
Revision sheet for CSCM12 (AY 24-25)

This is meant to be a checklist of some of the main things that may be useful to retain
for the exam from the lectures and the labs. This is not an exhaustive coverage of all topics
in the module, but most should be at least touched on. If something is not marked explicitly
as out of scope for the exam, you should be prepared to know that for the exam. This does
not follow the order of the slides and there is a bit of overlap/repetition.

This is the second iteration of this sheet, cobbled together from the lecture/lab materials.
Feedback/suggestions for impovements welcome!

1 Complexity analysis

1.1 Measuring the efficiency of programs

• Two quantities can typically be roughly estimated theoretically without having to run
an algorithm through a computer and do benchmarks: asymptotic time complexity
and asymptotic space complexity.

• Time complexity is typically proportional to the number of steps one takes by running
a program by hand with pen and papers. Most operations can be assumed to take one
step; some notable exceptions are allocating arrays (the time this takes is proportional
to the size of the array) and calling auxiliary functions.

• Space complexity corresponds to the extra memory required to run a particular func-
tion on top of what was allocated for the argument1. This is obtained by summing
the size of the memory representation of all the variables simultaneously declared in a
block of code during the execution; for an int and other basic datatypes, this will be
constant, but not for complex datatypes and arrays.

• We focused on theoretical asymptotic analyses in these lectures; they have some advan-
tages and inconvenient:

– They have some degree of imprecision in the sense that they only give results
only up to a multiplicative constant. This means in particular that they are
typically relevant only when your input is getting large.

– However it also means that they have wide applicability and will hold if you
switch platform/language/compilers etc.

– They can be made a priori and do not require any testing. It means that in
particular they can be used to quickly inform design decisions.

• We abstract time/space complexity as function taking an input size to a running time/memory
consumption. We usually consider the worst-case complexity, i.e., we take the function

n 7−→ max
I of size n

running time over I

1So a function can have space complexity of O(1) while being passed an array of arbitrary size as input.

1

It may be of interest to also look at average-case complexity (where the max is replace
by an expectancy2)

• Another way of measuring perfomance in practice is via actually benchmarking (i.e.
testing on a variety of inputs and checking for execution time and memory consumption).
One gets precise results if things are set up right, and aspects that are ignored by an
asymptotic analyses such as the behaviour of compiler optimisations and the runtime
environment that influence the “constant factor” that Os abstract away.

• Sometimes when operating over a datastructure, there might be uneven time spent
across every call to an operation, like with e.g. dynamic arrays: most operations will
actually run in constant time, except in the rare case when a reallocation happens.
Amortized complexity is a notion that allows to talk about these scenarii (i.e., math-
ematically, it is fine to assume that adding an element to a dynamic array is O(1) to
compute an aggregate complexity in an algorithm if we start from an empty object).

• There is a bit of an annoying discrepancy between integers in the mathematical world
and on the idealized computer: an integer in java will typically be bounded by 264 and
we consider all arithmetic operations are thus O(1), while in theory, for asymptotic
analyses to be valid, you may want to have unbounded integers (and the size of n is in
Θ(log(n))). We sweep that issue under the rug for this module3. There is also a similar
issue with built-in arrays.

1.2 Asymptotic analysis

• Asymptotic means “in the limit”; it means those kind of analyses will typically only
work for large value of the arguments of a function, up to a multiplicative constant.

• Here we will assume we deal only with non-decreasing functions N→ R or R>0 → R>0.

• To talk about complexity analysis, we use the following notations4

Definition 1 (O, o,Θ and Ω notations). In the following, f and g are function
in a single variable foing to +∞:

– f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞

– f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

– f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))

– f(n) = o(g(n)) means lim
n→+∞

f(n)
g(n) = 0

• A maybe more intuitive reformula of O (similar reformulations exist for the others as
well): in case g(n) > 0 for all n, f(n) = O(g(n)) if there exists a constant K > 0 such
that for every n, f(n) ≤ Kg(n). In particular, f(n) is a O(1) if it is bounded.

2This requires setting a probability distribution over the inputs; a typical choice would be the uniform
distribution.

3The rationale is that 1) the induced inaccuracies are not noticeable in implementations since we typically
use often these fixed integers in practice and 2) if we wanted to be rigorous, the inaccuracies would lead to
only log factors in most cases which are not a huge deal.

