CSCM12: software concepts and efficiency Introducing recursion

Cécilia Pradic

February 13th 2025

What is recursion?

In general/informally

Self-referential notions

Some example/related concepts:

• Recursive definitions/characterizations $F_0 = 0$ $F_1 = 1$ $F_{n+2} = F_{n+1} + F_n$

(ancestor of x) = (parent) or (parent of some ancestor of x)

- Fractals
- . . .

(credit: wikipedia users)

More specifically, in Java? (applicable to most procedural/functional programming languages)

```
In function definitions:
```

```
static int fibo(int n)
{
    if (n <= 1)
      return n;
    else
      return fibo(n-2) + fibo(n-1);
}</pre>
```

```
In class definitions:
```

```
class LinkedList<T>
{
    T head;
    LinkedList<T> tail;
}
```

Today: only recursive functions

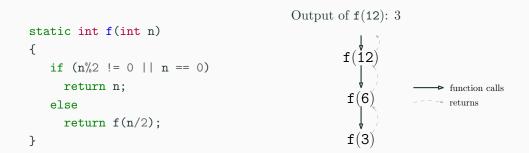
(recursive type definitions will be introduced in later lecture on datastructures)

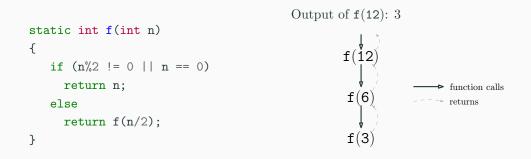
- 1. Recursive functions in ${\sf Java}$
 - How do they run?
 - Comparison with looping constructs (for, while)
 - Scopes of variable, mutual recursion
- 2. When it can useful
 - Use: recursion vs iteration?
 - Concrete use-cases in problem solving
- 3. Estimating the complexity of (some) recursive functions

(through examples)

(NB: not exhaustive!)

Recursive functions in Java

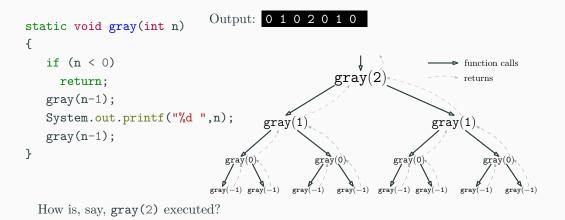




Termination: the absolute value n decreases across calls.

```
static void gray(int n)
{
    if (n < 0)
        return;
    gray(n-1);
    System.out.printf("%d ",n);
    gray(n-1);
}</pre>
```

How is, say, gray(2) executed?



8

```
int bad()
{
    return bad()+1;
}
Will most likely lead to a "stack
overflow" error
(low-level: a stack structure is typically used at
the CPU level to model a path in the call tree)
```

```
static int advertise(char* product)
                                               do {
{
                                                  Scanner sc = new Scanner(System.in);
  Scanner sc = new Scanner(System.in);
                                                  System.out.printf("\n Buy data!\n");
  System.out.printf("\n Buy %s!\n", product);
                                               } while (sc.NextByte() != 'y');
  if (sc.nextByte() == 'y')
    return 0;
  else
    return advertise(product);
}
                                                 advertise("trinket")
                                                                       − − ¬⊢ returns
                                                 advertise("trinket")
... advertise("data") ...
                                                 advertise("trinket")
```

Recursion vs iteration

Use-cases of recursion: similar to those of iteration constructs for and while

In theory, one can always pick one or the other without loss of generality.

Comments

• Mutable variables: required for meaningful iterations, not necessarily for recursion

(\rightsquigarrow sometimes easier to reason about recursive functions)

• Hard to translate recursive functions into iterative ones

(easier the other way around)

Scoping of variables

Variables are local to one callsite of the function

To maintain state across calls, use **static** or global variables

```
static void f()
{
  int i = 2;
  i--;
 if(i > 0)
   f();
}
static void f1()
{
  int i1 = 2;
  i1--;
  if(i1 > 0)
    f();
}
```

```
//f,f1: same behaviour
//no quarantee of termination
static void g()
ſ
  static int i = 2;
  i--;
  if(i > 0)
   g();
}
//i is initialized once in the
//whole program
//q always terminate
```

Mutual recursion

One can introduce a system of mutually recursive functions

```
static int halve_l(int);
                                         halve(3)
static int halve(int n)
ſ
 if (n == 0)
                                                              function calls
                                       halve_1(1)
   return 0;
                                                              returns
 else
   return 1 + halve_l(n-1);
                                         halve(1)
}
static int halve_l(int n)
                                       halve_1(0)
ſ
 if (n == 0)
   return 0;
```

else

```
return halve(n-1);
}
```

Using recursive functions

High-level considerations

Why use recursive functions over iterations?

