoning about state using
linear types, so that we can read the type P ′ ⊸ P as saying
that the state P ′ implies the state P. However, a proof f of
this entailment is a linear lambda term, and evaluating it
does computation. So if we precompose the proof f with the
computation e, then we get a result which does different
computation than e did originally. This is quite different from
the way that the rule of consequence works in Hoare logic.

To solve this problem, we introduce a form of linear proof
irrelevance into our language. The type [A] is a squash type,
which erases all of the proof-relevant data about A— we are
left with only knowledge of its inhabitation. Our type system
has a rule saying that ∗ is an inhabitant of [A], if we can find
evidence for it using the monadic judgement Γ ;∆ ⊢ e ÷ A.
This judgement lets us turn any derivation of A as evidence
of inhabitation, and lets us use evidence of proof-irrelevant
inhabitation relevantly, as long as we stay in the irrelevance
judgement. We also give a pair of rules to distribute proof-
irrelevance through tensor products and units.2

1 It is relatively easy to show that any formula in the logic of bunched
implications [33] which does not interleave the ordinary implication
P ⊃ Q and the magic wand P −∗Q has a corresponding proof
in linear logic, since interleaving the additive and multiplicative
implications is the only way to create bunched contexts. However,
the magic wand is rarely used in practice (though see [21]).
2 Intuitionistically, the isomorphism [A×B] ≃ [A]× [B] is deriv-
able, but the proof relies on the fact that pairing has first and second
projections. With the linear tensor product, this isomorphism has to
be built into the syntax.

So we can type computations as G ([P]⊸ T (Fx : X. [Q])),
representing computations that take (proof-irrelevant) pre-
states P to proof-irrelevant post-states, while returning val-
ues of type X.

We can now describe the typing rules for computations in
Figure 8. Given a location and a proof-irrelevant capability to
access it, we can now type a dereference operation. Derefer-
encing let (x,a) = get(e, t) in t ′ (in Figure 8) takes a location
e and a capability t, and then binds the contents to x, and the
returned capability in the variable a, before evaluating the
body t ′.

The dereference operation is a pure linear term (i.e., has
a non-monadic type), since it reads but does not modify the
state. The other stateful operations are monadic. Allocation
newX e is a computation which returns a pair of location and
an irrelevant capability to access that location. Deallocation
free (e, e ′) takes a location and the capability to access it,
and then deallocates the memory, returning a computation of
unit type. Update e :=t e

′ takes a location and a capability
to access it, and then updates the location, returning a new
capability to access it. Since capabilities are linear, we are
able to support strong update – assignment can change the
type of a pointer. We also include standard monadic rules for
returning pure values and sequencing computations.

As a simple example, consider the following term:

1 let val F (x, c1) = newN 0 in
2 let val F (y, c2) = newbool false in
3 let (n, c ′1) = get(x, c1) in
4 let val c ′2 = (y :=c2 n) in
5 val (F (x, c ′1) , F (y, c ′2))

On the first two lines, this function allocates two point-
ers x (pointing to 0) and y (pointing to false), with access
capabilities c1 and c2. On line 3, it dereferences x, binding
the result to n. Furthermore, the linear capability c1 is taken
by the dereference operation, and returned (as the capabil-
ity c ′1). On line 4, y is updated to point to n, again taking
in the capability c2 and returning the capability c1. This is
a strong update, changing the type of y so that it points
to a natural number. Then, we return both pointers and
their access capabilities on line 5, with an overall type of
T ((Fx : Loc. [x 7→ N])⊗ (Fy : Loc. [y 7→ N])).

One point worth mentioning is that our computation
monad is a strong monad, which is in some sense the essence
of the frame rule of separation logic — the derivability of the
map (A⊗ T (B))⊸ T ((A⊗ B)) means that a computation of
B that doesn’t use the state A can “fold it in” to produce a
bigger computation of A⊗ B.

Another point worth mentioning is that our system only
treats reading pointers as a pure linear action. Naively, one
might expect writes could also be viewed as pure, since lin-
earity ensures that there is at most one capability to modify a
location. Unfortunately, this idea is incompatible with proof-
irrelevance: squashing erases a term, and erasing terms
which could modify the heap would be unsound.

Intersection Types and Implicit Quantification At this
point, we are close to being able to formulate specifications of
imperative programs in an internal way. However, one still-
missing feature of program logics is support of logical vari-
ables. These are variables which occur only in specifications,
but which do not affect the evaluation of a program. Fortu-
nately, these have also been studied extensively in lambda-
calculus, albeit under a different name: intersection types.

We introduce the two type formers ∀x : X. Y and ∃x : X. Y
(and their linear counterparts), corresponding to anX-indexed



intersection and union, respectively. A term e is an inhabitant
of ∀x : X. Y if it is an inhabitant of Y for all x, and symmet-
rically, e inhabits ∃x : X. Y if there is some v : X such that
e : [v/x]Y. The precise rules are given in Figure 7 – the key
constraint is that even though a new hypothesis becomes
available in the context, it cannot occur in the term. This
ensures that it cannot affect evaluation, even though it can
appear in typing.

The classical intersection typeA∧B can be encoded using
large elimination, as ∀b : 2. if(b,A,B), and the union type
A∨ B is ∃b : 2. if(b,A,B).

Now, we can introduce logical variables into our specifi-
cations (i.e., types) by simple quantification:

∀x : X. G ([P]⊸ T (Fy : Y. [Q]))

The variable x can now range over both the pre- and the post-
conditions without being able to affect the computation.

Fixed Points Finally, we make use of intersection types to
introduce a recursive function form fix f x = e (see Figure 7).
This function is ascribed the type ∀n : N. Πx : X[n]. Y[n],
when (1) assuming f has the type Πx : X[n]. Y[n] and x has
the type X[s(n)], then the body has the type Y[s(n)], and (2)
we can show that the body has the type Y[0] when the ar-
gument has type X[0]. (In the base case, we also assume that
f has a top type which cannot be used, to prevent recursive
calls.)

This permits us to define recursive functions if we can
supply a decreasing termination metric as a computationally-
irrelevant argument. This is useful because the inductive
eliminators require a proof-relevant argument, which we
might not have!

3.1 Examples

With all of this machinery, we can now define a simple linked
list predicate. For simplicity, we leave the data out, leaving
only the link structure behind.

LList : N× Loc → L0
LList(0, l) = [l 7→ inl ()]
LList(n+ 1, l) = Fl ′ : Loc. [l 7→ inr l ′]⊗ LList(n, l ′)

This says that a list of length 0 is a pointer to a null value,
and a list of length n + 1 is a pointer to a list of length n.
Note that this predicate is proof-relevant, in that a term of
type LList(n, l) is a nested tuple including all the pointers
in the linked list. As a result, we need to squash the pred-
icate when giving specifications to programs. We will also
make use of the fact that proof-relevant quantifiers inside of
a squash can be turned into proof-irrelevant quantifiers out-
side of a squash: that is, the axiom [Fx : X. A] ⊸ ∃x : X. [A]
is inhabited (by the term λx. ∗). In particular, this lets us turn
squashed coproducts into union types: [A⊕ B]⊸ [A]∨ [B].

List length As a first example, if we wanted to define a
length function for linked lists, we would need to do it as:

len : ∀n : N. Πl : Loc. G([LList(n, l)]
⊸ (Fm : N,pf : m = n. [LList(n, l)]))

len l = G(λc.
let [c ′] = ∗ in
let [c1, c2] = c

′ in
let ((v,pf), c ′1) = get(l, c1) in
case(v,
inl () → F (0, refl, ∗)
inr l ′ → let (F (m,pf, c ′′)) = G−1 (len l ′) ∗ in

F (m+ 1, refl, ∗)))

The type of this function says that if we are given a list of
length n, then we can recursively traverse the linked list in
order to get a computationally-relevant number equal to n.
This turns out to be a very common pattern in specifications:
we use computations to mediate between some logical fact
about a piece of data (i.e., the index n) and computational
data (in this case, the lengthm of the list).

