CSCM12: software concepts and efficiency Minimalistic maths top-up

Cécilia Pradic

Swansea University, 30/01/2024

Numbers

- Natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$
- Integers \mathbb{Z} : includes negative numbers like -1
- Rationals \mathbb{Q} : fractions like $\frac{2}{3}$
- Real number \mathbb{R} : number that index every point of a line (very infinite very scary)

Remember (for your real life)

float/double are only approximations of real numbers

- Finite representation in 32/64 bits \Rightarrow rounding
- Do **not** compare them for equality!

Natural numbers can be written in any base $b \in \mathbb{N} \setminus 0, 1$.

$$31 = \overline{31}^{10} = \overline{1}\overline{\mathtt{f}}^{16} = \overline{11111}^2$$

Formally the expansion of a number n in base b is the unique sequence of a_0, a_1, \ldots with $0 \le a_i < b$ such that

$$n = \sum_{i} a_{i} b^{i}$$

Functions

A function $f: A \to B$ is relation mapping each a in A to a **unique** element of B which we write f(x),

- A is the domain of f
- B is the codomain of f

a set of potential outputs

its set of inputs

WARNING

In CS, "function" sometimes has a different meaning: a procedure/algorithm/program

- Side-effects (modify memory, non-determinism, etc)
- In maths we are not interested in how f(x) is computed
- In CS, we may care about running-time or other intensional aspects

Functions $\mathbb{R} \to \mathbb{R}$ of the shape

$$x \longmapsto cx^n$$

Examples: x^2 , $6x^5$

- Non-integer coefficients: e.g. $x^{\frac{1}{2}} = \sqrt{x}$
- NB: $x^{n+m} = x^n x^m$ and $(x^n)^m = x^{nm}$
- The bigger the exponent, the faster a monomial grows.

Polynomial functions

Functions $\mathbb{R} \to \mathbb{R}$ of the shape

$$x \mapsto a_n x^n + \ldots + a_0 x^0$$

Examples:

- $x^2 + x + 5$
- $3x^{45} + 4x^7 + 2x$
- 5
- The degree of a polynomial is the largest n such that x^n occurs in its expansion.
- Rule of thumb: the higher the degree, the faster the polynomial grows

Functions $\mathbb{R} \to \mathbb{R}_{>0}$ of the shape

 $x \longmapsto a^x$

Examples: 2^x , 3^x , e^x

• Any exponential function ultimately grows **faster** than any polynomial

 \log_2 (in base 2) is a function $\mathbb{R}_{>0} \to \mathbb{R}$

• For any integer $n \in \mathbb{N}$

 $\log_b(n) \cong$ number of digits in n in base b

(more precisely: $\lfloor \log_b(n+1) \rfloor$)

- By convention (CS), $\log = \log_2$
- $\log_b(x) = \frac{\log_2(x)}{\log_2(b)}, \ \log_b(b^x) = b^{\log_b(x)} = x$
- log grows **slower** than any polynomial