Cons:

- Arguably less idomiatic in procedural languages like **Java**
- Harder to compile away function calls (so maybe less intuitive *at first*)
- Performances losses (minor)

Pros:

- Meaningful procedures w/o mutable variables In previous slides: where you can put finals?
- \rightsquigarrow Easier to reason about Can be thought of mathematical functions w/o side effects
- Allow to express easily more complicated control flow
 Think of gray

Also, later, for traversing complex datastructure

Morality

Focus on writing correct code...

... so don't hesitate to use recursive functions when it helps

Problem

If I give you n undistinguishable socks, how many ways P_n do you have to group them pairwise?

For n = 3?

Problem

If I give you n undistinguishable socks, how many ways P_n do you have to group them pairwise?

For n = 3? $P_3 = 0$

Problem

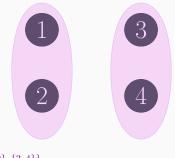
If I give you n undistinguishable socks, how many ways P_n do you have to group them pairwise?

For n = 3? $P_3 = 0$ n = 4?

Problem

If I give you n undistinguishable socks, how many ways ${\cal P}_n$ do you have to group them pairwise?

For n = 3? $P_3 = 0$ n = 4?

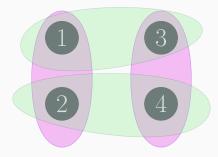


 $\{\{1,2\},\{3,4\}\}$

Problem

If I give you n undistinguishable socks, how many ways ${\cal P}_n$ do you have to group them pairwise?

For n = 3? $P_3 = 0$ n = 4?

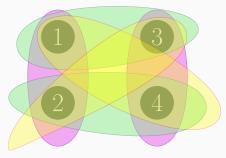


 $\{\{1,2\},\{3,4\}\} \qquad \{\{1,3\},\{2,4\}\}$

Problem

If I give you n undistinguishable socks, how many ways ${\cal P}_n$ do you have to group them pairwise?

For n = 3? $P_3 = 0$ n = 4?

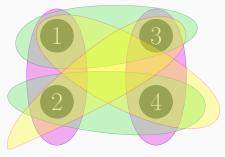


 $\{\{1,2\},\{3,4\}\} = \{\{1,3\},\{2,4\}\} = \{\{1,4\},\{2,3\}\}$

Problem

If I give you n undistinguishable socks, how many ways ${\cal P}_n$ do you have to group them pairwise?

For n = 3? $P_3 = 0$ n = 4?



 $\{\{1,2\},\{3,4\}\} \qquad \{\{1,3\},\{2,4\}\} \qquad \{\{1,4\},\{2,3\}\}$

 $\rightarrow P_4 = 3$

- Do we have an easy solution for inputs of size 0/small sizes?
- Can we obtain a solution for size n if I know the solutions for k < n?

- Do we have an easy solution for inputs of size 0/small sizes?
- Can we obtain a solution for size n if I know the solutions for k < n?
- There is a single way of pairing 0 socks together and no way of pairing a single sock with no socks.

- Do we have an easy solution for inputs of size 0/small sizes?
- Can we obtain a solution for size n if I know the solutions for k < n?
- There is a single way of pairing 0 socks together and no way of pairing a single sock with no socks.
- If I want to pair n socks $\{1, \ldots n\}$

- Do we have an easy solution for inputs of size 0/small sizes?
- Can we obtain a solution for size n if I know the solutions for k < n?
- There is a single way of pairing 0 socks together and no way of pairing a single sock with no socks.
- If I want to pair n socks $\{1, \ldots n\}$
 - I must necessarily pair n with another sock $k \in \{1, \ldots, n-1\}$

- Do we have an easy solution for inputs of size 0/small sizes?
- Can we obtain a solution for size n if I know the solutions for k < n?
- There is a single way of pairing 0 socks together and no way of pairing a single sock with no socks.
- If I want to pair n socks $\{1, \ldots n\}$
 - I must necessarily pair n with another sock $k \in \{1, \ldots, n-1\}$

 $\rightarrow n-1$ ways of picking such a sock

- Do we have an easy solution for inputs of size 0/small sizes?
- Can we obtain a solution for size n if I know the solutions for k < n?
- There is a single way of pairing 0 socks together and no way of pairing a single sock with no socks.
- If I want to pair n socks $\{1, \ldots n\}$
 - I must necessarily pair n with another sock $k \in \{1, \ldots, n-1\}$