Obviously, this function cannot be defined with an elimi-
nator on n, since the point is precisely to compute a relevant
number equal to n, and the data we receive is merely a bare
pointer, along with the right to traverse it.

Worth noting is that the squash type completely con-
ceals almost all of the proof-related book-keeping related
to manipulating the linked-list predicate LList. As a re-
sult, it is obvious what the computationally-relevant ac-
tion is, though why things work can get quite tricky to
figure out. In this case, on the first line, we making use
of the fact that given a list [LList(n, l)] we can get out
an element of the union type ∃p : n = 0. [l 7→ inl ()⊗ I] ∨
∃k : N,n = s(k), l ′ : Loc. [l 7→ inr l ′ ⊗ LList(k, l ′)]. This is bound
to c ′, and then the body can be typechecked under both al-
ternatives.

List Append We can also write a type-theoretic version of
in-place list append, one of the examples from the original
paper on separation logic. First, let’s write a rehead function,
which changes the head pointer of a list:

rehead : ∀n : N. Πl, l ′ : Loc. G([l 7→ inl ()]⊗ [LList(n, l ′)]
⊸ T ([LList(n, l)]))

rehead l l ′ = G(λc1 c2.
let [c ′2, c ′′2 ] = ∗ in
let (v, c ′2) = get(l ′, c ′2) in
let val c1 = (l :=c1 v) in
let val () = free (l ′, c ′2) in
val ∗)

This function simply assigns the contents the list to the
first argument pointer, and then frees the head pointer of
the second list. As usual, a small amount of bureaucracy is
needed to split irrelevant arguments, but otherwise the code
is very similar to what one might write in ML or Haskell.

append : ∀n,n ′ : N. Πl, l ′ : Loc. G([[LList(n, l)]⊗ [LList(n ′, l ′)]
⊸ T ([LList(n+ n ′, l)]))

append l l ′ = G(λc1 c2.
let [c ′1, c ′′1 ] = ∗ in
let (v, c ′1) = get(l, c ′1) in
case(v,
inl () → let val c = G−1(rehead l l ′) c ′1 c2 in val ∗
inr l ′′ → let val c = G−1(append l ′′ l ′) c ′′1 c2 in val ∗))

This walks to the end of a list, and then reheads the head
of the second list to the tail of the first list. Then with some
straightforward linearly-typed proof-programming, it’s pos-
sible to show that this gives us a linked list of the appropriate
shape (which is concealed in the val ∗ terms). The fact that we
return only a squashed argument corresponds to the fact that
this is an in-place algorithm, which modifies the state and re-
turns only some linear knowledge about the new state.

Data Abstraction Because we can quantify over types,
our calculus also supports data abstraction, in the style of
Nanevski et al. [29]. As an example, we can use our linked
list to implement a stack as an abstract type. First, we define
a function to grow a linked list by one element.

grow : Πl : Loc. ∀n : N. G(LList(l,n)⊸ T (LList(l,n+ 1)))



grow l = G(λc.
let [c ′, c ′′] = ∗ in
let (v, c ′) = get(l, c ′) in
case(v,
inl () →let val (l0, c0) = new inl () in

let val c ′ = l :=c′ inr l0 in
val ∗

inr l ′′ → let val c = G−1(grow l ′′) c ′′ in val ∗))

This iterates to the end of the list, and then adds one
element to the tail, in order to preserve the identity of the
list. Similarly, we can shrink a list by an element as well.

shrink : Πl : Loc. ∀n : N. G(LList(l,n+ 1)⊸ T (LList(l,n)))
shrink l = G(λc.
let [c ′, c ′′] = ∗ in
let (l ′, c ′) = get(l, c ′) in
let val c ′ = l :=c′ inl () in
G−1(rehead l l ′) c ′ c ′′)

This deletes an element of the list, using the rehead function
to ensure that the head pointer remains unchanged.

Now, we can give a procedure to build a stack as an
abstract type.

make : G(T(F Stack : N → Li,
push : ∀n : N. G Stack n⊸ T (Stack(s(n))),
pop : ∀n : N. G Stack(s(n))⊸ T (Stack n).
Stack 0))

make = G(T(let val F (l, c) = new 0 in
val F (λn. LList(n, l), F (grow l, F (shrink l, c)))))

This procedure allocates a new location initialized to 0, and
then returns the grow and shrink operations at the types for
push and pop. Importantly, the representation of the stack
is completely hidden — there is no way to know a pointer
represents the stack.

One particularly interesting feature of this specification is
that the choice of representation invariant is data-dependent:
our definition of the Stack predicate captures the actual loca-
tion allocated as a free variable.

3.2 Equational Theory

So far, we have decomposed the Hoare triple {P} x : X {Q} as
the dependent linear type G ([P]⊸ T ((Fx : X. [Q]))). That is,
we view elements of Hoare type as duplicable terms, which
take a proof-irrelevant witness for the pre-state P, and then
compute a result of type X, as well as a producing a proof-
irrelevant witness for the post-state Q.

This is, admittedly, a zoo of connectives! However, such
fine-grained decompositions have a number of benefits.
Since each of the connectives we give has a very simple
βη-theory, we can derive the equational theory for terms of
Hoare type by joining up the βη-theory of its components.3

As a simple example, an immediate consequence of our
decomposition is that all terms of type {0} x : X {Q} (that is,
the type of computations with a false precondition) are equal,
simply via the eta-rule for functions and falsity.

Another consequence (which we rely upon in our exam-
ples) comes from our encoding of the points-to predicate of
separation logic. Our basic pointer type l 7→ X says only that
l contains a value of type X. We encode the points-to of sepa-
ration logic l 7→ v using the type l 7→ Σx : X. x = v. Then, the
fact that the sigma-type is contractible (i.e., all its elements

3 We say “the” equational theory because the βη-equality is canoni-
cal. However, there are many desirable equations (such as those aris-
ing from parametricity) which go far beyond it.

are equal) means that we know that any dereference of l is
equal to (v, refl), without having to put explicit proofs into
the terms (because of equality reflection).

In addition, moving things like preconditions out of the
computation monad T (A) lets us give a very simple model
for it, which means that we can easily show the soundness of
equations such as eliminating duplicate gets

Γ ;∆ ⊢
let (x,c) = get(e,e′) in C[let (x′,c′) = get(e,c) in e′′]

≡
let (x,c) = get(e,e′) in C[[c/c′,x/x′]e′′]

:A

and eliminating gets after sets:

Γ ;∆ ⊢
let valc = e :=e′′ e′ in C[let (x′,c′) = get(e,c) in e′′′]

≡
let valc = e :=e′′ e′ in C[[e′/x′,c/c′]e′′′]

: T (A)

3.3 Hoare Type Theory

Hoare type theory [28] gives an alternative internal approach
to imperative programming, by directly embedding Hoare
triples into type theory. The central idea is to use dependent
types to specify imperative programs as elements of an in-
dexed monad, where the index domain are formulas of sep-
aration logic. This approach has proven remarkably success-
ful in verifying complex imperative programs (such as mod-
ern congruence closure algorithms [30]), but working out the
equational theory of the Hoare type has proven to be an ex-
tremely challenging problem, to the point that Svendsen et al.
[40] give a model without any equations.

