
CSCM12: software concepts and efficiency

End of trees & Graphs

Cécilia Pradic

March 20th 2025

1

Not this kind of graphs

20 15 10 5 0 5 10 15 20

0.2

0.0

0.2

0.4

0.6

0.8

1.0

2

So what is a graph?

A bunch of vertices and edges between them.

0

3

Graphs in the wild

Dependency graphs

• Nodes are application/libraries

• Edge when a library is required by another

4

Graphs in the wild

Abstraction of rail maps

• vertices are stations

• edges are routes

C
YM

RU
LLO

EG
R

Rheilffordd
Ffestiniog

T1C

T7

T7

T4
T4

T4

T14

T4

T2

T14

T14

T3 T3

T8

T
8

T12 T12

T
12

T
12

T3

T2

T2

T10

T10

T1C
T6

T
6

T6

T
1C

T1C T1X

T1

T
1 T

1A
 T

1C
 T

1X

T
5

T5

T11

T11

T1
T1C

 T
1X

 T
5

T1C
 T

1X
 T

5

T2 T
22

T2

T22

T1
T1A

T1A

Caernarfon

Corw
en

Llan
golle

n

Dolgellau

Mold

Ruthin

Lampeter

Tregaron

Llandysul

Aberaeron

Cardigan

St Davids Ystradgynlais

M
a

g
o

r Clifton Down

Bristol

Brecon

Hay-on-Wye

Ystrad Rhondda

Cardiff
Central
Cardiff
Central
Cardiff
Central

Holyhead

Valle
y

Rhosn
eig

r

Ty
 C

ro
es

Craven Arms

Church Stretton

Cheltenham Spa*

Newport

Welshpool

NewtownCaersws

Machynlleth

D
ovey J

unctio
n

Wrexham
General

Gwersyllt

Cefn-y-bedd

Caergwrle

Hope

Penyffordd

Buckley

Hawarden

Shotton

Pwllheli

Lla
ndecw

yn

Ta
lsa

rn
au

Ty
gw

yn

H
arle

ch

Lla
ndanw

g

Pensa
rn

Lla
nbedr

D
yffry

n A
rd

udw
y

Port
hm

adog

M
in

fford
d a

m
 (f

or P
ort

m
eiri

on)