 $\rightarrow n-1$ ways of picking such a sock

• Then I can pair the remaining n-2 socks in $\{1, \ldots, n-1\} - \{k\}$ arbitrarily

- Do we have an easy solution for inputs of size 0/small sizes?
- Can we obtain a solution for size n if I know the solutions for k < n?
- There is a single way of pairing 0 socks together and no way of pairing a single sock with no socks.
- If I want to pair n socks $\{1, \ldots n\}$
 - I must necessarily pair n with another sock $k \in \{1, \ldots, n-1\}$

• Then I can pair the remaining n-2 socks in $\{1, \ldots, n-1\} - \{k\}$ arbitrarily $\rightarrow P_{n-2}$ ways of doing that

- Do we have an easy solution for inputs of size 0/small sizes?
- Can we obtain a solution for size n if I know the solutions for k < n?
- There is a single way of pairing 0 socks together and no way of pairing a single sock with no socks.
- If I want to pair n socks $\{1, \ldots n\}$
 - I must necessarily pair n with another sock $k \in \{1, \ldots, n-1\}$

 $\rightarrow n-1$ ways of picking such a sock

• Then I can pair the remaining n-2 socks in $\{1, \ldots, n-1\} - \{k\}$ arbitrarily $\rightarrow P_{n-2}$ ways of doing that

Putting everything together

$$P_0 = 1$$
 $P_1 = 0$ $P_{n+2} = (n+1) \times P_n$

In code

Easy to translate directly:

```
static int numberPairings(int n)
{
   switch(n)
   {
     case 0: return 1;
     case 1: return 0;
     default: return (n-1) * numberPairings(n-2);
   }
}
```

Complexity

 $c_{n+2} = \mathcal{O}(1) + c_n \qquad c_0 = \mathcal{O}(1) \qquad c_1 = \mathcal{O}(1)$

In code

Easy to translate directly:

```
static int numberPairings(int n)
{
   switch(n)
   {
     case 0: return 1;
     case 1: return 0;
     default: return (n-1) * numberPairings(n-2);
   }
}
```

Complexity

So here $c_n = \mathcal{O}(n)$

 $c_{n+2} = \mathcal{O}(1) + c_n \qquad c_0 = \mathcal{O}(1) \qquad c_1 = \mathcal{O}(1)$

(exponential complexity (the size of n is $\mathcal{O}(\log_2(n))$))

Computing the complexity of simple recursive functions

Typically, if we use recursion to reduce an input of size n to size n-1, we have a complexity satisfying

$$u_{n+1} = a \times u_n + b \qquad \text{for } a, b, u_0 \ge 1$$

General recipe

- $u_n = \Theta(a^n)$ if a > 1
- $u_n = \Theta(n)$ if a = 1

Computing the complexity of simple recursive functions

Typically, if we use recursion to reduce an input of size n to size n-1, we have a complexity satisfying

$$u_{n+1} = a \times u_n + b \qquad \text{for } a, b, u_0 \ge 1$$

General recipe

- $u_n = \Theta(a^n)$ if a > 1
- $u_n = \Theta(n)$ if a = 1

Proof for a = 1

Assume $m \le a, b, u_0 \le M$. By induction, $mn \le u_n \le M(n+1)$.

Computing the complexity of simple recursive functions

Typically, if we use recursion to reduce an input of size n to size n-1, we have a complexity satisfying

$$u_{n+1} = a \times u_n + b$$
 for $a, b, u_0 \ge 1$

General recipe

- $u_n = \Theta(a^n)$ if a > 1
- $u_n = \Theta(n)$ if a = 1

Proof for a = 1

Assume $m \le a, b, u_0 \le M$. By induction, $mn \le u_n \le M(n+1)$.

Proof for a > 1

By induction $a^n m \leq u_n \leq M a^{n+1}$

Computing the complexity of simple recursive functions

Typically, if we use recursion to reduce an input of size n to size n-1, we have a complexity satisfying

$$u_{n+1} = a \times u_n + b$$
 for $a, b, u_0 \ge 1$

General recipe

- $u_n = \Theta(a^n)$ if a > 1
- $u_n = \Theta(n)$ if a = 1

Proof for a = 1

Assume $m \le a, b, u_0 \le M$. By induction, $mn \le u_n \le M(n+1)$.

