CSCM12: software concepts and efficiency
End of trees & Graphs

Cécilia PRADIC
March 20th 2025

So what is a graph?

A bunch of vertices and edges between them.

Dependency graphs

e Nodes are application/libraries

e Edge when a library is required by another

Abstraction of rail maps

e vertices are stations

e edges are routes

Graphs in the wild

Electrical /electronic circuits

Bit 0 ¢ Bit 1¢

Bit 2 ¢

<
Q

NS

<
Q

S

e

Bit 3

Q[0

=

Qo

Graphs in the wild

Finite-state machines (useful in CPU design but also parsing)

Graphs in the wild

The sort of pictures I used to illustrate datastructures

digraph {
rankdir=LR;
"39" -> "34" [label =
"39" -> "null" [label
"34" -> "12" [label =
"34" -> "39" [label =
12" -> "26" [label =
"12" -> "34" [label =
"26" -> "null" [label
"26" -> "12" [label =
}

next

@"e‘“ °w

next

prev

next, color =
= prev, color
next, color =
prev, color =
next, color =
prev, color =
= next, color

prev, color =

red] ;
= bluel;
red] ;
blue];
red] ;
bluel ;
= red];
blue];

(picture generated by the code above using graphviz)

A graph G is given by a pair (V, E) where

e V is a set of vertices

e £ CV?is aset of edges

Example: V = {1,2,3,4,5), E = {(1,2), (2,3), (2,4), (3,1), (3,5), (4,2), (4,5)}

Beware of pictures!

The way the pictures are drawn do not typically matter from a formal standpoint.

Le., the two examples below picture the same graph.

10

There are many variations (depending on applications)

Do we allow multiple edges between two vertices?

(people sometimes say multigraphs in this case)

S

O <—i A
t
e Do the edge carry a direction information? (directed vs undirected graphs)
v—— Vs v v’
e Do we allow self-loops? (rather rare)

Are the edges/nodes labelled by data? (integer-labelled edges = weighted graphs)

11

Terminology

A path is a sequence of compatible edges

e in non-multigraphs: 2 a sequence of linked nodes
e example: [(1,3),(3,5)], which can be written 135 since we
have a simple graph, is a path, but 023 isn’t

A cycle is a path with the same source and target

e example: 1231 and 1231231 are cycles
e a cycle is simple if there is no repeating node

The number of neighbours of a vertex is its degree
e example: the node 2 has degree 3
Nodes are connected if there is a path between them

e example: the whole graph is connected

12

Typical algorithmic problem over graphs

Given an input (weighted) (multi)graph, compute:

e whether there are cycles
e whether the graph is connected
e the minimal length of a path connecting two nodes

e the maximal flow one may push through between two nodes

We want to do so efficiently.

13

Typical algorithmic problem over graphs

Given an input (weighted) (multi)graph, compute:

e whether there are cycles
e whether the graph is connected
e the minimal length of a path connecting two nodes

e the maximal flow one may push through between two nodes

We want to do so efficiently.

But wait, what is the size of a graph?

13

Size of a graph

The size of a graph is the sum |V| 4 |E| of
e the number of vertices |V/|
e the number of edges |F|
|E| in function of |V|
If < 1 edge between two vertices, |E| = O(|V[?).

e this bound is tight

e many edges (O(|V|?)) = dense graph

e few edges = sparse graph

e if talking about classes of graphs, dense = O(|V|?) edges
and sparse = o(|V|?) edges

14

Just to get a sense of scale

Define the graph K,, on {0,...,n — 1} by setting E = {(4,J) | i < j < n}.

IR
I
IR
i

NS

What is |E| for K307 Would you call K,, dense?

