
CSCM12: software concepts and efficiency

Some algorithmic design paradigms, sorting algorithms

Cécilia Pradic

Swansea University, 13/02/2025

1



Today

I will touch on many topics in this lecture

Goals

• Introduce divide-and-conquer algorithms

• Mention two other techniques that may be useful: dynamic programming

(recalled from last week) and greedy algorithms

• Finally, introduce classical sorting algorithms over arrays

• I will refer back & and expand on this material later

2



Divide-and-conquer

High-level concept

A kind of recursive algorithm where the size of the input is shrunk by a factor in

the recursive calls

I

I2I1

▷ Split the problem into k subparts

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

▷ Merge into a solution

for the original instance

7−→ Solution

3



Divide-and-conquer

High-level concept

A kind of recursive algorithm where the size of the input is shrunk by a factor in

the recursive calls

I

I2I1

▷ Split the problem into k subparts

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

▷ Merge into a solution

for the original instance

7−→ Solution

3



Divide-and-conquer

High-level concept

A kind of recursive algorithm where the size of the input is shrunk by a factor in

the recursive calls

I

I2I1

▷ Split the problem into k subparts

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

▷ Merge into a solution

for the original instance

7−→ Solution

3



Divide-and-conquer

High-level concept

A kind of recursive algorithm where the size of the input is shrunk by a factor in

the recursive calls

I

I2I1

▷ Split the problem into k subparts

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

▷ Merge into a solution

for the original instance

7−→ Solution

3



Example: dichotomy search

Scenario: imagine you are looking up a word in the dictionary

• Do you look-up each word sequentially?

• No: start in the middle, and then. . .

We have already seen this!

4



Example: dichotomy search

Scenario: imagine you are looking up a word in the dictionary

• Do you look-up each word sequentially?

• No: start in the middle, and then. . .

We have already seen this!

4



Example: dichotomy search

Scenario: imagine you are looking up a word in the dictionary

• Do you look-up each word sequentially?

• No: start in the middle, and then. . .

We have already seen this!

4



Example: dichotomy search

Scenario: imagine you are looking up a word in the dictionary

• Do you look-up each word sequentially?

• No: start in the middle, and then. . .

We have already seen this!

4



Example: dichotomy search

/* Assumptions: arr contains an increasing

sequence of values

arr[mi] <= 0 and arr[ma] >=0*/

static int dicho_rec(int[] arr, int mi, int ma)

{

if (ma <= mi)

return mi;

final int mid = (ma+mi)/2;

if (arr[mid] <= 0)

return dicho_rec(arr,mid,ma);

else

return dicho_rec(arr,mi,mid);

}

• A good size metric: ma-mi

• Size divided by two at each call! 5



Another example: exponentiation

static double naivePow(double a, int n)

{

if(n == 0)

return 1;

else if(n < 0)

return 1/naivePow(a,-n);

else

return a * naivePow(a, n - 1);

}

Complexity: O(n)

Can we do better?

6



Another problem

Problem

Input: An array A of size n

Output: An element x of A occuring more than n
2 times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element → O(n)

• Do it for every element of the array → O(n2)

7



Another problem

Problem

Input: An array A of size n

Output: An element x of A occuring more than n
2 times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element → O(n)

• Do it for every element of the array → O(n2)

7



Another problem

Problem

Input: An array A of size n

Output: An element x of A occuring more than n
2 times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element → O(n)

• Do it for every element of the array

→ O(n2)

7



Another problem

Problem

Input: An array A of size n

Output: An element x of A occuring more than n
2 times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element → O(n)

• Do it for every element of the array → O(n2)

7



Complexity of divide-and-conquer algorithms

Generic advantages of divide-and-conquer:

• Relatively easy to come up with

• Typically good time complexity

• Easy to parallelize

⇝ How to compute their time complexity?

The typical equation

T (n) = aT
(n
b

)
+ f(n)

for some a, b > 0 and f : N → N

Previous examples:

• a = 1, b = 2, f = O(1)

• a = 2, b = 2, f = O(n)

8



Complexity of divide-and-conquer algorithms

Generic advantages of divide-and-conquer:

• Relatively easy to come up with

• Typically good time complexity

• Easy to parallelize

⇝ How to compute their time complexity?

The typical equation

T (n) = aT
(n
b

)
+ f(n)

for some a, b > 0 and f : N → N

Previous examples:

• a = 1, b = 2, f = O(1)

• a = 2, b = 2, f = O(n)

8



Complexity of divide-and-conquer algorithms

Generic advantages of divide-and-conquer:

• Relatively easy to come up with

• Typically good time complexity

• Easy to parallelize

⇝ How to compute their time complexity?