Proof for a > 1

By induction $a^n m \leq u_n \leq M a^{n+1}$

Maths exercise: exact solutions

(Hint for $a \neq 1$: compute first $u_n - \ell$ for $\ell = a\ell + b$)

Problem

Compute the number of ways $\binom{n}{k}$ to pick k elements among n.

$\binom{4}{2} = \# \left\{ \textcircled{2}, \textcircled{3}, \rule{3}, \rule$

Problem

Compute the number of ways $\binom{n}{k}$ to pick k elements among n.

$$\begin{pmatrix} 4\\ 2 \end{pmatrix} = \# \left\{ \textcircled{2}, \textcircled{3}, \rule{3}, \rule{3},$$

$$\binom{n}{k} = \#\{X \subseteq \{1, \dots, n\} \mid \#X = k\} = \frac{n!}{k!(n-k)!}$$

Problem

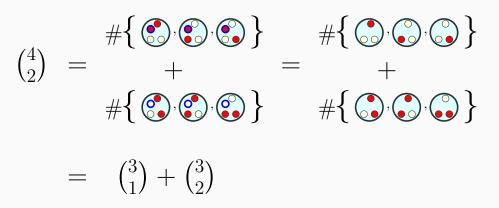
Compute the number of ways $\binom{n}{k}$ to pick k elements among n.

$$\binom{4}{2} = \# \left\{ \textcircled{,}, \rule{,}, \rule$$

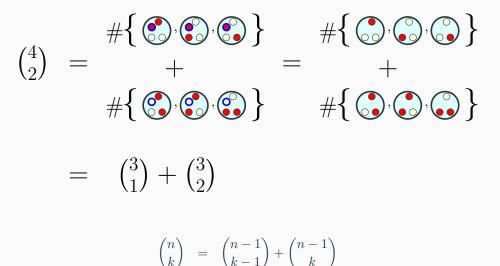
$$\binom{n}{k} = \#\{X \subseteq \{1, \dots, n\} \mid \#X = k\} = \frac{n!}{k!(n-k)!}$$

Issue with the closed formula: n! overflows fast while $\binom{k}{n}$ is polynomial if k = O(1). Alternative way of computing?

Decomposition by fixing an element and asking whether it is picked or not.



Decomposition by fixing an element and asking whether it is picked or not.



```
int binom(int k, int n)
{
    if (k > n)
        return 0;
    if (k == 0 )
        return 1;
    else
        return binom(k-1,n-1) + binom(k,n-1);
}
```

Proof of termination: by induction over n.

$$u_{k,n} = \mathcal{O}(1)$$
 when $k > n$ or $k = 0$
 $u_{k+1,n+1} = u_{k,n} + u_{k+1,n} + \mathcal{O}(1) \le 2u_{k+1,n} + \mathcal{O}(1)$

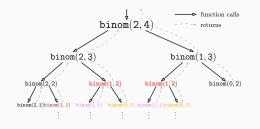
$$u_{k,n} = \mathcal{O}(1)$$
 when $k > n$ or $k = 0$
 $u_{k+1,n+1} = u_{k,n} + u_{k+1,n} + \mathcal{O}(1) \le 2u_{k+1,n} + \mathcal{O}(1)$
So $u_{n,k} = \mathcal{O}(2^{n-k}).$

$$u_{k,n} = \mathcal{O}(1)$$
 when $k > n$ or $k = 0$
 $u_{k+1,n+1} = u_{k,n} + u_{k+1,n} + \mathcal{O}(1) \le 2u_{k+1,n} + \mathcal{O}(1)$
So $u_{n,k} = \mathcal{O}(2^{n-k}).$

(keeping in mind that the size of an integer n is $\log(n)$, this is double exponential complexity!)

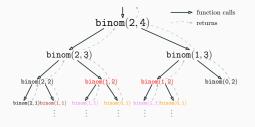
Issue: exponential number of calls

(inefficient)



Issue: exponential number of calls

(inefficient)



But there are redundant calls! Two ways of adressing this:

- Caching the common subcomputation
- Translating to an iterative program

a.k.a. (dynamic programming or memoization)

 $\bullet\,$ Assume N and K are sufficiently large for our needs.

Otherwise: bureaucratic memory management with ArrayList

```
final int N = 100;
final int K = 20;
final int[][] cache = new Array[K][N];
//assume that main() initializes cache with -1
static int binom(int k, int n)
ł
  if (cache[k][n] != -1)
   return cache[k][n];
  if (k > n)
   return cache[k][n] = 0;
  if (k == 0)
   return cache[k][n] = 1:
  else
    return cache[k] [n] = binom(k-1,n-1) + binom(k,n-1);
}
```

 $\bullet\,$ Assume N and K are sufficiently large for our needs.