Penrh
yn

deudra
eth

Cric
cie

th

Penyc
hain

A
bere

rc
h

North Llanrwst

Wrexham
Central

Llandudno

Deganwy

Blaenau Ffestiniog

Roman Bridge

Dolwyddelan

Pont-y-pant

Llanrwst

Dolgarrog

Tal-y-cafn

Betws-y-coed

Glan Conwy

Llanfairfechan

Bangor

Lla
nfa

irp
w

ll

Bodorg
an

Colw
yn

 B
ay

A
berg

ele
 a

nd P
ensa

rn

Rhyl
Pre

st
at

yn

Flin
t

Penm
aenm

aw
r

Conw
y

Birmingham International*

Wrenbury

Nantwich

Alderley Edge*

Wilmslow*

Stockport*

Manchester Piccadilly*

Helsby

Frodsham

Warrington Bank Quay*

Runcorn East

Earlestown*

Newton-le-Willows*

Manchester Oxford Road*

Borth

Yorton

Wem

Prees

Whitchurch

Ruabon

G
obow

en

Chirk

Upton

Bidston*

Heswall

Neston

Hawarden Bridge

Runcorn
*

Liv
erp

ool S
outh

Park
w

ay
*

W
ellin

gto
n*

O
ake

ngat
es*

Te
lfo

rd
 C

entr
al*

Shifn
al*

Cosf
ord

*

A
lb

rig
hto

n*

Codsa
ll*

Manchester Airport*

East Didsbury*

Lla
ndudno J

unctio
n

Liverpool
Lime Street*

Shrewsbury
Bilbrook*

Wolverhampton*

Sandwell
& Dudley*

Chester

Crewe*

Talybont

Llanaber

Barm
outh

Morfa Mawddach

Fairbourne

Llwyngwril

Tonfanau

Tywyn

Aberdovey

Bow Street

Penhelig

Cla
rb

est
on R

oad

Clu
nderw

en

W
hitl

and

Narberth

Kilgetty

Saundersfoot

Tenby

Penally

Lam
phey

 M
anorb

ie
r

Pem
bro

ke
 D

ock

Pem
bro

ke

Milford Haven

Haverfordwest

Johnston

Fishguard Harbour

Fishguard and Goodwick

Ferryside

Pem
bre

y a
nd B

urr
y P

ort
Kid

w
elly

Lla
nelli

G
ow

ert
on

Brit
on F

err
yN

eat
h

Ske
w

en

Lla
nsa

m
le

t

Sw
anse

a

Bri
dgend

Pyle

Pencoed Pontyclun

Ludlow

Leominster

Hereford

Abergavenny

Pontypool and
New Inn

Cwmbran

Chepstow

Lydney

Gloucester*

Caldicot

Severn Tunnel Junction

Bynea

Llangennech

Pontarddulais

Pantyffynnon

Llandybie

Ammanford

Ffairfach

Llandeilo

Llangadog

Llanwrda

Llandovery

Cynghordy

Sugar Loaf

Llanwrtyd

Llangammarch

Garth

Cilmeri

Builth Road

Carm
art

hen

Pen-y-bont

D
olau

Llanbister Road

Llangynllo

Knighton

Birmingham
New Street*

M
aest

eg

M
aest

eg

(E
w

enny R
oad)

Garth

Tondu

Wildmill

Sarn

Cogan
Eastbrook

D
inas Pow

ys

Cadoxton

Barry D
ocks

Barry
Barry Island

Bagla
n

Port
 Ta

lb
ot

Park
w

ay

Dingle Road

Penarth
Rhoose

Cardiff Airport

Llantwit
Major

Cardiff Bay

Llanharan

Risca and
Pontymister

Newbridge

Ebbw Vale
Parkway

Ebbw Vale Town

Llanhileth

Crosskeys

Rogerstone

Pye Corner

Cardiff
Queen Street

Danescourt Cat
hay

s
Lla

ndaf

Ninian
Park

Fairwater

Waun-gron Park

Ynyswen

Treorchy

Ton Pentre

Troed-y-rhiw

Pentre-bach

Merthyr Tydfil

Quakers Yard

Pontlottyn

Rhymney

Tir-phil

Brithdir

Bargoed

Gilfach Fargoed

Ystrad Mynach

Hengoed

Pengam

Llanbradach

Energlyn and
Churchill Park

Aber

Caerphilly

Lisvane and Thornhill

Llanishen

Heath High Level

Heath Low Level

A
bercynon

Rhiwbina

 Birchgrove

Ty Glas

Whitchurch

Coryton

Merthyr Vale

Broome

Knucklas

Aberystwyth

Treherbert

Radyr
Taffs Well

Trefforest Estate
Trefforest

Pontypridd

Trehafod

Porth

Dinas Rhondda

Tonypandy

Llwynypia

Aberdare

Cwmbach

Fernhill

Mountain Ash

Penrhiwceiber

Llandrindod

Grangetown

Bucknell

Hopton Heath

North Wales South Wales Service

Marches Line

Cambrian Line

Heart of Wales Line

North Wales Coast Line

Conwy Valley Line

Borderlands Line

Llandudno to Manchester

West Wales Line

Swanline

Maesteg to Cheltenham Spa

Chester to Crewe

Crewe to Shrewsbury

South Wales Valleys

Ebbw Vale Line

Liverpool to Wrexham

*Stations marked with an asterisk are not operated by Transport for Wales.

TrawsCymru Bus route

TrawsCymru Rail-bus interchange

TrawsCymru Bus route serves town but not at rail station

fflecsi-served rail station

5

Graphs in the wild

Electrical/electronic circuits

Q

Q̄K
T
J Q

Q̄K
T
J Q

Q̄K
T
J Q

Q̄K
T
J

E

+

Bit 0 Bit 1 Bit 2 Bit 3

&

&

6

Graphs in the wild

Finite-state machines (useful in CPU design but also parsing)

q→0start

q→1

q→2

q←3

q→4

▷/ϵ

◁/ϵ

0/0

1/1

2/ϵ
▷, 0, 2/1

1/ϵ

2/2

7

Graphs in the wild

The sort of pictures I used to illustrate datastructures

digraph {

rankdir=LR;

"39" -> "34" [label = next, color = red];