To illustrate the connection more clearly, we note that each
of the basic constants of Hoare type theory is definable in our
calculus, with a type that is close to the image of the trans-
lation of its Hoare type. Below, we give allocation, derefer-
ence, assignment, and the rule of consequence to illustrate.
(We leave out the terms, because they can be read off the
types.) In each case, the Hoare type is on the top line, and
the linear type is on the line below.

new1 : {emp} x : Loc {x 7→ ()}

G (T ((Fx : Loc. [x 7→ ()])))

set : Πx : Loc, v, v ′ : X. {x 7→ v} 1 {x 7→ v ′}

∀v : X. Πx : Loc, v ′ : X. G ([x 7→ v]⊸ T ([x 7→ v ′]))

get : Πx : Loc, v : X. {x 7→ v} v ′ : X {v ′ = v∧ x 7→ v}

∀v : X. Πx : Loc. G ([x 7→ v]⊸ Fv ′ : X,pf : v ′ = v. [x 7→ v])

con : ΠP,P ′,Q,Q ′.
(P ⊃ P ′) → (Q ′ ⊃ Q) →
{P ′} x : X {Q ′} →
{P} x : X {Q}

ΠP,P ′,Q,Q ′ : Li.
G [P⊸ P ′] → G [Q ′⊸ Q] →
G ([P ′]⊸ Fx : X. [Q ′]) →
G ([P]⊸ Fx : X. [Q])

We can see that in some cases, the LNLD typings have
computational advantages. For example, for the set constant,
we are able to use the implicit ∀ quantifier to make clear that
while the pointer and the new value need to be passed as
arguments, the old contents do not need to be passed in. This
is not possible in HTT (due to the absence of intersections),
and to work around this a two-state postcondition is used.
As another example, the get constant doesn’t have a monadic
effect in LNLD.

As a result, any (totally correct) program in Hoare type
theory should in principle be translatable into LNLD (neglect-



ing the much superior maturity and automation available for
Hoare type theory).

Caveat There is, however, a significant difference between
LNLD and HTT: the latter supports general recursion, and
deals with partial correctness. LNLD requires a termination
metric on fixed point definitions and only deals with total
correctness.

Most of the complexity in the model theory of HTT comes
from its treatment of recursion, such as the need for ⊤⊤-
closure to ensure admissibility for fixed point induction. We
have sidestepped these issues by focussing only on total
correctness.

In fact, much of the subtlety in the design of LNLD lay
in the effort needed to rule out general recursion — in lan-
guages with higher-order store, it is usually possible to write
recursion operators by backpatching function pointers (aka
“Landin’s knot”), and so we had to carefully exploit linear-
ity to prevent the typability of such examples. (This was
originally observed by Ahmed et al. [2].) Another example
is found in our fixed point operator, which defines recur-
sive functions with an irrelevant termination metric. If we
had given a general fixed point operator fix x. e, even with
an irrelevant termination metric, then looping computations
would be definable. (This is connected to the ability of inter-
section types to detect evaluation order.)

As a result, to formally argue that our approach makes
proving equations easier, we would need to give a version
of our T (−) monad which is partial, which would give a
calculus corresponding more closely to HTT. We hope to
investigate these questions more deeply in future work. As
matters stand, all we can say is that our semantics is in many
ways much less technically sophisticated than models such
as the one of Petersen et al. [34], even though it permits us to
prove a number of novel equations on programs.

4. Metatheory
We now establish the metatheory of our type system. Our ap-
proach integrates the ideas of Harper [20] and Ahmed et al.
[2]. We begin by giving an untyped operational semantics for
the language. In fact, we give three operational semantics:
one for pure intuitionistic terms, one for pure linear terms,
and one for monadic linear terms.

Next, we use this operational semantics to give a seman-
tic realizability model, by defining the interpretation of each
logical connective as a partial equivalence relation (PER). Be-
cause we have dependent types, we need to define the set
of syntactic types mutually recursively with the interpreta-
tion of each type, in the style of an inductive-recursive def-
inition. Furthermore, we have to interpret intuitionistic and
linear terms differently: we use an ordinary PER on terms to
interpret intuitionistic types, and a PER on machine configu-
rations (terms plus store) to interpret linear types.

This gives a semantic interpretation of closed types. We
extend this to an interpretation of contexts as sets of environ-
ments, and then prove the fundamental theorem of logical re-
lations for our type system, which establishes the soundness
and adequacy of our rules (including its equational theory).

4.1 Operational Semantics

The syntax for our language of untyped terms is given in Fig-
ure 10. For simplicity, all our types and terms live in the same
syntactic category, regardless of whether they are intuitionis-
tic and linear. The variable v ranges over intuitionistic values,
u ranges over linear values, and σ denotes heaps.

There are actually three operational semantics for our lan-
guage. First, we have an evaluation relation e ⇓ v for intu-
itionistic terms, a a linear evaluation relation ⟨σ; e⟩ ⇓ ⟨σ ′;u⟩
for linear terms, and a monadic evaluation relation ⟨σ; e⟩ ⇝
⟨σ ′; valu⟩ for evaluating monadic terms. Both the linear and
monadic semantics are store-passing relations, because they
are imperative computations which may depend upon the
state of memory.

The intuitionistic evaluation relation e ⇓ v is a standard
call-by-name big-step evaluation relation for the lambda cal-
culus. We treat all types as values (and do not evaluate their
subterms), and also include location values l in the syntactic
category of values. Though there are no typing rules for loca-
tion values, they may arise during program evaluation when
fresh memory cells are allocated.

The linear evaluation relation ⟨σ; e⟩ ⇓ ⟨σ ′;u⟩ evaluates the
machine configuration ⟨σ; e⟩ to ⟨σ ′;u⟩. This is also a call-by-
name big-step evaluator. However, there are many rules in
this reduction relation, simply because we have many linear
types in our language. The rules for functions (both linear
A⊸ B and dependent Πx : X. A) and pairs A&B follow the
beta-rules of the equational theory, as expected. The let-style
eliminators for I, A ⊗ B and Fx : X. A are more verbose, but
also line up with the beta-rules of the theory. The eliminator
G−1 e evaluates e to a term G t, and then executes t, again
following the beta-rule.

A nuisance in our rules is that we need operational rules
for the let-style rules (i.e., let [a,b] = e in e ′) distributing
proof irrelevance through units and tensors. This has no com-
putational content, since the argument e is never evaluated,
but nevertheless we must include evaluation rules for it.

Finally, we also have the dereference operation let (x, c ′) =
get(e, e ′) in e ′′. This rule evaluates e to a location l, and e ′ to
an irrelevant value ∗. Then it looks up the value v stored at
l, and binds that to x, and binds c ′ to the irrelevant value ∗
before evaluating the continuation e ′′.

One point worth making is that none of these rules affect
the shape of the heap – we can dereference pointers in the
pure linear fragment, but we cannot write or modify them.
As a result, every linear reduction is really of the form ⟨σ; e⟩ ⇓
⟨σ;u⟩. We could have easily have made this into a syntactic
restriction, but having two configurations is slightly more
convenient when giving the realizability semantics.

Finally, we have the monadic evaluation ⟨σ; e⟩⇝ ⟨σ ′; valu⟩.
The rule for let-binding let val x = e in e ′ is sequential com-
position: it evaluates the first argument to a monadic value,
and then binds the result to x before evaluating e ′. The rule
for new e evaluates its (intuitionistic) argument to a value v,
and then allocates a fresh location l to store it in, returning
the location (and a dummy ∗ for the capability). The rule
for assignments e :=e′′ e ′ evaluates e to a location l, e ′
to a value v, and e ′′ to a capability ∗. Then it modifies the
heap so that l points to v. Similarly, the rule for deallocation
free (e, e ′) evaluates e to l and then deallocates the pointer.
Note that all of these operations could get stuck, if the ap-
propriate piece of heap did not exist — the soundness proof
will establish that type-safe programs are indeed safe.