4For this module we take all our limits at +∞, but you may find these notations elsewhere when the
asymptotic analysis is done at other limit points in other kind of math/physics.

2

• There are a number of techniques that allow to “compute up to a O” quickly, but if they
don’t apply, you should ultimately rely on spelling out constants/over-approximations5.

• Some basic tips for computing with Os:

– If f(n) ≤ g(n) then f(n) = O(g(n))
– f(n) = o(g(n)) impies f(n) = O(g(n))
– for any k > 0, kf(n) = O(f(n))
– If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))
– log(n)k = o(n), nk = o(2n) for any constant k ∈ R+

– nk = o(nk′) for k < k′

– f1(n) = O(g1(n)) and f2 = O(g2(n)) together imply f1(n)f2(n) = O(g1(n)g2(n))
– If f(n) = O(g(n)), then f(n) + g(n) = O(g(n))

• Most functions we will encounter will consists of sums/multiplications of polynomials,
logarithms and exponentials. Because of this, O computations will typically be quite
easy for this module: develop the expression and select the asymptotically bigger terms.

• To give you a rough sense of scale: the logarithm of a number is its number of digits,
and an exponential is to a linear function what a linear function is to a logarithm. In
practice, this means that logarithmic terms are going to be barely noticeable while
any exponential blow-up will make a function unrunnable but for the smallest of inputs6.

• Those notations make sense for functions in several variables Rk → R. The adaptation
consists in taking a good notion of limit:

Definition 2 (O in several variables). f(x1, . . . , xk) is a O(g(x1, . . . , xk)) if for
every h : N → Rk such that lim

n→+∞
||h(n)|| = +∞ we have that f(h(n)) is a

O(g(h(n))).

In practice all of the rules above also apply when dealing with computing O for multi-
variate functions.

1.3 In practice: useful techniques for over-approximating

• For simple loops, one can count the number of iterations and bound the complexity of
running through the body for all possible values of the variables, and then multiply the
results

• Sometimes (and this is typically the case when dealing with while loops with non-trivial
termination conditions), one has to figure out a smarter invariant that will decrease with
each run of the body of the loop.

• Recursive algorithms will often lead to recursive equations. While you are not expected
to be able to rigorously solve them, you should be able to use the following recipes for
the typical cases we encounter (f is assumed to be non-decreasing):

5For instance, if you have a sequence un+1 = un + 1, there is a fallacious “proof” that un = O(1): by
induction, u0 = O(1) and assuming un = O(1), then un+1 = un +1 = O(1)+O(1) = O(1). This is wrong and
does not hold up to scrutiny if you replace the inductive hypothesis

6To nuance that, bearing in mind that worst-case scenarii are not necessarily typical: for instance, SAT-
solving is employed for many application, while there is no algorithm that are known to perform better than
in exponential time in the worst case.

3

– If the equation is T (n+1) = T (n)+f(n), then a solution is O(nf(n)). In particular,
if f is a polynomial, this is a Θ(nf(n)).

– If the equation is T (n+ 1) = aT (n) + b for some a > 1 and b > 0, the complexity
is Θ(an) (typically this corresponds to having a recursive calls).

– If the equation is T (n) = T (nk)+b for k > 1 and b > 0, the complexity is Θ(log(n)).

– If the equation has shape

T (n) = aT (
n

b
) + f(n)

one might be able to determine some bounds using the master theorem. You
are not expected to recall the theorem statement for the exam, it will be recalled
if you need it. But you should be able to apply it.

Theorem 1 (master theorem). Assume that T (n) = aT
(
n
b

)
+ f(n)

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,
▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0,

and there is c < 1 such that af
(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

– If you are computing a O, you can over-approximate a recursive equation. For
instance, if you have the recursive equation

T (n) = T (a(n− 1)) + T (bn) + f(n− 2)

with a > b and f non-increasing, T will be a O of any increasing function satisfying
T ′(n) = T ′(an) + f(n), so you can try to solve the latter.

– Another technique might be to do change of parameters; for instance, an equation
like un+2 = un + 1 can be solved by considering vk = u2k and v′k = u2k+1.

– While formally one should take rounding into account when dealing with divide-
and-conquer approaches if we want to be rigorous since we are dealing with func-
tions N→ N, we will consider it fine to be a bit sloppy here.