15

In practice: a lot of graphs are sparse

In pratice, graphs may be rather sparse

e if given by e.g. a rail map: the degree of each node will tend to be low

e typical if we have geometric constraints

To make a quick estimates: do the nodes have high degree?
For simple graphs G = (V, E) (undirected, no self-loops, no parallel edges)

>_ degree(v) |V . max degree(v)
|E’ — veV veV

<
2 - 2

16

How do we represent graphs in the computer?

e Index vertices by number from 0 to |V] —1

e Two strategies: adjacency matrices or adjacency lists

Adjacency matrices

Store whether an edge is there in a 2D array

0

o O O o o =

1

O O O = = O

0

O O = = O =

0

S B O O = =

0

_ o O O = O

_= O O = O O O

0

O = R O O O

int[]1[] adjMat = new int[7][7];
adjMat [0] [1] = adjMat[1][0] = 1;
adjMat[1] [2] = 1;

18

Adjacency lists

Have an array of lists of successors for each node

0—1

1 —023 LinkedList<Integer>[] adjList
2 — 134 new LinkedList<Integer>[7];
3 — 1,25 adjList[0].add(1);

4= 2,6 adjList[1].add(0);

5 — 3,6

6 — 4,5

19

Pros and cons

Adjacency matrices

e very easy to implement
e very fast access to edge information

e O(|V]?) space used — not good for sparse graphs
Adjacency lists

e efficient operations
e might need a predecessor table as well for efficient info

e O(|E| + |V]) space used — good for all graphs

20

Now let us traverse graphs!
Goal
Given a graph G = (V, F) and v € G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first
breadth-first search (BFS):

21

Now let us traverse graphs!
Goal
Given a graph G = (V, F) and v € G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first
breadth-first search (BFS): 0,1,2,3,4,5,6

21

Now let us traverse graphs!

Goal

Given a graph G = (V, F) and v € G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first

breadth-first search (BFS): 0,1,2,3,4,5,6
depth-first search (DFS):

21

Now let us traverse graphs!
Goal
Given a graph G = (V, F) and v € G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first

breadth-first search (BFS): 0,1,2,3,4,5,6
depth-first search (DF'S): 0,1,2,3,5,6,4

21

Now let us traverse graphs!

Goal

Given a graph G = (V, F) and v € G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first

breadth-first search (BFS): 0,1,2,3,4,5,6
depth-first search (DF'S): 0,1,2,3,5,6,4
applications:

e Topological sort (=2 figure out an order for dependencies)

e Checking connectedness
(BFS/DFS, then check that all vertices were reached)

e Computing minimal paths/distance
(BFS, keeping track of paths/distance)

21

How to write a BFS

Breadth-first search

Given an input graph (V, E) with V. ={0,...,n—1} and v € V

1. Allocate an array to keep track of visited vertices; initially regard all vertices
as non-visited

2. Create an empty queue. Enqueue v.
3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.
3.2 For each neighbour of wu, if it was not visited before, enqueue it

22

How to write a BFS

Breadth-first search

Given an input graph (V, E) with V. ={0,...,n—1} and v € V

1. Allocate an array to keep track of visited vertices; initially regard all vertices
as non-visited

2. Create an empty queue. Enqueue v.
3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.
3.2 For each neighbour of wu, if it was not visited before, enqueue it

Time complexity (with adjacency lists):

22

How to write a BFS

Breadth-first search

Given an input graph (V, E) with V. ={0,...,n—1} and v € V

1. Allocate an array to keep track of visited vertices; initially regard all vertices
as non-visited

2. Create an empty queue. Enqueue v.
3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.
3.2 For each neighbour of wu, if it was not visited before, enqueue it

Time complexity (with adjacency lists): O(|V|+ |E|)

22

How to write a BFS

Breadth-first search

Given an input graph (V, E) with V. ={0,...,n—1} and v € V

1. Allocate an array to keep track of visited vertices; initially regard all vertices
as non-visited

2. Create an empty queue. Enqueue v.
3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.
3.2 For each neighbour of wu, if it was not visited before, enqueue it

Time complexity (with adjacency lists): O(|V|+ |E|)

e Each node is dequeued at most once; 3. runs at most |V| times

22

How to write a BFS

Breadth-first search
Given an input graph (V, E) with V. ={0,...,n—1} and v € V

1. Allocate an array to keep track of visited vertices; initially regard all vertices
as non-visited

2. Create an empty queue. Enqueue v.
3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.
3.2 For each neighbour of wu, if it was not visited before, enqueue it

Time complexity (with adjacency lists): O(|V|+ |E|)

e Each node is dequeued at most once; 3. runs at most |V| times
e 3. runs in O(degree(v)) where v is the dequeued vertex, so
time complexity < >~ K(1 + degree(v)) = K (2|E| + V)
veV
22

What about writing a DF'S

e The difference between a DFS and BFS is the order in which we explore new
nodes
e Using a queue we explore first the nodes closest to the origin
— Using a stack instead, we get a DFS!