4.2 CPPOs and Fixed Points

Since types depend on terms in dependent type theory, we
cannot define the grammar of types up front, before giving
an interpretation their interpretations. Instead, what we need
is morally an inductive-recursive definition. As a result, we
need to use a fixed theorem which is a little stronger than the
standard Kleene or Knaster-Tarski fixed point theorems.



e, t,X,A ::= Πx : X. Y | A⊸ B | λx : C. e | e e′ | λ̂x. e
| 1 | I | () | let () = e in e′

| Σx : X. Y | A⊗B | (e,e′)
| π1 e | π2 e | let (x,y) = e in e′

| Ge | G−1 e
| Fx : X.A | F (e, t) | let F (x,a) = t in t′
| ⊤ | A&B
| ∀x : X. Y | ∃x : x. Y
| e =X e

′ | refl
| N | 0 | s(e) | iter(e, 0 → e0, s(x),y→ e1)
| Ui | Li

| x | fix f x = e
| [A] | let [x] = e in e | ∗
| e 7→ X | Loc | newX e | free (e, t) | l
| let (x,a) = get(e,e′) in e′′ | e :=e′′ e′

| T (A) | vale | let valx = e in e′

v ::= λx :A. e | () | (e,e) | refl | Ge | l | ∗ | 0 | s(v)
| Πx : X. Y | A⊸ B | ⊤ | A&B
| 1 | I | Σx : X. Y | A⊗B | Fx : X. B
| e =X e

′ | e 7→ X | Loc | Ui | Li

u ::= λx. e | () | (e,e) | F (e,e) | λ̂x. e | (e,e′)
| ∗ | vale | let valx = e in e | newX e | e :=e′′ e′

σ ::= · | σ, l : v

Figure 10. Terms e, t,X,A, values v, linear values u, stores σ

Recall that a pointed partial order is a triple (X,⩽,⊥) such
that X is a set, ⩽ is a partial order on X, and ⊥ is the least
element of X. A subsetD ⊆ X is a directed set when every pair
of elements x,y ∈ D has an upper bound in D (i.e., there is a
z ∈ D such that x ⩽ z and y ⩽ z). A pointed partial order is
complete (i.e., forms a CPPO) when every directed setD has a
supremum

⊔
D in X.

The following fixed point theorem4 is in Harper [20], and
is Theorem 8.22 in Davey and Priestley [13].

Theorem 1. (Fixed Points on CPPOs) If X is a CPPO, and
f : X → X is a monotone function on X, then f has a least fixed
point.

Proof. Construct the ordinal-indexed sequence xα, where:

x0 = ⊥
xβ+1 = f(xβ)
xλ =

⊔
β<λ xβ

Because f is monotone, we can show by transfinite induc-
tion that every initial segment is directed, which ensures the
needed suprema exist and the sequence is well-defined.

Now, we know there must be a stage λ such that xλ =
xλ+1. If there were not, then we could construct a bijection
between the ordinals and the strictly increasing chain of el-
ements of the sequence x. However, the elements of the se-
quence x are all drawn from X. Since X is a set, it follows that
the elements of x must themselves form a set. Since the ordi-
nals do not form a set (they are a proper class), this leads to a
contradiction. Hence, fmust have a fixed point.

4.3 Partial Equivalence Relations and Semantic Type
Systems

We now need to define what our types are, and how to
interpret them. Following the example of Nuprl, we will
interpret types as partial equivalence relations of terms, with
the intuition that if (e, e) ∈ X, then e is an element of the

4 A constructive, albeit impredicative, proof of this theorem is possi-
ble: this is Pataraia’s theorem [17].

e ⇓ v

v ⇓ v
e1 ⇓ λx :A. e [e2/x]e ⇓ v

e1 e2 ⇓ v

e ⇓ (e1,e2) e1 ⇓ v
π1 e ⇓ v

e ⇓ (e1,e2) e2 ⇓ v
π2 e ⇓ v

e ⇓ v
s(e) ⇓ s(v)

e ⇓ 0 e0 ⇓ v
iter(e, 0 → e0, s(x),y→ e1) ⇓ v

e ⇓ s(n) iter(n, 0 → e0, s(x),y→ e1) ⇓ v [n/x,v/y]e1 ⇓ v′

iter(e, 0 → e0, s(x),y→ e1) ⇓ v′

e ⇓ fix f x = e0 [(fix f x = e0)/f,e′/x]e0 ⇓ v
e e′ ⇓ v

⟨σ;e⟩ ⇓ ⟨σ′;u⟩

⟨σ;u⟩ ⇓ ⟨σ;u⟩

⟨σ;e1⟩ ⇓ ⟨σ′;λx. e′
1⟩ ⟨σ′; [e2/x]e

′
1⟩ ⇓ ⟨σ′′;u′′⟩

⟨σ;e1 e2⟩ ⇓ ⟨σ′′;u′′⟩

⟨σ;e1⟩ ⇓
〈
σ′; λ̂x. e

〉
⟨σ′; [e2/x]e⟩ ⇓ ⟨σ′′;u′′⟩

⟨σ;e1 e2⟩ ⇓ ⟨σ′′;u′′⟩

⟨σ;e⟩ ⇓ ⟨σ′; (e1,e2)⟩ ⟨σ′;e1⟩ ⇓ ⟨σ′′;u′′⟩
⟨σ;π1 e⟩ ⇓ ⟨σ′′;u′′⟩

⟨σ;e⟩ ⇓ ⟨σ′; (e1,e2)⟩ ⟨σ′;e2⟩ ⇓ ⟨σ′′;u′′⟩
⟨σ;π2 e⟩ ⇓ ⟨σ′′;u′′⟩

⟨σ;e⟩ ⇓ ⟨σ′; ()⟩ ⟨σ′;e′⟩ ⇓ ⟨σ′′;u⟩
⟨σ; let () = e in e′⟩ ⇓ ⟨σ′′;u⟩

⟨σ;e⟩ ⇓ ⟨σ′; (e1,e2)⟩ ⟨σ′; [e1/a,e2/b]e
′⟩ ⇓ ⟨σ′′;u⟩

⟨σ; let (a,b) = e in e′⟩ ⇓ ⟨σ′′;u⟩

⟨σ;e⟩ ⇓ ⟨σ′; F (e1,e2)⟩ ⟨σ′; [e1/x,e2/a]e
′⟩ ⇓ ⟨σ′′;u⟩

⟨σ; let F (x,a) = e in e′⟩ ⇓ ⟨σ′′;u⟩

e ⇓ Ge′ ⟨σ;e′⟩ ⇓ ⟨σ′;u⟩〈
σ; G−1 e

〉
⇓ ⟨σ′;u⟩

⟨σ;e⟩ ⇓ ⟨σ′;u′⟩
⟨σ; let [] = e0 in e⟩ ⇓ ⟨σ′;u′⟩

⟨σ; [∗/a,∗/b]e⟩ ⇓ ⟨σ′;u′⟩
⟨σ; let [a,b] = e0 in e⟩ ⇓ ⟨σ′;u′⟩

e ⇓ l ⟨σ;e′⟩ ⇓ ⟨σ′, l : v;∗⟩ ⟨σ′, l : v; [v/x,∗/c]e′′⟩ ⇓ ⟨σ′′;u⟩
⟨σ; let (x,c) = get(e,e′) in e′′⟩ ⇓ ⟨σ′′;u⟩

⟨σ;e⟩⇝ ⟨σ′; valv⟩

⟨σ; vale⟩⇝ ⟨σ; vale⟩

⟨σ;e⟩ ⇓ ⟨σ′;u⟩ e ̸= valu0 ⟨σ;u⟩⇝ ⟨σ′′; valu′⟩
⟨σ;e⟩⇝ ⟨σ′′; valu′⟩

⟨σ;e⟩⇝ ⟨σ1; vale1⟩ ⟨σ1; [e1/x]e
′⟩⇝ ⟨σ′; valv⟩

⟨σ; let valx = e in e′⟩⇝ ⟨σ′; valv⟩

e ⇓ v l ̸∈ dom(σ)

⟨σ; newX e⟩⇝ ⟨σ, l : v; val F (l,∗)⟩

e ⇓ l e′ ⇓ v ⟨σ;e′′⟩ ⇓ ⟨σ′, l : v′;∗⟩
⟨σ, l : v′;e :=e′′ e′⟩⇝ ⟨σ′, l : v; val∗⟩

e ⇓ l ⟨σ; t⟩ ⇓ ⟨σ′, l : v;∗⟩
⟨σ; free (e, t)⟩⇝ ⟨σ′; val ()⟩

Figure 11. Operational Semantics



type X, and that if (e, e ′) ∈ X then e is equal to e ′. Because of
type dependency, we will then simultaneously define the PER
of types, and an interpretation function sending each type to
the PER it defines.