"39" -> "null" [label = prev, color = blue];

"34" -> "12" [label = next, color = red];

"34" -> "39" [label = prev, color = blue];

"12" -> "26" [label = next, color = red];

"12" -> "34" [label = prev, color = blue];

"26" -> "null" [label = next, color = red];

"26" -> "12" [label = prev, color = blue];

}

(picture generated by the code above using graphviz) 8

Mathematical definition

Definition

A graph G is given by a pair (V,E) where

• V is a set of vertices

• E ⊆ V 2 is a set of edges

Example: V = {1, 2, 3, 4, 5}, E = {(1, 2), (2, 3), (2, 4), (3, 1), (3, 5), (4, 2), (4, 5)}

9

Beware of pictures!

The way the pictures are drawn do not typically matter from a formal standpoint.

I.e., the two examples below picture the same graph.

0 1

0

5

4

6
2

3
0

1

0

6

5 23

4

10

There are many variations (depending on applications)

• Do we allow multiple edges between two vertices?

(people sometimes say multigraphs in this case)

O A

s

t

i

• Do the edge carry a direction information? (directed vs undirected graphs)

v v′ vs v v′

• Do we allow self-loops? (rather rare)

• Are the edges/nodes labelled by data? (integer-labelled edges = weighted graphs)

11

Terminology

0 1

0

5

4

6
2

3

• A path is a sequence of compatible edges

• in non-multigraphs: ∼= a sequence of linked nodes

• example: [(1, 3), (3, 5)], which can be written 135 since we

have a simple graph, is a path, but 023 isn’t

• A cycle is a path with the same source and target

• example: 1231 and 1231231 are cycles

• a cycle is simple if there is no repeating node

• The number of neighbours of a vertex is its degree

• example: the node 2 has degree 3

• Nodes are connected if there is a path between them

• example: the whole graph is connected

12

Typical algorithmic problem over graphs

Given an input (weighted) (multi)graph, compute:

• whether there are cycles

• whether the graph is connected

• the minimal length of a path connecting two nodes

• the maximal flow one may push through between two nodes

We want to do so efficiently.

But wait, what is the size of a graph?

13

Typical algorithmic problem over graphs

Given an input (weighted) (multi)graph, compute:

• whether there are cycles

• whether the graph is connected

• the minimal length of a path connecting two nodes

• the maximal flow one may push through between two nodes

We want to do so efficiently.

But wait, what is the size of a graph?

13

Size of a graph

0 1

0

5

4

6
2

3

The size of a graph is the sum |V |+ |E| of
• the number of vertices |V |
• the number of edges |E|

|E| in function of |V |
If ≤ 1 edge between two vertices, |E| = O(|V |2).

• this bound is tight

• many edges (Θ(|V |2)) = dense graph

• few edges = sparse graph

• if talking about classes of graphs, dense = Θ(|V |2) edges
and sparse = o(|V |2) edges

14

Just to get a sense of scale

Define the graph Kn on {0, ..., n− 1} by setting E = {(i, j) | i < j < n}.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

What is |E| for K30? Would you call Kn dense?

15

In practice: a lot of graphs are sparse

In pratice, graphs may be rather sparse

• if given by e.g. a rail map: the degree of each node will tend to be low

• typical if we have geometric constraints

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

To make a quick estimates: do the nodes have high degree?

For simple graphs G = (V,E) (undirected, no self-loops, no parallel edges)

|E| =

∑
v∈V

degree(v)

2
≤
|V | ·max

v∈V
degree(v)

2

16

OK now that we have a sensible notion of size. . .

Question

How do we represent graphs in the computer?

• Index vertices by number from 0 to |V | − 1

• Two strategies: adjacency matrices or adjacency lists

17

Adjacency matrices

Store whether an edge is there in a 2D array

0 1 0 0 0 0 0

1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 1

0 0 0 0 1 1 0


int[][] adjMat = new int[7][7];

adjMat[0][1] = adjMat[1][0] = 1;

adjMat[1][2] = 1;

...

18

Adjacency lists

Have an array of lists of successors for each node

0 → 1

1 → 0, 2, 3

2 → 1, 3, 4

3 → 1, 2, 5

4 → 2, 6

5 → 3, 6

6 → 4, 5

LinkedList<Integer>[] adjList =

new LinkedList<Integer>[7];

adjList[0].add(1);

adjList[1].add(0);

...