2 Techniques for coming up with algorithms

2.1 Recursion

• A function implementation is called recursive when the the function calls itself during
execution. It could be in the body of the function, or, in the case of mutually recursive
functions, in another function.

• To terminate, recursive functions will typicaly call themselves on strictly smaller
arguments. There are exception to this pattern, e.g. when the function involves some
input-output interactions with the user/environment.

4

• When programming, recursion is essentially as powerful as iteration (loops). Choosing
one over the other in a first implementation is mostly a matter of convenience. Recursion
can be used to more easily implement some contol flows, and compiling recursive func-
tions into iterative ones is typically a bit more challenging than the other way around
(essentially because one needs to maintain a stack structure to emulate the function
calls).

• Recursion can lead to some natural solutions using the following recipe: if I can solve
small instances of my problem, and for any big instance, I can solve it as-
suming that I can solve all strictly smaller instances, then I can solve all
instances.

2.2 Divide-and-conquer

• High level concept: divide you problems in several subparts

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

▷ Merge into a solution

for the original instance

7−→ Solution

• Typically: greater size reduction across recursive calls, but also multiple recursive
calls.

• Complexity analysis: typically using the master theorem.

• Typical examples: merge sort, fast exponentiation, dichotomy search.

2.3 Dynamic programming/memoization

• Sometimes, there is a natural recursive solution that would have redundant recursive
calls.

int binom(int k, int n)

{

if (k > n)

return 0;

if (k == 0)

return 1;

else

return binom(k-1,n-1) + binom(k,n-1);

}

5

binom(2, 4)

binom(2, 3)

binom(2, 2) binom(1, 2)

binom(2, 1)binom(1, 1) binom(1, 1) binom(0, 1)

binom(1, 3)

binom(1, 2) binom(0, 2)

binom(1, 1)binom(0, 1)

function calls

returns

...
...

...
...

...

Dynamic programming or memoization7 is essentially the technique that consists in
avoiding these kind of redundant calls.

• One easy way of doing it is modifying the recursive function by looking up in a table
before doing a recursive call. On the above example it may be done as follows:

final int N = 100;

final int K = 20;

final int[][] cache = new Array[K][N];

//assume that main() initializes cache with -1

static int binom(int k, int n)

{

if (cache[k][n] != -1)

return cache[k][n];

if (k > n)

return cache[k][n] = 0;

if (k == 0)

return cache[k][n] = 1;

else

return cache[k][n] = binom(k-1,n-1) + binom(k,n-1);

}

One may use ArrayList and static variables to get cleaner implementations. If the
input is a complex datatype, using a hash table for memoization is a good solution.

The complexity analyses are typically less straightforward to carry to compute accurate
bounds; usually the idea is to sum the contribution of each subinputs.

• Sometimes one can also use that as inspiration to get iterative implementation like the
following:

final int N = 100;

final int K = 20;

int binom[K][N];

binom[0][0] = 1;

for(int n = 1; n < N; n++)

7I prefer to say memoization because I find it more evocative (i.e., you memorize a bunch outputs), but
dynamic programming is unfortunately more widespread; the guy who coined the term picked it to cajole some
bureaucrat of the US army.

6

{

binom[0][n] = 1;

for(int k = 1; k <= min(n,K); k++)

binom[k][n] = binom[k][n-1] + binom[k-1][n-1];

}

3 Trees

3.1 Basic notions/vocabulary

• One possible definition

Definition 3 (Finite trees, inductive definition←). A tree with labels in L is a
pair (label, ⟨c1, . . . , cn⟩) where:

– label ∈ L

– ⟨c1, . . . , cn⟩ is a list of trees with labels in L (possibly an empty list)

• Summary of the vocabulary:

the root

a leaf

an internal node
Height/depth

(=4)

is an ancestor of

is an descendant of

is a child of

is a parent of

is the least common ancestor of and

level 0

level 1

level 2

level 3

• breadth-first enumeration:• breadth-first enumeration:

depth ≤ size ≤ max(arity)depth

• depth-first infix enumeration: (← only makes sense for binary trees)

• depth-first postfix enumeration:

• depth-first prefix enumeration:

• Variations: bounding the number of nodes, not caring about the order of children,
different kind of labellings. . .

• On a mathematical level, trees can be characterized as those undirected graphs with a
designated root vertex and with exactly one path between any two vertices.