A partial equivalence relation (PER) is a symmetric, transi-
tive relation on closed, terminating expressions. We further
require that PERs be closed under evaluation. Given a PER R,
we require that for all e, e ′, v, v ′ such that e ⇓ v and e ′ ⇓ v ′,
we have that (e, e ′) ∈ R if and only if (v, v ′) ∈ R. Given a PER
P, we write P∗ to close it up under evaluation. We extend this
notation to functions, as well, so that given a function f into
PERs, f∗(x) = (f x)∗. Finally, given a relation R, we write R†

to take its symmetric, transitive closure. We will use PERs to
interpret intuitionistic types.

A partial evaluation relation on configurations (CPER) is a
symmetric, transitive relation on terminating machine con-
figurations ⟨σ; e⟩. We further require that they be closed un-
der linear evaluation. Given a CPER M, we require that for
all ⟨σ1; e1⟩ such that ⟨σ1; e1⟩ ⇓ ⟨σ ′

1;u1⟩ and ⟨σ2; e2⟩ such that
⟨σ2; e2⟩ ⇓ ⟨σ ′

2;u2⟩, we have (⟨σ1; e1⟩ , ⟨σ2; e2⟩) ∈M if and only
if (⟨σ ′

1;u1⟩ , ⟨σ ′
2;u2⟩) ∈M. We will use CPERs to interpret lin-

ear types, with the idea that the store components of each
element of the PER corresponds to the resources owned by
that term.

Note that since evaluation (both ordinary and linear) is
deterministic, an evaluation-closed PER is determined by its
sub-PER on values (or value configurations). As a result,
we will often define PERs and functions on PERs by simply
giving the relation for values.

A semantic linear/non-linear type system is a four-tuple (I ∈
PER,L ∈ PER,ϕ : |I| → PER,ψ : |L| → CPER) such that ϕ
respects I and ψ respects L. We say that I are the semantic
intuitionistic types, L are the semantic linear types, and ϕ and ψ
are the type interpretation functions.

The set of type systems forms a CPPO. The least ele-
ment is the type system (∅, ∅, !PER, !CPER) with an empty set
of intuitionistic and linear types. The ordering (I,L,ϕ,ψ) ⩽
(I ′,L ′,ϕ ′,ψ ′) is given by set inclusion on I ⊆ I ′ and L ⊆ L ′,
when there is agreement between ϕ and ϕ ′ on the common
part of their domains, and likewise for ψ and ψ ′ (which we
write ϕ ⊑ ϕ ′ and ψ ⊑ ψ ′). Given a directed set, the join is
given by taking unions pointwise (treating the functions ϕ
and ψ as graphs).

Next, our goal is to define a semantic type system to
interpret our syntax. To do this, we will define a monotone
type system operator Tk. Since type systems form a CPPO,
we can define the semantic type system we use to interpret
our syntax as the least fixed point of Tk.

First, we’ll define some constructions on PERs in Fig-
ures 12 and 13. There is one construction for each of the type
connectives in our language, explaining what each connec-
tive means “logical relations style” — though these construc-
tions do not yet define a logical relation, since they are just
constructions on PERs.

The intuitionistic constructions are given in Figure 12.
The Loc relation relates each location to itself, and the unit
relation 1̂ relates the unit value to itself. The identity relation
Id(a,b,E) is equal to {(refl, refl)} if a and b are in the relation
E, and is empty otherwise. The Π construction takes a PER E,
and a functionΦ from elements of E to PERs (which respects
the relation E). From that data it returns the PER of function
values (f, f ′) which take E-related pairs (a,a ′) to (f a, f ′ a ′)
in E(a), with the Σ(E,Φ) construction working similarly for
pairs. The intersection type ∀̂(E,Φ) construction just takes
the intersection overΦ(a) for all a in E, which is a PER since

Loc = {(l, l) | l ∈ Loc}
1̂ = {(() , ())}
Id(a,b,E) = {(refl, refl) | (a,b) ∈ E}
Π(E,Φ) = {(v,v′) | ∀(a,a′) ∈ E. (va,v′a′) ∈Φ(a)}
Σ(E,Φ) = {((a,b) , (a′,b′)) | (a,a′) ∈ E∧ (b,b′) ∈Φ(a)}
G(C) = {(Ge, Ge′) | (⟨·;e⟩ , ⟨·;e′⟩) ∈ C}

∀̂(E,Φ) = {(v,v′) | ∀(e,e′) ∈ E. (v,v′) ∈Φ(e)}

∃̂(E,Φ) = {(v,v′) | ∃(e,e′) ∈ E. (v,v′) ∈Φ(e)}†

N̂ =
{
(sk(0), sk(0))

∣∣ k is a natural number
}

⊤̂I = {(v,v′) | v ∈ Val ∧ v′ ∈ Val}

Figure 12. Intuitionistic PER constructions

PERs are closed under intersection. The union type is a little
more complicated; it takes the union of PERs, and then has
to take the symmetric transitive closure because PERs are not
closed under unions. The natural number relation N̂ relates
numerals to themselves, and ⊤̂I relates any two values.

The linear constructions are given in Figure 13. The ⊤̂ re-
lation relates two unit values under any stores at all, whereas
the Î relation relates two units only in the empty store. Simi-
larly, the A &̂B relation relates two pairs, as long as the first
components are related at A using all of the store, and the
second components are related at B using all of the store.
The tensor relation C ⊗̂ D relation, on the other hand, re-
lates two pairs if their stores can divided into two disjoint
parts, one relating the first components in the C relation, and
the other relating the second components in the D relation.
The semantic linear function space constructor C ⊸̂ D re-
lates functions, such that if we have values in C with dis-
joint store, then the applications are related in D with the
combined store (much like the “magic wand” of separation
logic). The F(E,Ψ) relation consists of pairs of stores and val-
ues F (a,b) and F (a ′,b ′), such that a and a ′ are intuitionistic
terms related in E, and b and b ′ are related inΨ(a) using their
whole stores. The ΠL relation works similarly, except that it
relates on dependent linear functions rather than pairs. The
linear intersection and union type constructors work simi-
larly to their intuitionistic counterparts.

The proof irrelevance relation Irr(A) relates two squash
tokens ∗ at some stores, if there are linear terms that could
relate those stores at A. The pointer construction Ptr(e,E)
simply says that the heap consists of a single memory cell
addressed by e, and whose contents are related at E. (Its
only term is ∗, because we don’t care about its value, as
we use it solely to track capabilities.) The T̂(A) construc-
tion relates monadic computations, if each side reduces to
a store/value configuration which is related by A. Further-
more, only “frame-respecting” computations can be related
— if a computation works in a smaller store, it should also
work in a larger store, without modifying that larger store.

We can now define an operator Tk on type systems:

Tk(I,L,ϕ,ψ) = (I ′
∗,L ′∗,ϕ ′∗,ψ ′∗)

where I ′ and L ′ are defined in Figure 14 and and where ϕ ′

and ψ ′ are defined in Figure 15.
The definition of I ′ and L ′ includes each of the base types,

and then for each of the higher-arity operations draws the
argument types from I or L, so that (for example) L ′ includes
every A ⊗ B where A and B are in L. The definition of ϕ ′

and ψ ′ is by analysis of the structure of the elements of I ′
and L ′, using the PER constructions we described earlier
to interpret each of the type constructors. Furthermore, in
the definition of ϕ ′, when we write ϕ ′(Loc), we actually



⊤̂ = {(⟨σ; ()⟩ , ⟨σ′; ()⟩) | σ,σ′ ∈ Store}

A &̂B =

{
(⟨σ; (a,b)⟩ ,
⟨σ′; (a′,b′)⟩)

∣∣∣∣ (⟨σ;a⟩ , ⟨σ′;a′⟩) ∈A∧
(⟨σ;b⟩ , ⟨σ′;b′⟩) ∈ B

}
Î = {(⟨·; ()⟩ , ⟨·; ()⟩)}

(C ⊗̂D) =


(⟨σ; (c,d)⟩ ,
⟨σ′; (c′,d′)⟩)