Otherwise: bureaucratic memory management with ArrayList

```
final int N = 100;
final int K = 20;
final int[][] cache = new Array[K][N];
//assume that main() initializes cache with -1
static int binom(int k, int n)
ł
  if (cache[k][n] != -1)
   return cache[k][n];
  if (k > n)
   return cache[k][n] = 0;
  if (k == 0)
   return cache[k][n] = 1:
  else
    return cache[k] [n] = binom(k-1,n-1) + binom(k,n-1);
}
```

Complexity?

 $\bullet\,$ Assume N and K are sufficiently large for our needs.

Otherwise: bureaucratic memory management with ArrayList

```
final int N = 100;
final int K = 20;
final int[][] cache = new Array[K][N];
//assume that main() initializes cache with -1
static int binom(int k, int n)
ł
  if (cache[k][n] != -1)
   return cache[k][n];
  if (k > n)
    return cache[k][n] = 0:
  if (k == 0)
    return cache[k][n] = 1:
  else
    return cache[k][n] = binom(k-1,n-1) + binom(k,n-1);
}
```

Complexity? Hint: bound the number of recursive calls

 $\bullet\,$ Assume N and K are sufficiently large for our needs.

Otherwise: bureaucratic memory management with ArrayList

```
final int N = 100;
final int K = 20;
final int[][] cache = new Array[K][N];
//assume that main() initializes cache with -1
static int binom(int k, int n)
ł
  if (cache[k][n] != -1)
   return cache[k][n];
  if (k > n)
    return cache[k][n] = 0:
  if (k == 0)
    return cache[k][n] = 1:
  else
    return cache[k][n] = binom(k-1,n-1) + binom(k,n-1);
}
```

Complexity? Hint: bound the number of recursive calls

 $\mathcal{O}(k \times n)$ 24

```
final int N = 100;
final int K = 20;
int binom[K][N];
binom[0][0] = 1;
for(int n = 1; n < N; n++)
{
  binom[0][n] = 1:
  for(int k = 1; k \le \min(n, K); k++)
    binom[k][n] = binom[k][n-1] + binom[k-1][n-1];
}
```

• The proof of correctness is slightly more subtle

Need to reason about the mutable values of $\mathtt{binom}[k][n]$

- The recursive variant is easier to write and an acceptable naive first implementation!
- Fill all the values upfront

(the other method is better for incremental computation)

```
final int N = 100;
final int K = 20;
int binom[K][N];
binom[0][0] = 1;
for(int n = 1; n < N; n++)
{
  binom[0][n] = 1:
  for(int k = 1; k \le \min(n, K); k++)
    binom[k][n] = binom[k][n-1] + binom[k-1][n-1];
}
```

• The proof of correctness is slightly more subtle

Need to reason about the mutable values of $\mathtt{binom}[k][n]$

- The recursive variant is easier to write and an acceptable naive first implementation!
- Fill all the values upfront

(the other method is better for incremental computation)

Complexity?

```
final int N = 100;
final int K = 20;
int binom[K][N];
binom[0][0] = 1;
for(int n = 1; n < N; n++)
{
  binom[0][n] = 1;
  for(int k = 1; k \le \min(n, K); k++)
    binom[k][n] = binom[k][n-1] + binom[k-1][n-1];
}
```

• The proof of correctness is slightly more subtle

Need to reason about the mutable values of $\mathtt{binom}[k][n]$

- The recursive variant is easier to write and an acceptable naive first implementation!
- Fill all the values upfront

(the other method is better for incremental computation)

Complexity? $\mathcal{O}(K \times N)$

}

```
static int dicho_iter(int[] arr, int mi, int ma)
{
  while (ma > mi)
  {
    int mid = (ma+mi)/2;
    if (arr[mid] <= 0)
      mi = mid;
    else
      ma = mid;
  }
  return mi;</pre>
```

Recursion

- Seemingly circular definitions, but productive because you define a task in terms of smaller tasks
- Can seamlessly be used in most programming languages
- Might be harder to trace executions but...
- ... very intuitive abstraction for seemingly stateless computations and problem-solving

- Two other paradigmatic case of recursion
 - greedy algorithms
 - divide-and-conquer
- One class of motivating examples: sorting algorithms
- A bit more of dynamic programming/memoization

Important

No systematic way of coming up with efficient algorithms

 \rightarrow Practice is key!