3.2 Representation in OO languages

• Typically using a recursive class like the following:

class Tree<T>

{

7

public T label;

public ArrayList<Tree<T>> children;

public static <T> Tree<T> leaf(T x)

{

Tree<T> t = new Tree<T>();

t.children = new ArrayList<Tree<T>>();

t.label = x;

return t;

}

}

class BinaryTree<T>

{

public T label;

public Tree<T> left;

public Tree<T> right;

}

In practice, most recursive classes are going to have tree-like representations.

• Those classes allow to encode structures that are not tree-like: a reference may be
reachable in distinct ways (sharing) or create a cycle.

10

5 11

3

12

size:

0

size:

3

size:

1
size:

1
size:

1

cycle

sharing

These often arise as mistakes, but sometimes this might be intended:

– in case of cycles, this can be used to represent graphs or structures that are meant
to be infinite, but this is a rather unusual use

8

10

5 11

3

12

11

3

10

5 11

3

12

11

3

...

– for sharing, this might be more legitimate and correspond to directed acyclic
graphs that behave like trees as long as one does not change the values of the
attributes of the object8.

• For trees with bounded degree (e.g. binary tree), one may use an array

51 3

1

10

88

2 1 10 2 51 3 88null

It gives fast access due to O(1) lookup in arrays, but potentially wastes memory.
Particularly advantageous for trees with full levels such as heaps.

3.3 Tree-like datastructures

• A heap is a special kind of labelled tree

Definition 4 (Min-heap). A min-heap is a binary tree such that

– The label of every node is smaller than its children’s

– All of its levels are full, except possibly the last

– The last level is completely filled left-to-right up until a point

They support insertion and deletion of the root in logarithmic time (proportional
to the depth of the heap since all levels)

• A binary search tree also supports insertion and deletion in time proportional to its
depth, but also lookup.

8In fact, there are even techniques to maximize sharing in immutable tree-like datastructures called hash-
consing.

9

Definition 5 (Binary search tree). A Binary Search Tree (BST) is a binary
tree labeled by integers such that

x

l r

⇒ l ≤ x ≤ r

There are fancier insertion algorithms and structures such as AVL or red-black trees
that allow to maintain that the trees have at most logarithmic depth; this means we can
have datastructures for sets with basic operations in logarithmic time (implemented in
the TreeSet class in java).

3.4 Dynamic arrays

• An overlay on top of an array with a smart memory management policy.

public class DynArrayInt {

private int[] internalArray;

private int size;

... }

Invariant: the size of internalArray is = 2⌈log2(size)⌉

• A single addition of an element is O(n) in the worst case, but we have an amotized
complexity of O(1).

• Otherwise the operations have the same complexity as for a primitive array.

4 2 87 9 7 0 0 08

4 2 87 9 7 0 0 0

4 2 87 9
push(7)

push(8)

3.5 Linked lists

• Idea: a non-contiguous representation in memory allows easy deletion/insertion/extension.

Definition 6. Recursive definition A linked list is either

– a flag denoting an empty list

– or a cell containing a value and a reference to a linked list

4 2 87 9

10

• Useful vocabulary for non-empty values

– head = value of the first cell

– tail = the remainder of the list

• Via a recursively defined class as for trees.

• Possibility of adding fields to:

– reverse in O(1)
– have the length in O(1)
– have concatenation in O(1)
– be able to traverse from both ends (doubly-linked lists)

4 2 87 9

• Some comparisons:

Op \Data Array List ArrayList

remove O(n) O(n) O(n)
contains O(n) O(n) O(n)

add O(n) O(1) O(n)
O(1) amortized

concat O(n+m) O(1) O(n+m)
O(m) amortized

3.6 Queues, stacks and priority queues

• A stack is a datastructure that stores elements and supports two operations:

– add an element on top (push)

– extract the latest inserted element (pop)

It allows to process data in a last-in-first-out (LIFO) fashion.

• A queue is in a sense has a dual interface with a similar signature:

– add an element at the end (enqueue)

– extract the first inserted element (dequeue)

It allows to process data in a first-in-first-out (FIFO) fashion.

• A priority queue has an additional integer argument for enqueue that gives a priority
to the inserted label. Then the element dequeued is the first inserted element among
those with least priority.