∣∣∣∣∣∣∣∣∣
∃σC,σD,σC′ ,σD′ .
σ = σC ·σD ∧
σ′ = σ′

C ·σ′
D ∧

(⟨σC;c⟩ , ⟨σ′
C;c′⟩) ∈ C∧

(⟨σD;d⟩ , ⟨σ′
D;d′⟩) ∈D


(C ⊸̂D) =

 (⟨σ;u⟩ ,
⟨σ′;u′⟩)

∣∣∣∣∣∣∣∣
∀σ0#σ,σ′

0 #σ′,c,c′.
if (⟨σ0;c⟩ , ⟨σ′

0 ;c′⟩) ∈ C

then
(

⟨σ ·σ0;uc⟩ ,
⟨σ′ ·σ′

0 ;u′c′⟩

)
∈D


F(E,Ψ) =

{
(⟨σ; F (a,b)⟩ ,
⟨σ′; F (a′,b′))⟩

∣∣∣∣ E(a,a′) ∧
(⟨σ;b⟩ , ⟨σ′;b′⟩) ∈ Ψ(a)

}
ΠL(E,Ψ) =

{
(⟨σ;u⟩ ,
⟨σ′;u′⟩)

∣∣∣∣ ∀(e,e′) ∈ E.
(⟨σ;u e⟩ , ⟨σ′;u′ e′⟩) ∈ Ψ(e)

}
∀̂L(E,Ψ) =

{
(⟨σ;u⟩ ,
⟨σ′;u′⟩)

∣∣∣∣ ∀(e,e′) ∈ E.
(⟨σ;u⟩ , ⟨σ′;u′⟩) ∈ Ψ(e)

}
∃̂L(E,Ψ) =

{
(⟨σ;u⟩ ,
⟨σ′;u′⟩)

∣∣∣∣ ∃(e,e′) ∈ E.
(⟨σ;u⟩ , ⟨σ′;u′⟩) ∈ Ψ(e)

}†

T̂(A) =

 (⟨σ1;e1⟩ ,
⟨σ2;e2⟩)

∣∣∣∣∣∣∣∣
∀σf#σ1,σg#σ2. ∃σ′

1 ,σ′
2 ,u1,u2.

⟨σ1 ·σf;e1⟩⇝
〈
σ′

1 ·σf; valu1
〉
∧

⟨σ2 ·σg;e2⟩⇝ ⟨σ′
2 ·σg; valu2⟩ ∧

(
〈
σ′

1 ;u1
〉

, ⟨σ′
2 ;u2⟩) ∈A


Ptr(e,E) =

{
(⟨σ1;∗⟩ , ⟨σ2;∗⟩)

∣∣∣∣ σ1 = [l : v1]∧σ2 = [l : v2] ∧
(e, l) ∈ Loc ∧ (v1,v2) ∈ E

}
Irr(A) =

{
(⟨σ;∗⟩ , ⟨σ′;∗⟩)

∣∣ ∃a,a′. (⟨σ;a⟩ , ⟨σ;a′⟩) ∈A
}

Figure 13. Linear PER Constructions

mean any ϕ ′(e) such that I ′(e, Loc). This is justified by the
fact that evaluation is deterministic and relations are closed
under evalution. (Similarly, we define ψ ′ only on the values,
extending it to all terms by determinacy and closure under
evaluation.) Once we have this definition, we can then show
that Tk is a monotone type system operator.

Lemma 1 (Tk is monotone). We have that Tk is a monotone
function on type systems.

Proof. (Sketch) This lemma really makes two claims. First,
that Tk is indeed a function on semantic type systems (in
particular, that ϕ ′ and ψ ′ respect I ′ and L ′), and second,
that it is monotone. Both of these follow from a case analysis
on the shape of the possible elements of I ′ and L ′. See the
technical report for details.

Then, we can take the interpretation of the i-th universe
Ti to be the least fixed point of Ti. Furthermore, we also have
a cumulativity property:

Lemma 2 (Universe Cumulativity). If i ⩽ k then Ti ⩽ Tk.

We sometimes write T for the limit of the countable uni-
verse hierarchy, and write U,L,ϕ, and ψ for its components.

4.4 Semantic Environments

Our semantic type system T gives us an interpretation of
closed types. Before we can prove the correctness of our typ-
ing rules, we have to extend our interpretation to open types
and terms, and to do that, we have to give an interpretation
of environments.

In Figure 16, we give the interpretation of contexts. The
meaning of an intuitionistic context [[Γ ]] is given as a set of
binary substitutions γ. By binary substitution, we mean that
for every x ∈ dom(γ), we have that γ(x) = (e, e ′) for some
pair of terms. We write γ1 for the ordinary unary substitution
substituting the first projection of γ for each variable in γ,

I′ = {(Loc, Loc)} ∪
{(N,N)} ∪
{(⊤I,⊤I)} ∪
{(e1 =X e2, t1 =Y t2) | I(X,Y)∧Φ(X)(e1, t1)∧Φ(X)(e2, t2)} ∪{

(Πx : X. Y[x],
Πx : X′. Y ′[x])

∣∣∣∣ I(X,X′) ∧
∀(v,v′) ∈Φ(X). I(Y[v],Y ′[v′])

}
∪{

(Σx : X. Y[x]
Σx : X′. Y ′[x])

∣∣∣∣ I(X,X′) ∧
∀(v,v′) ∈Φ(X). I(Y[v],Y ′[v′])

}
∪{

(∀x : X. Y[x]
∀x : X′. Y ′[x])

∣∣∣∣ I(X,X′) ∧
∀(v,v′) ∈Φ(X). I(Y[v],Y ′[v′])

}
∪{

(∃x : X. Y[x]
∃x : X′. Y ′[x])

∣∣∣∣ I(X,X′) ∧
∀(v,v′) ∈Φ(X). I(Y[v],Y ′[v′])

}
∪

{(GA, GA′) | L(A,A′)} ∪
{(Ui, Ui) | i < k} ∪
{(Li, Li) | i < k}

L′ = {(I, I)} ∪
{(A⊗B,A′ ⊗B′) | L(A,A′)∧ L(B,B′)} ∪
{(A⊸ B,A′⊸ B′) | L(A,A′)∧ L(B,B′)} ∪{

(Fx : X.A[x],
Fx : X′.A′[x])

∣∣∣∣ I(X,X′) ∧
∀(v,v′) ∈Φ(X). L(A[v],A′[v′])

}
∪{

(Πx : X.A[x],
Πx : X′.A′[x])

∣∣∣∣ I(X,X′) ∧
∀(v,v′) ∈Φ(X). L(A[v],A′[v′])

}
∪{

(∀x : X.A[x],
∀x : X′.A′[x])

∣∣∣∣ I(X,X′) ∧
∀(v,v′) ∈Φ(X). L(A[v],A′[v′])

}
∪{

(∃x : X.A[x],
∃x : X′.A′[x])

∣∣∣∣ I(X,X′) ∧
∀(v,v′) ∈Φ(X). L(A[v],A′[v′])

}
∪

{(⊤,⊤)} ∪
{(A&B,A′ &B′) | L(A,A′)∧ L(B,B′)} ∪
{(T (A), T (A′)) | (A,A′) ∈ L} ∪
{(e 7→ X,e′ 7→ X′) | (e,e′) ∈ Loc ∧ (X,X′) ∈ I}

Figure 14. Definition of type part of Tk

ϕ′(Loc) = Loc
ϕ′(N) = N̂
ϕ′(⊤I) = ⊤̂I

ϕ′(e1 =X e2) = Id(e1,e2,ϕ(X))
ϕ′(Πx : X. Y[x]) = Π(ϕ(X),λv. ϕ(Y[v]))
ϕ′(Σx : X. Y[x]) = Σ(ϕ(X),λv. ϕ(Y[v]))

ϕ′(∀x : X. Y[x]) = ∀̂(ϕ(X),λv. ϕ(Y[v]))