The typical equation

T (n) = aT
(n
b

)
+ f(n)

for some a, b > 0 and f : N → N

Previous examples:

• a = 1, b = 2, f = O(1)

• a = 2, b = 2, f = O(n)

8



Complexity of divide-and-conquer algorithms

Generic advantages of divide-and-conquer:

• Relatively easy to come up with

• Typically good time complexity

• Easy to parallelize

⇝ How to compute their time complexity?

The typical equation

T (n) = aT
(n
b

)
+ f(n)

for some a, b > 0 and f : N → N

Previous examples:

• a = 1, b = 2, f = O(1)

• a = 2, b = 2, f = O(n)

8



Quick technicalities

(feel free to ignore on first reading)

• Complexity functions are function N → N
• Not a huge deal:

• As long as the domain is a superset of N (or an suffix thereof)

• as long as the function is assumed to dominate/be dominated by the real

complexity function

• another possible hack/reduction

The more precise typical equation

T (n) = a′T
(⌈n

b

⌉)
+ a′′T

(⌊n
b

⌋)
+ f(n)

with a = a′ + a′′ typically yield the same asymptotic result up to Θ

→ it’s okay if you are a bit sloppy with rounding at first blush (or only consider

inputs whose sizes are powers of b)

9



Quick technicalities

(feel free to ignore on first reading)

• Complexity functions are function N → N
• Not a huge deal:

• As long as the domain is a superset of N (or an suffix thereof)

• as long as the function is assumed to dominate/be dominated by the real

complexity function

• another possible hack/reduction

The more precise typical equation

T (n) = a′T
(⌈n

b

⌉)
+ a′′T

(⌊n
b

⌋)
+ f(n)

with a = a′ + a′′ typically yield the same asymptotic result up to Θ

→ it’s okay if you are a bit sloppy with rounding at first blush (or only consider

inputs whose sizes are powers of b)

9



A tool to solve many of these recurrences

• Useful to solve many of these (but not all)

• A bit of a bore to remember. . .

Master theorem

Assume that T (n) = aT
(
n
b

)
+ f(n)

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0,

and there is c < 1 such that af
(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

10



Intuitions for the master theorem

Master theorem (T (n) = aT
(
n
b

)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the

way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:

O(log(n))

• Majority: a = 2 = b, f = O(n) → 2. → O(n log(n))

11



Intuitions for the master theorem

Master theorem (T (n) = aT
(
n
b

)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the

way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation:

a = 1, b = 2, f = O(1) Not covered:

O(log(n))

• Majority: a = 2 = b, f = O(n) → 2. → O(n log(n))

11



Intuitions for the master theorem

Master theorem (T (n) = aT
(
n
b

)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the

way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1)

Not covered:

O(log(n))

• Majority: a = 2 = b, f = O(n) → 2. → O(n log(n))

11



Intuitions for the master theorem

Master theorem (T (n) = aT
(
n
b

)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the

way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:

O(log(n))

• Majority: a = 2 = b, f = O(n) → 2. → O(n log(n))

11



Intuitions for the master theorem

Master theorem (T (n) = aT
(
n
b

)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the

way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:

O(log(n))

• Majority:

a = 2 = b, f = O(n) → 2. → O(n log(n))

11



Intuitions for the master theorem

Master theorem (T (n) = aT
(
n
b

)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the

way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:

O(log(n))

• Majority: a = 2 = b, f = O(n)

→ 2. → O(n log(n))

11



Intuitions for the master theorem

Master theorem (T (n) = aT
(
n
b

)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,

▷ then T (n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)

k
)
for some k ≥ 0,

▷ then T (n) = Θ
(
nlogb(a) log(n)k+1

)
3. If f(n) = Ω

(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(
n
b

)
≤ cf(n),

▷ then T (n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the

way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:

O(log(n))

• Majority: a = 2 = b, f = O(n) → 2. → O(n log(n)) 11



Other paradigms

We have seen a few high-level ideas to develop efficient algorithms:

• try to generalize intuitive already available solutions you’d naturally execute

on some examples

• think recursively: reduce solving an instance of size n to an instance of size

n− k

• divide and conquer: reduce solving an instance of size n to solving

instances of size n
k

• dynamic programming: cache common subcomputation across recursive

calls

• greedy: try and approach a solution one single improvement step at a time

12



Sorting algorithms



The problem

The sorting problem

Input: An array of integers of size n

Output: A sorted array containing the same elements

• For now, only arrays

• Later, fancier datastructures but essentially same asymptotic time

• Motivation: very classical problem and solutions, good case studies

13



The problem

The sorting problem

Input: An array of integers of size n

Output: A sorted array containing the same elements

• For now, only arrays

• Later, fancier datastructures but essentially same asymptotic time

• Motivation: very classical problem and solutions, good case studies

13



Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x

Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

14



Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x

Output: A sorted array containing the same elements as A plus x

Can you write that?