• Queues and stacks can be implemented with operations in O(1) using doubly-linked
lists (amortized O(1) with dynamic arrays). For priority queues, heaps allow to have
logarithmic time operations while lists/arrays incurr a linear penalty.

• These structures can be useful in real-time scenarii to process data (buffering), but also
as useful auxiliary datastructures such as parsing or sorting.

11

4 Sorting algorithms

4.1 Concepts

• Sorting makes sense for several datastructures such as arrays and lists.

• One can sort arrays of integers, but also complex datatypes if a custom comparison
function is provided (i.e. something extending a Comparable interface in Java)

• Sorting by comparisons is necessarily Ω(n log(n)).

• If one only needs to sort according to a retricted range of integers, there are linear-time
sorting algorithms.

• A sorting algorithm is in-place if it does not require allocating any new arrays/collections
of non-constant size; those algorithms typically operate with space complexityO(log(n)).

4.2 Classical algorithms

• Insertion sort is a quadratic sorting algorithm that works using an auxiliary function
that inserts an element in an already ordered collection. This is fairly efficient in practice
over small linked lists. Over arrays, bubble sort is another simpe quadratic-time
sorting algorithm.

• Merge sort is a divide-and-conquer sorting algorithm which relies on a linear-time
merging procedure. Its running-time is Θ(n log(n)). If the input and output is a linked
list, this can be done in-place. This is a stable sorting algorithm.

• Quicksort is another divide-and-conquer sorting algorithm which first picks a distin-
guished pivot and recursively sorts the elements smaller and larger than the pivot. It
is easy to implement it in-place if the pivot selection strategy is simple. The worst case
running time is quadratic (attained for an already-sorted input), but on average this
runs in Θ(n log(n)).

• Heapsort is a sorting algorithm that amounts to inserting all the elements of the input
in a min-heap and then extracting the root repeatedly to construct the sorted output.
This works in Θ(n log(n)) and is easy to implement in-place in an array.

5 Graphs

5.1 Basic notions/vocabulary

• Formally, a graph is simply a relation with a finite domain

Definition 7. A directed graph G is a pair (V,E) where V is a finite set and
E ⊆ V × V .

The elements of V are called vertices and elements of E called edges.

• A path is a sequence of vertices v0, . . . , vk such that (vi, vi+1) ∈ E for every i < k. A
cycle is a path of size > 1 with v0 = vk. A graph is called connected if between every
two nodes there is a path.

12

• The degree of a vertex u is the number of neighbours, that is the size of

{v ∈ V | (u, v) ∈ E or (v, u) ∈ E}

We can talk of in-degree and out-degree when we talk about nodes with incom-
ing/outcoming edges.

• There are variations of the notion of graphs:

– Undirected graphs

– Multigraphs (possibly multiple vertices between two vertices)

– Weighted graphs where edges are labelled by integers (i.e., with a weight function
w : E → N).

• Note that if a graph has n vertices, it may have a maximum of n2 edges. If it is an
undirected graph without self-loop, this is a maximum of n(n−1)

2 .

• A class of graphs C is said to be sparse if max
(V,E)∈C

|E| is not quadratic (i.e., a o(n2)).

5.2 Representations: adjacency matrices vs adjacency lists

There are two main useful ways of representing graphs, where vertices are indexed by consec-
utive integers (so essentially we take V = {0, . . . , n− 1}): adjacency matrices and adjacency
lists.

• An adjacency matrix records if an edge is there or not (or if it is). This is always
quadratic in the number of vertices. This is good for random access to check if two
nodes are connected by an edge, but then enumerating the neighbours of a vertex is
linear in the number of vertices.

• A set of adjacency lists consists of an array of lists such that the cell indexed by u
contains the list of the vs such that (u, v) ∈ E. Typically we may keep without great
loss of efficiency also another adjacency lists for predecessors, i.e. an array such that
cell u contains the list of vs such that (v, u) ∈ E. Checking if an edge exists between
two arbitrary vertices is no longer constant time, but linear in the maximal degree of
the two nodes. On the other hand enumerating the neighbors of v can be done in time
proportional to the degree of v.

• For dense graphs, adjacency matrices may be better, but generally, adjacency lists are
better, especially over sparse graphs.

5.3 Algorithms: traversal, distances

• Traversal algorithms consist in traversing the graph from a starting point and performing
some operations along the way.