19

Pros and cons

Adjacency matrices

• very easy to implement

• very fast access to edge information

• O(|V |2) space used → not good for sparse graphs

Adjacency lists

• efficient operations

• might need a predecessor table as well for efficient info

• O(|E|+ |V |) space used → good for all graphs

20

Now let us traverse graphs!

Goal

Given a graph G = (V,E) and v ∈ G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first

0 1

0

5

4

6
2

3

breadth-first search (BFS):

0, 1, 2, 3, 4, 5, 6

depth-first search (DFS): 0, 1, 2, 3, 5, 6, 4

applications:

• Topological sort (∼= figure out an order for dependencies)

• Checking connectedness

(BFS/DFS, then check that all vertices were reached)

• Computing minimal paths/distance

(BFS, keeping track of paths/distance)

21

Now let us traverse graphs!

Goal

Given a graph G = (V,E) and v ∈ G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first

0 1

0

5

4

6
2

3

breadth-first search (BFS): 0, 1, 2, 3, 4, 5, 6

depth-first search (DFS): 0, 1, 2, 3, 5, 6, 4

applications:

• Topological sort (∼= figure out an order for dependencies)

• Checking connectedness

(BFS/DFS, then check that all vertices were reached)

• Computing minimal paths/distance

(BFS, keeping track of paths/distance)

21

Now let us traverse graphs!

Goal

Given a graph G = (V,E) and v ∈ G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first

0 1

0

5

4

6
2

3

breadth-first search (BFS): 0, 1, 2, 3, 4, 5, 6

depth-first search (DFS):

0, 1, 2, 3, 5, 6, 4

applications:

• Topological sort (∼= figure out an order for dependencies)

• Checking connectedness

(BFS/DFS, then check that all vertices were reached)

• Computing minimal paths/distance

(BFS, keeping track of paths/distance)

21

Now let us traverse graphs!

Goal

Given a graph G = (V,E) and v ∈ G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first

0 1

0

5

4

6
2

3

breadth-first search (BFS): 0, 1, 2, 3, 4, 5, 6

depth-first search (DFS): 0, 1, 2, 3, 5, 6, 4

applications:

• Topological sort (∼= figure out an order for dependencies)

• Checking connectedness

(BFS/DFS, then check that all vertices were reached)

• Computing minimal paths/distance

(BFS, keeping track of paths/distance)

21

Now let us traverse graphs!

Goal

Given a graph G = (V,E) and v ∈ G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first

0 1

0

5

4

6
2

3

breadth-first search (BFS): 0, 1, 2, 3, 4, 5, 6

depth-first search (DFS): 0, 1, 2, 3, 5, 6, 4

applications:

• Topological sort (∼= figure out an order for dependencies)

• Checking connectedness

(BFS/DFS, then check that all vertices were reached)

• Computing minimal paths/distance

(BFS, keeping track of paths/distance)

21

How to write a BFS

Breadth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty queue. Enqueue v.

3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Time complexity (with adjacency lists): O(|V |+ |E|)

• Each node is dequeued at most once; 3. runs at most |V | times

• 3. runs in O(degree(v)) where v is the dequeued vertex, so

time complexity ≤
∑
v∈V

K(1 + degree(v)) = K(2|E|+ |V |)

22

How to write a BFS

Breadth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty queue. Enqueue v.

3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Time complexity (with adjacency lists):

O(|V |+ |E|)

• Each node is dequeued at most once; 3. runs at most |V | times

• 3. runs in O(degree(v)) where v is the dequeued vertex, so

time complexity ≤
∑
v∈V

K(1 + degree(v)) = K(2|E|+ |V |)

22

How to write a BFS

Breadth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty queue. Enqueue v.

3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Time complexity (with adjacency lists): O(|V |+ |E|)

• Each node is dequeued at most once; 3. runs at most |V | times

• 3. runs in O(degree(v)) where v is the dequeued vertex, so

time complexity ≤
∑
v∈V

K(1 + degree(v)) = K(2|E|+ |V |)

22

How to write a BFS

Breadth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty queue. Enqueue v.

