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Today

I will touch on many topics in this lecture

Goals

• Introduce divide-and-conquer algorithms

• Mention two other techniques that may be useful: dynamic programming

(recalled from last week) and greedy algorithms

• Finally, introduce classical sorting algorithms over arrays

• I will refer back & and expand on this material later
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Divide-and-conquer

High-level concept

A kind of recursive algorithm where the size of the input is shrunk by a factor in

the recursive calls

I
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▷ Split the problem into k subparts
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▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
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I

▷ Merge into a solution

for the original instance

7−→ Solution
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Example: dichotomy search

Scenario: imagine you are looking up a word in the dictionary

• Do you look-up each word sequentially?

• No: start in the middle, and then. . .

We have already seen this!
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Example: dichotomy search

/* Assumptions: arr contains an increasing

sequence of values

arr[mi] <= 0 and arr[ma] >=0*/

static int dicho_rec(int[] arr, int mi, int ma)

{

if (ma <= mi)

return mi;

final int mid = (ma+mi)/2;

if (arr[mid] <= 0)

return dicho_rec(arr,mid,ma);

else

return dicho_rec(arr,mi,mid);

}

• A good size metric: ma-mi

• Size divided by two at each call! 5



Another example: exponentiation

static double naivePow(double a, int n)

{

if(n == 0)

return 1;

else if(n < 0)

return 1/naivePow(a,-n);

else

return a * naivePow(a, n - 1);

}

Complexity: O(n)

Can we do better?
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Another problem

Problem

Input: An array A of size n

Output: An element x of A occuring more than n
2 times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element → O(n)

• Do it for every element of the array → O(n2)
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Complexity of divide-and-conquer algorithms

Generic advantages of divide-and-conquer:

• Relatively easy to come up with

• Typically good time complexity

• Easy to parallelize

⇝ How to compute their time complexity?

The typical equation

T (n) = aT
(n
b

)
+ f(n)

for some a, b > 0 and f : N → N

Previous examples:

• a = 1, b = 2, f = O(1)

• a = 2, b = 2, f = O(n)
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Quick technicalities

(feel free to ignore on first reading)

• Complexity functions are function N → N
• Not a huge deal:

• As long as the domain is a superset of N (or an suffix thereof)

• as long as the function is assumed to dominate/be dominated by the real

complexity function

• another possible hack/reduction

The more precise typical equation

T (n) = a′T
(⌈n

b

⌉)
+ a′′T

(⌊n
b

⌋)
+ f(n)

with a = a′ + a′′ typically yield the same asymptotic result up to Θ

→ it’s okay if you are a bit sloppy with rounding at first blush (or only consider

inputs whose sizes are powers of b)
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A tool to solve many of these recurrences

• Useful to solve many of these (but not all)

• A bit of a bore to remember. . .

Master theorem

Assume that T (n) = aT
(
n
b

)
+ f(n)

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0,

and there is c < 1 such that af
(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))
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Intuitions for the master theorem

Master theorem (T (n) = aT
(
n
b

)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the

way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:

O(log(n))

• Majority: a = 2 = b, f = O(n) → 2. → O(n log(n))
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Other paradigms

We have seen a few high-level ideas to develop efficient algorithms:

• try to generalize intuitive already available solutions you’d naturally execute

on some examples

• think recursively: reduce solving an instance of size n to an instance of size

n− k

• divide and conquer: reduce solving an instance of size n to solving

instances of size n
k

• dynamic programming: cache common subcomputation across recursive

calls

• greedy: try and approach a solution one single improvement step at a time

12



Sorting algorithms



The problem

The sorting problem

Input: An array of integers of size n

Output: A sorted array containing the same elements

• For now, only arrays

• Later, fancier datastructures but essentially same asymptotic time

• Motivation: very classical problem and solutions, good case studies

13
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Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x

Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)
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Merge sort

Can you think of a divide-and-conquer approach?

Idea

• Split the array into two equal pieces

• Sort the two pieces recursively

• Merge the two pieces back together
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Merging two arrays

Subproblem

Input: Two sorted arrays of integers A and B

Output: A sorted array containing the same elements as A plus B

Complexity? O(n)
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Merge sort’s complexity

• Splitting the arrays: O(n) naively, O(1) with some mild alteration to the

inputs

• Merging things together: O(n)

Complexity?

→ Master theorem → O(n log(n))
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Quick sort

Idea: instead of making the splitting trivial, make the merging trivial

• Pick an element, the pivot

• Write two subarrays of elements: those smaller than the pivot, and those

larger

• Sort recursively and concatenate the results

18



Quick sort’s complexity

• Worst case: O(n2) for a bad choice of pivot

• Best case: O(n log(n)) for a good choice (the median) (or if lucky)

(A median can be picked in linear time actually)

(but a lot of implementations don’t bother)

(it’s a fancy divide-and-conquer algo)

• Average case: O(n log(n))
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Actually O(n log(n)) is optimal

Proof idea (picture on the board)

For each n, draw a tree labelled by pairs of indices corresponding to the

comparisons made.

One branch in the tree = one execution.

This tree has at least n! leaves, hence its height is Ω(n log(n)) (maths).
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But is it? (sorting by counting)

The proof on the last slide is only relevant for sorts that can only rely on

comparisons!

Countsort: idea (for positive integers)

• find the maximum m; allocate an array B with m+ 1 cells initialized with

zeroes

• iterate over the input and increment the relevant counter in B

• read off the sorted array from B

Complexity?

O(n+maximal value in the array)
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Some advanced considerations

Besides optimality for time complexity, we may also care about the following:

• space efficiency (in-place sorting)

• stable sorts: if we have a preordered collection, do not disturb stuff which is

already sorted

• parallelism: what are the algo that parallelize well?
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Reading suggestions

• The background reading here ⇝ go more in-depth with the material

(you don’t need to read all of that immediately)

Algorithms in Java (3rd ed., 2004) by Sedgewick

Relevant chapters: 6,7,8 and 10

Explain and study sorting algorithms in details

Introduction to Algorithms (4th ed., 2011) by Cormen et. al

Relevant chapters: 4,7,8,14,15

More focus on paradigms
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What now?

• Practice! Both coming up with algorithms and implementation

• You’ve had roughly a quick overview of the main points an undergrad first

algorithmics module would cover

• The first CW will be over this material.

• Next up: datastuctures!

• Algorithms for and with datastructures!

OK, time for questions?

24
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