• A depth-first traversal prioritizes enumerating nearby nodes first. It can be imple-
mented using either a straightforward recursion or an explicit stack structure. If the
graph is represented by an adjacency list, this is doable in O(|E|).

• A breadth-first traversal prioritizes enumerating nearby nodes first. It can be imple-
mented using a queue (this is the only difference with a deph-first algo, replacing the
stack with a queue). If the graph is represented by an adjacency list, this is doable in
O(|E|).

13

• In a weighted graph, the distance between two nodes is the minimal weight of a path
(obtained by summing the labels) between those (if there is no path, then it is∞). Note
that the notion also makes sense for non-weighted graphs, where we can say all edges
have weight 1 (and weight of a path corresponds to length).

• A breadth-first traversal can allow to compute the distance from a source nodes to all
the other in an unweighted graph.

• In a weighted graph, one may use a priority queue to compute that efficiently using
Dijkstra’s algorithm (beware, one should include the complexity of the priority queue
operation)

Djikstra(G, source)
Q← an empty priority queue
Enqueue source with priority 0 in Q
while Q is not empty do

Dequeue the element v with minimal priority d from Q
if v was not visited before then

Set the distance between source and v to be d

for all edges v
w−→ v′ do

Enqueue v′ with priority d+ w in Q
end

end

end

return the computed distances

• If one wants to compute all distances between every pair of nodes, one may use the
Floyd-Warshall algorithm (here presented over matrices) in O(|V |3).

FloydWarshall(M)

D ← a copy of M
n← dimension of M
for k from 0 to n− 1 do

for i from 0 to n− 1 do
for j from 0 to n− 1 do

D[i][j]← min(D[i][j], D[i][k] +D[k][j])
end

end

end
return D

6 Hashing

• A hash function converts a (potentially complex) value into an integer in a limited
range. There are two desiderata:

1. They should be computable efficiently (ideally O(1)!)

14

2. They should spread their inputs uniformly, i.e., if we take an input of size n at
random, each value in the output should have roughly the the same probability of
occuring.

The output of a hash function is called the hash of the input. A pair of inputs (x, y)
for a hashing function H such that H(x) = H(y) is called a collision (for H) - point
2. above implies that a hash function is good when collisions rarely occur - this might
depend, of course, on the specific application/probability distribution on the inputs of
H.

• For cryptography and verification, we may additionally want that it is intrisically hard
to compute from an output a possible input; essentially it must be hard for hackers to
compute collisions.

– One common use of hash functions is for password management: for instance, when
designing a log-in for a website, to mitigate the impact of possible data leak if the
server is breached, what should be stored on there should not be the user’s password
but a hash of the user’s password together with some string specific to the
service (typically called “salt”). Thus if a malicious actor get access to the server,
the actual password that the user uses (that may use across multiple services) is
not leaked. (there are schemes with stronger security guarantees, a lot of which
will also use hash functions as building blocks)

– Another use of hash functions is in checking the integrity of downloads. In many
scenarii, the downloading large files can be corrupted due to e.g. a bit flip in
the transfer. Detecting such errors can be done by computing the hash of the
downloaded file (which is typically much smaller than the overall file) and check
that it matches the hash given by the server. This is used implicitly for instance
in most torrent clients.

• As far as datastructures are concerned, hash functions are useful to implement hash ta-
bles, a datastructure that can provide arrays indexed by complex data/non-consecutive
integers. The goal is to have constant-time operations of regular arrays in constant-time
on average.

• (out of scope for the exam) Hash tables are very useful to do dynamic programming
if the input is a complex value and hash-consing when implementing arborescent
immutable datastructures with maximal sharing – the latter can be interesting for
enumeration problems and to speed up comparisons when the result is expected to be
false.

15

	Complexity analysis
	Measuring the efficiency of programs
	Asymptotic analysis
	In practice: useful techniques for over-approximating

	Techniques for coming up with algorithms
	Recursion
	Divide-and-conquer
	Dynamic programming/memoization

	Trees
	Basic notions/vocabulary
	Representation in OO languages
	Tree-like datastructures
	Dynamic arrays
	Linked lists
	Queues, stacks and priority queues

	Sorting algorithms
	Concepts
	Classical algorithms

	Graphs
	Basic notions/vocabulary
	Representations: adjacency matrices vs adjacency lists
	Algorithms: traversal, distances

	Hashing