23

What about writing a DF'S

e The difference between a DFS and BFS is the order in which we explore new
nodes

e Using a queue we explore first the nodes closest to the origin
— Using a stack instead, we get a DFS!
Depth-first search
Given an input graph (V, E) with V. ={0,...,n—1} andv e V

1. Allocate an array to keep track of visited vertices; initially regard all vertices
as non-visited

2. Create an empty stack. Push v.

3. While the stack is non-empty:

3.1 Pop a vertex u and enumerate it; consider it visited.
3.2 For each neighbour of u, if it was not visited before, enqueue it

23

What about writing a DF'S

e The difference between a DFS and BFS is the order in which we explore new
nodes

e Using a queue we explore first the nodes closest to the origin
— Using a stack instead, we get a DFS!
Depth-first search
Given an input graph (V, E) with V. ={0,...,n—1} andv e V

1. Allocate an array to keep track of visited vertices; initially regard all vertices
as non-visited

2. Create an empty stack. Push v.
3. While the stack is non-empty:

3.1 Pop a vertex u and enumerate it; consider it visited.
3.2 For each neighbour of u, if it was not visited before, enqueue it

Same space/time complexity.

23

Application: using a BFS to compute distances

For now let us assume all edges denote a distance of 1 between two nodes

(no edges mean an oo distance)

Distance using a kind of BFS
Given an input graph (V, E) with V' ={0,...,n — 1} two vertices s and ¢:

1. Allocate an array A of integers; set A(s) =0 and A(v) = oo for v # s

2. Create an empty queue. Enqueue s.
3. While the queue is non-empty and A(t) = oco:

3.1 Dequeue a vertex wu.
3.2 For each neighbour v of u, if A(v) = oo, set A(v) = A(u) + 1 and enqueue v

One can also check that this is in O(|E| + |V]).

24

Distances in weighted graphs

If length of a path = sum of the weights of its edges, this won’t do!

(2 = 5 below?)

25

Distances in weighted graphs

If length of a path = sum of the weights of its edges, this won’t do! (2 — 5 below?)

Dijkstra’s algorithm

Use a priority queue instead of a queue.

Dijkstra’s algorithm

Djikstra(G, source)
Q) + an empty priority queue
Enqueue source with priority 0 in @
while Q is not empty do
Dequeue the element v with minimal priority d from @
if v was not visited before then
Set the distance between source and v to be d

for all edges v = v’ do

Enqueue v’ with priority d + w in Q

return the computed distances

Running time O((|E| + V) log(|V]))

26

What if we want all distances between nodes?

e Run Dijkstra for every node O(|V|(|E| + |V|)log(|V]))
e We can do a bit better and simpler for dense graphs: O(|V|?)

The Floyd-Warshall algorithm

FloydWarshall (M)

D < a copy of M

n < dimension of M

for k from 0 ton — 1 do
for i from 0 ton — 1 do

for j from 0 ton — 1 do
| DI[i][5] + min(D[d][j], D[][k] + Dk][j])

return D

27

To conclude

e Graphs = powerful abstraction/modelling tools

e We have seen how to traverse graphs, compute distance
e Many problems that you can tackle using BFS/DFS

e Compute connected components
e Detect cycles

e We have just scratched the surface though!

Computing minimum spanning trees

Computing maximal flows

Computing Eulerian cycles
Many classical NP-complete problems:

e e.g., vertex cover, colorability and finding hamiltonian cycles

— in real life: do check if you are trying to do something that is known to be hard!

In short: I can’t do the topic justice in a single lecture :)

28