ϕ′(∃x : X. Y[x]) = ∃̂(ϕ(X),λv. ϕ(Y[v]))
ϕ′(GA) = G(ψ(A))

ϕ′(Ui) when i < k = let (Û, L̂, ϕ̂, ψ̂) = fix(Ti) in Û
ϕ′(Li) when i < k = let (Û, L̂, ϕ̂, ψ̂) = fix(Ti) in L̂

ψ′(I) = Î
ψ′(A⊗B) = ψ(A) ⊗̂ ψ(B)

ψ′(⊤) = ⊤̂
ψ′(A&B) = ψ(A) &̂ψ(B)
ψ′(A⊸ B) = ψ(A) ⊸̂ ψ(B)
ψ′(Fx : X.A[x]) = F(ϕ(X),λv. ψ(A[v]))
ψ′(Πx : X.A[x]) = ΠL(ϕ(X),λv. ψ(A[v]))

ϕ′(∀x : X.A[x]) = ∀̂L(ϕ(X),λv. ψ(A[v]))

ϕ′(∃x : X.A[x]) = ∃̂L(ϕ(X),λv. ψ(A[v]))
ψ′(T (A)) = T(ψ(A))
ψ′(e 7→ X) = Ptr(e,ϕ(X))

Figure 15. Definition of Tk, interpretation part



[[·]] = {⟨⟩}

[[Γ ,x : X]] =

(γ, (e1,e2)/x)

∣∣∣∣∣∣
γ ∈ [[Γ ]] ∧
(γ1(X),γ2(X)) ∈ U ∧
(e1,e2) ∈ ϕ(γ1(X))


[[·]] = {(⟨ϵ; ⟨⟩⟩ , ⟨ϵ; ⟨⟩⟩)}

[[∆1,∆2]] =

 (⟨σ;δ1,δ2⟩ ,〈
σ′;δ′

1 ,δ′
2

〉
)

∣∣∣∣∣∣∣
∃σ1,σ2,σ′

1 ,σ′
2 .

σ = σ1 ·σ2 ∧σ
′ = σ′

1 ·σ′
2 ∧

(⟨σ1;δ1⟩ ,
〈
σ′

1 ;δ′
1

〉
) ∈ [[∆1]] ∧

(⟨σ2;δ2⟩ , ⟨σ′
2 ;δ′

2⟩) ∈ [[∆2]]


[[a :A]] =

{
(⟨σ;e/a⟩ , ⟨σ′;e′/a⟩)

∣∣∣∣ (A,A) ∈ L ∧
(⟨σ;e⟩ , ⟨σ;e′⟩) ∈ ψ(A)

}

Figure 16. Interpretation of Environments

and γ2 for the ordinary substitution substituting the second
projection. We write γ(e) for the pair (γ1(e),γ2(e)).

The intepretation of the empty context is the empty sub-
stitution. The interpretation of Γ , x : X is every substitution
(γ, (e, e ′)/x) where γ ∈ [[Γ ]] and γ1(X) is a type in U, and
(e, e ′) are related by ϕ(γ1(X)).

The interpretation of linear contexts∆ is a little more com-
plicated. Instead of a binary substitution, its elements consist
of pairs of store/substitution pairs. Intuitively, a linear en-
vironment is a set of linear values for each linear variable,
plus the store needed to interpret the value. So the interpre-
tation of a single-variable context a : A are all the pairs of
configurations (⟨σ; e/a⟩ , ⟨σ ′; e ′/a⟩), where ⟨σ; e⟩ and ⟨σ ′; e ′⟩
are related by ψ(A) (and A is a linear type in L).

The interpretation of the empty linear context is similar to
the interpretation for I; it relates two empty substitutions in
empty heaps. Likewise, the interpretation of contexts ∆1,∆2
is very similar to the interpretation of the tensor product.
When we interpret a context ∆1,∆2, we take it be a pair of
⟨σ; δ1, δ2⟩ and ⟨σ ′; δ ′1, δ ′2⟩, such that we can divide the stores
so that σ = σ1 · σ2 and σ ′ = σ ′

1 · σ ′
2, and ⟨σ1; δ1⟩ is related to

⟨σ ′
1; δ ′1⟩ at ∆1, and likewise ⟨σ2; δ2⟩ is related to ⟨σ ′

2; δ ′2⟩ at ∆2.

4.5 Fundamental Property

We can now state the fundamental lemma of logical relations:

Theorem 2 (Fundamental Property).
Suppose Γ ok and γ ∈ [[Γ ]] and Γ ⊢ ∆ ok and (⟨σ1; δ2⟩ , ⟨σ1; δ2⟩) ∈
[[γ1(∆)]]. Then we have that:

1. If Γ ⊢ X type then γ(X) ∈ U.
2. If Γ ⊢ X ≡ Y type then (γ1(X),γ2(Y)) ∈ U.
3. If Γ ⊢ e : X then γ(e) ∈ ϕ(γ1(X)).
4. If Γ ⊢ e1 ≡ e2 : X then (γ1(e1),γ2(e2)) ∈ ϕ(γ1(X)).
5. If Γ ⊢ A linear then γ(A) ∈ L.
6. If Γ ⊢ A ≡ B linear then (γ1(A),γ2(B)) ∈ L.
7. If Γ ;∆ ⊢ e : A then (⟨σ1;γ1(δ1(e))⟩ , ⟨σ2;γ2(δ2(e))⟩) ∈
ψ(γ1(X)).

8. If Γ ;∆ ⊢ e1 ≡ e2 : A then (⟨σ1;γ1(δ1(e1))⟩ , ⟨σ2;γ2(δ2(e2))⟩) ∈
ψ(γ1(X)).

9. If Γ ;∆ ⊢ e÷A then there are t and t ′ such that for each γ ∈ [[Γ ]]
and (⟨σ1; δ1⟩ , ⟨σ2; δ2⟩) ∈ [[γ1(∆)]], we have
(⟨σ1; δ1(γ1(t))⟩ , ⟨σ2; δ2(γ2(t

′))⟩) ∈ ψ(γ1(A)).

Proof. The theorem follows by a massive mutual induction
over all of the rules of all of the judgements in the system.
The full proof is in the companion technical report.

Worth noting is that in many of the cases, we make the
arbitrary choice to use the first projection of the substitution
(i.e., γ1 or δ1) rather than the second. Connosieurs of depen-
dent types may worry that difficulties could be lurking in

this choice. Happily, there are no problems, because we es-
tablished that T is a semantic type system up front, and so
we know that ϕ and ψ respect I and U.

Evaluation of all closed well-typed terms terminates. The
fundamental property also implies consistency, since every
well-typed term is in the logical relation and inconsistent
types (like 0 = 1) have empty relations. We also have ade-
quacy — any two provably equal terms of natural number
type will evaluate to the same numeral (and similarly for the
linear type Fn : N. I and the monadic type T ((Fn : N. I))).

5. Implementation
We have written a small type checker for a version of our the-
ory in Ocaml. We say “version of”, because the type system
we present in this paper is (extremely) undecidable, and so
we have needed to make a number of modifications to the
type theory to make it implementable. We emphasize that
even though all of the modifications we made seem straight-
forward, we have done no proofs about the implementation:
we still need to show that everything is consistent and con-
servative with respect to the extensional system.

Equality Reflection Our implementation does not support
equality reflection, or indeed most of the η rules. Our system
implements an untyped conversion relation, and opportunis-
tically implements a few of the easier eta-rules (for example,
λx. f x ≡ f). So our implementation is really an intensional
type theory, rather than an extensional one.

Intersection and Union Types The formulation of intersec-
tions and unions in this paper is set up to optimize the sim-
plicity of the side conditions — to check a term e against the
type ∀x : X. Y, we just add x : X to the context, and check that
x does not occur free in e. However, eliminating an intersec-
tion type requires guessing the instantiation.