What complexity? O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

14



Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x

Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity?

O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

14



Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x

Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

14



Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x

Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm?

What complexity? O(n2)

14



Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x

Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm? What complexity?

O(n2)

14



Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x

Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

14



Merge sort

Can you think of a divide-and-conquer approach?

Idea

• Split the array into two equal pieces

• Sort the two pieces recursively

• Merge the two pieces back together

15



Merge sort

Can you think of a divide-and-conquer approach?

Idea

• Split the array into two equal pieces

• Sort the two pieces recursively

• Merge the two pieces back together

15



Merging two arrays

Subproblem

Input: Two sorted arrays of integers A and B

Output: A sorted array containing the same elements as A plus B

Complexity? O(n)

16



Merging two arrays

Subproblem

Input: Two sorted arrays of integers A and B

Output: A sorted array containing the same elements as A plus B

Complexity?

O(n)

16



Merging two arrays

Subproblem

Input: Two sorted arrays of integers A and B

Output: A sorted array containing the same elements as A plus B

Complexity? O(n)

16



Merge sort’s complexity

• Splitting the arrays: O(n) naively, O(1) with some mild alteration to the

inputs

• Merging things together: O(n)

Complexity?

→ Master theorem → O(n log(n))

17



Merge sort’s complexity

• Splitting the arrays: O(n) naively, O(1) with some mild alteration to the

inputs

• Merging things together: O(n)

Complexity? → Master theorem →

O(n log(n))

17



Merge sort’s complexity

• Splitting the arrays: O(n) naively, O(1) with some mild alteration to the

inputs

• Merging things together: O(n)

Complexity? → Master theorem → O(n log(n))

17



Quick sort

Idea: instead of making the splitting trivial, make the merging trivial

• Pick an element, the pivot

• Write two subarrays of elements: those smaller than the pivot, and those

larger

• Sort recursively and concatenate the results

18



Quick sort’s complexity

• Worst case: O(n2) for a bad choice of pivot

• Best case: O(n log(n)) for a good choice (the median) (or if lucky)

(A median can be picked in linear time actually)

(but a lot of implementations don’t bother)

(it’s a fancy divide-and-conquer algo)

• Average case: O(n log(n))

19



Actually O(n log(n)) is optimal

Proof idea (picture on the board)

For each n, draw a tree labelled by pairs of indices corresponding to the

comparisons made.

One branch in the tree = one execution.

This tree has at least n! leaves, hence its height is Ω(n log(n)) (maths).

20



But is it? (sorting by counting)

The proof on the last slide is only relevant for sorts that can only rely on

comparisons!

Countsort: idea (for positive integers)

• find the maximum m; allocate an array B with m+ 1 cells initialized with

zeroes

• iterate over the input and increment the relevant counter in B

• read off the sorted array from B

Complexity?

O(n+maximal value in the array)

21



But is it? (sorting by counting)

The proof on the last slide is only relevant for sorts that can only rely on

comparisons!

Countsort: idea (for positive integers)

• find the maximum m; allocate an array B with m+ 1 cells initialized with

zeroes

• iterate over the input and increment the relevant counter in B

• read off the sorted array from B

Complexity? O(n+maximal value in the array)

21



Some advanced considerations

Besides optimality for time complexity, we may also care about the following:

• space efficiency (in-place sorting)

• stable sorts: if we have a preordered collection, do not disturb stuff which is

already sorted

• parallelism: what are the algo that parallelize well?

22



Reading suggestions

• The background reading here ⇝ go more in-depth with the material

(you don’t need to read all of that immediately)

Algorithms in Java (3rd ed., 2004) by Sedgewick

Relevant chapters: 6,7,8 and 10

Explain and study sorting algorithms in details

Introduction to Algorithms (4th ed., 2011) by Cormen et. al

Relevant chapters: 4,7,8,14,15

More focus on paradigms

23



What now?

• Practice! Both coming up with algorithms and implementation

• You’ve had roughly a quick overview of the main points an undergrad first

algorithmics module would cover

• The first CW will be over this material.

• Next up: datastuctures!

• Algorithms for and with datastructures!

OK, time for questions?

24



What now?

• Practice! Both coming up with algorithms and implementation

• You’ve had roughly a quick overview of the main points an undergrad first

algorithmics module would cover

• The first CW will be over this material.

• Next up: datastuctures!

• Algorithms for and with datastructures!

OK, time for questions?

24


	Sorting algorithms