3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Time complexity (with adjacency lists): O(|V |+ |E|)

• Each node is dequeued at most once; 3. runs at most |V | times

• 3. runs in O(degree(v)) where v is the dequeued vertex, so

time complexity ≤
∑
v∈V

K(1 + degree(v)) = K(2|E|+ |V |)

22

How to write a BFS

Breadth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty queue. Enqueue v.

3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Time complexity (with adjacency lists): O(|V |+ |E|)

• Each node is dequeued at most once; 3. runs at most |V | times

• 3. runs in O(degree(v)) where v is the dequeued vertex, so

time complexity ≤
∑
v∈V

K(1 + degree(v)) = K(2|E|+ |V |)

22

What about writing a DFS

• The difference between a DFS and BFS is the order in which we explore new

nodes

• Using a queue we explore first the nodes closest to the origin

→ Using a stack instead, we get a DFS!

Depth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty stack. Push v.

3. While the stack is non-empty:

3.1 Pop a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Same space/time complexity.

23

What about writing a DFS

• The difference between a DFS and BFS is the order in which we explore new

nodes

• Using a queue we explore first the nodes closest to the origin

→ Using a stack instead, we get a DFS!

Depth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty stack. Push v.

3. While the stack is non-empty:

3.1 Pop a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Same space/time complexity.

23

What about writing a DFS

• The difference between a DFS and BFS is the order in which we explore new

nodes

• Using a queue we explore first the nodes closest to the origin

→ Using a stack instead, we get a DFS!

Depth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty stack. Push v.

3. While the stack is non-empty:

3.1 Pop a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Same space/time complexity.
23

Application: using a BFS to compute distances

For now let us assume all edges denote a distance of 1 between two nodes

(no edges mean an ∞ distance)

Distance using a kind of BFS

Given an input graph (V,E) with V = {0, . . . , n− 1} two vertices s and t:

1. Allocate an array A of integers; set A(s) = 0 and A(v) =∞ for v ̸= s

2. Create an empty queue. Enqueue s.

3. While the queue is non-empty and A(t) =∞:

3.1 Dequeue a vertex u.

3.2 For each neighbour v of u, if A(v) =∞, set A(v) = A(u) + 1 and enqueue v

One can also check that this is in O(|E|+ |V |).

24

Distances in weighted graphs

If length of a path = sum of the weights of its edges, this won’t do! (2 → 5 below?)

0 1

0

5

4

6
2

3

2

4

1

1 5

2

3
1

2

Dijkstra’s algorithm

Use a priority queue instead of a queue.

25

Distances in weighted graphs

If length of a path = sum of the weights of its edges, this won’t do! (2 → 5 below?)

0 1

0

5

4

6
2

3

2

4

1

1 5

2

3
1

2

Dijkstra’s algorithm

Use a priority queue instead of a queue.

25

Dijkstra’s algorithm

Djikstra(G, source)

Q← an empty priority queue

Enqueue source with priority 0 in Q

while Q is not empty do

Dequeue the element v with minimal priority d from Q

if v was not visited before then

Set the distance between source and v to be d

for all edges v
w−→ v′ do

Enqueue v′ with priority d+ w in Q

return the computed distances

Running time O((|E|+ |V |) log(|V |))

26

What if we want all distances between nodes?

• Run Dijkstra for every node O(|V |(|E|+ |V |) log(|V |))
• We can do a bit better and simpler for dense graphs: O(|V |3)

The Floyd-Warshall algorithm

FloydWarshall(M)

D ← a copy of M

n← dimension of M

for k from 0 to n− 1 do

for i from 0 to n− 1 do

for j from 0 to n− 1 do
D[i][j]← min(D[i][j], D[i][k] +D[k][j])

return D

27

To conclude

• Graphs = powerful abstraction/modelling tools

• We have seen how to traverse graphs, compute distance

• Many problems that you can tackle using BFS/DFS

• Compute connected components

• Detect cycles

• . . .

• We have just scratched the surface though!

• Computing minimum spanning trees

• Computing maximal flows

• Computing Eulerian cycles

• Many classical NP-complete problems:

• e.g., vertex cover, colorability and finding hamiltonian cycles

→ in real life: do check if you are trying to do something that is known to be hard!

In short: I can’t do the topic justice in a single lecture :)

28