In our implementation, we have to write an explicit ab-
straction λx. e to introduce a universal quantifier ∀x : X. Y,
and eliminating an intersection requires an explicit annota-
tion, so that if f : ∀x : X. Y, and we want to instantiate it with
e : X, then we need to write f e : [e/x]Y. Similarly, we give a
syntax for implicit existentials ∃x : X. Y where the introduc-
tion is an explicit pack pack(e, t), with e : X and t : [e/x]Y,
and the elimination is an unpack let pack(x,y) = e in e ′.

However, we track which variables are computationally
relevant or not: in both a forall-introduction λx. e, and a
exists-elimination let pack(x,y) = e in e ′, the x is not com-
putationally relevant, may only appear within type annota-
tions, implicit applications and the first argument of packs.
This restriction is in the style of the “resurrection operator”
of Pfenning [35] (which was later extended to type depen-
dency by Abel [1]). Our overall result also looks very much
like ICC∗ [6], the variant of the implicit calculus of construc-
tions [27] with decidable typechecking.

Proof Irrelevance In this paper, we implement linear proof
irrelevance with a “squashed” term ∗. To turn this into some-
thing we can typecheck, we note that the premise of the
rule requires that we produce an irrelevant derivation Γ ;∆ ⊢
e ÷ A. The rules of this judgement (see Figure 8) are actu-
ally a linear version of the monadic modality of Pfenning and
Davies [36] (and in fact we borrow their notation). So, to turn
this into something we can typecheck, all we have to do is to
replace ∗ with a term [e], where we can derive Γ ;∆ ⊢ e÷A.

We should also extend definitional equality to equate all
terms of type [A], though we have not yet implemented this,
as that requires a typed conversion relation.



Evaluation Our preliminary experience is that equality is
the most challenging issue for us. We had to postulate nu-
merous equalities that are sound in our model, but not ap-
plied automatically, and this is quite noisy. For example, we
needed to postulate function extensionality to make things
work, since we formulate lists in terms of W-types [25], and
they are not well-behaved intensionally. In addition, our by-
hand derivations of uses fix f x = e often make use of equal-
ity reflection, but we have not yet found a completely sat-
isfactory formulation of its typing rule that works well in
an intensional setting. An easy fix is to add lists (and other
inductive types) as a primitive to our system, and another
possibility is to move to something like observational type
theory [3].

6. Discussion and Related Work
We divide the discussion into several categories, even though
many individual pieces of work straddle multiple categories.

Dependent Types As an extensional type theory, our system
is constructed in the Nuprl [12] tradition. Our metatheory
was designed following the paper of Harper [20], and many
of our logical connectives were inspired by work on Nuprl.
For example, our treatment of intersection and union types is
similar to the work of Kopylov [23] (as well as PER models of
polymorphism such as the work of Bainbridge et al. [5]). Our
treatment of proof irrelevance is also inspired by the “squash
types” of Nogin [32], though because of the constraints of
linearity we could not directly use his rules.

Linearity Cervesato and Pfenning [10] proposed the Linear
Logical Framework, a core type theory for integrating linear-
ity and dependent types. This calculus consisted of the nega-
tive fragment of MALL (⊸, & ,⊤) together with a dependent
function space Πx : A. B, with the restriction that in any ap-
plication f e, the argument e could contain no free linear vari-
ables. In our calculus, this type corresponds to Πx : GA. B.
This neatly explains why the argument of the application
should not have any free linear variables; every LLF applica-
tion f e corresponds to an application f (G e) in our calculus!

Very recently, Vákár [42] has proposed an extension of
Linear LF, in which he extends linear LF with an intuition-
istic sigma-type Σx : Â. B, whose introduction form is a pair
whose first component does not have any free linear vari-
ables. In our calculus, this can be encoded as Fx : GA. B. This
encoding yields a nice explanation of why the first compo-
nent of the pair is intuitionistic, and also why the dependent
pair has a let-style elimination rather than a projective elimi-
nator. (He also extends the calculus with many other features
such as equality types and universes, just as we have, but in
both cases these extensions are straightforward and so there
is nothing interesting to compare.) Instead of an operational
semantics, he gives a categorical axiomatization, and in fu-
ture work we will see if his semantics applies to our syntax.

Polarization, Value Dependency and Proof Irrelevance An-
other extension of LLF is the Concurrent Logical Framework (or
CLF) of Watkins et al. [43], which extends LLF with positive
types (such asA⊕B,A⊗B, and the intuitionistic sigma types),
as well as a computational monad {A} to mediate between uses
of positive and negative types. This seems to be an instance
of focalization, in which a pair of adjoint modalities ↑ N and
↓ P are used to segregate positive and negative types, with
the monadic type {A} arising as the composite ↑↓ P.

The distinction between positive and negative corre-
sponds to a value/computation distinction (c.f., [24, 44]).

While the LNL calculus is also built on an adjunction, this
adjunction reflects the linear/nonlinear distinction and not
the value/computation distinction. As a result, our language
is pure (validating the full βη theory for all the connec-
tives), and we can freely mix positive and negative types
(e.g., A⊗ B⊸ C).

However, polarization remains interesting from both
purely theoretical and more practical points of view. Spiwack
[39] gives dependent L, a polarized, linear, dependent type
theory from a purely proof-theoretic perspective. The key
observation is that polarized calculi have a weaker notion of
substitution (namely, variables stand for values, rather than
arbitrary terms), and as a result, (a) dependent types may
depend only on values (which forbids large eliminations),
but (b) since contraction of closed values is “safe” (since no
computations can occur in types), linear variables may be
freely duplicated when they occur in types.

Similar ideas are also found in the F∗ language of Swamy
et al. [41]. This is an extension of the F# language with type
dependency. Since F∗ is an imperative language in the ML
tradition, for soundness dependency is restricted to value de-
pendency, just as in dependent L. However, the treatment of
dependency on linear variables is somewhat different — F∗

has a universe of proof-irrelevant (intuitionistic) types, and
affine variables can appear freely in proof-irrelevant types.

Imperative Programming with Capabilities In addition to
languages exploring “full-spectrum” type dependency (in-
cluding Hoare Type Theory, which we discuss in Section 3.3),
there are also a number of languages which have looked at
using linear types as a programming feature.

ATS with linear dataviews, by Zhu and Xi [45], is not
a dependently-typed language, since it very strictly segre-
gates its proof and programming language. However, it has
an extremely extensive language of proofs, and this proof
language includes linear types, which are used to control
memory accesses in a fashion very similar to L3 or separa-
tion logic. Interestingly, the entire linear sublanguage is com-
putationally irrelevant – linear proofs are proofs, and hence
erased at runtime.

Similarly, the calculus of capabilities of Pottier [37] repre-
sents another approach towards integrating linear capabili-
ties with a programming language. As with ATS, capabili-
ties are linear and irrelevant, and this system also includes
support for advanced features such as the anti-frame rule.
(A simpler proof-irrelevant capability system can be found
in the work of Militão et al. [26], who give a kernel linear
capability calculus.)

At this point, it should be clear that the combination of
proof irrelevance and linearity is something which has ap-
peared frequently in the literature, in many different guises.
Unfortunately, it has mostly been introduced on an ad-hoc
basis, and is not something which has been studied in its
own right. As a result, we cannot give a crisp comparison
of our proof irrelevance modality with this other work, since
the design space seems very complex.

Other Work One piece of work we wish to draw attention
to is the enriched effect calculus of Egger et al. [16]. This
calculus is like the (non-dependent) LNL calculus, except
that it restricts linear contexts to at most a single variable (so
that they are stoups, in Girard’s terminology). One striking
coincidence is that EEC has a mixed pair X !⊗A, which looks
very much like our linear dependent pair Fx : X. A.

Another direction for future work is to enrich the heap
model. Our model of imperative computations is a gener-



alization of Ahmed et al. [2], which in turn builds a logical
relation model on top of the basic heap model of separa-
tion logic [38]. However, over the past decade, this model
of heaps has been vastly extended, both from a semantic per-
spective [9, 15], and from the angle of verification [14, 22].
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