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Not this kind of graphs
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So what is a graph?

A bunch of vertices and edges between them.

0
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Graphs in the wild

Dependency graphs

• Nodes are application/libraries

• Edge when a library is required by another
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Graphs in the wild

Abstraction of rail maps

• vertices are stations

• edges are routes
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Graphs in the wild

Electrical/electronic circuits
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Graphs in the wild

Finite-state machines (useful in CPU design but also parsing)
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Graphs in the wild

The sort of pictures I used to illustrate datastructures

digraph {

rankdir=LR;

"39" -> "34" [label = next, color = red];

"39" -> "null" [label = prev, color = blue];

"34" -> "12" [label = next, color = red];

"34" -> "39" [label = prev, color = blue];

"12" -> "26" [label = next, color = red];

"12" -> "34" [label = prev, color = blue];

"26" -> "null" [label = next, color = red];

"26" -> "12" [label = prev, color = blue];

}

(picture generated by the code above using graphviz) 8



Mathematical definition

Definition

A graph G is given by a pair (V,E) where

• V is a set of vertices

• E ⊆ V 2 is a set of edges

Example: V = {1, 2, 3, 4, 5}, E = {(1, 2), (2, 3), (2, 4), (3, 1), (3, 5), (4, 2), (4, 5)}
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Beware of pictures!

The way the pictures are drawn do not typically matter from a formal standpoint.

I.e., the two examples below picture the same graph.
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There are many variations (depending on applications)

• Do we allow multiple edges between two vertices?

(people sometimes say multigraphs in this case)

O A

s

t

i

• Do the edge carry a direction information? (directed vs undirected graphs)

v v′ vs v v′

• Do we allow self-loops? (rather rare)

• Are the edges/nodes labelled by data? (integer-labelled edges = weighted graphs)
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Terminology
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• A path is a sequence of compatible edges

• in non-multigraphs: ∼= a sequence of linked nodes

• example: [(1, 3), (3, 5)], which can be written 135 since we

have a simple graph, is a path, but 023 isn’t

• A cycle is a path with the same source and target

• example: 1231 and 1231231 are cycles

• a cycle is simple if there is no repeating node

• The number of neighbours of a vertex is its degree

• example: the node 2 has degree 3

• Nodes are connected if there is a path between them

• example: the whole graph is connected
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Typical algorithmic problem over graphs

Given an input (weighted) (multi)graph, compute:

• whether there are cycles

• whether the graph is connected

• the minimal length of a path connecting two nodes

• the maximal flow one may push through between two nodes

We want to do so efficiently.

But wait, what is the size of a graph?

13
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Size of a graph
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The size of a graph is the sum |V |+ |E| of
• the number of vertices |V |
• the number of edges |E|

|E| in function of |V |
If ≤ 1 edge between two vertices, |E| = O(|V |2).

• this bound is tight

• many edges (Θ(|V |2)) = dense graph

• few edges = sparse graph

• if talking about classes of graphs, dense = Θ(|V |2) edges
and sparse = o(|V |2) edges
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Just to get a sense of scale

Define the graph Kn on {0, ..., n− 1} by setting E = {(i, j) | i < j < n}.
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What is |E| for K30? Would you call Kn dense?
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In practice: a lot of graphs are sparse

In pratice, graphs may be rather sparse

• if given by e.g. a rail map: the degree of each node will tend to be low

• typical if we have geometric constraints
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To make a quick estimates: do the nodes have high degree?

For simple graphs G = (V,E) (undirected, no self-loops, no parallel edges)

|E| =

∑
v∈V

degree(v)

2
≤
|V | ·max

v∈V
degree(v)

2
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OK now that we have a sensible notion of size. . .

Question

How do we represent graphs in the computer?

• Index vertices by number from 0 to |V | − 1

• Two strategies: adjacency matrices or adjacency lists

17



Adjacency matrices

Store whether an edge is there in a 2D array

0 1 0 0 0 0 0

1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 1

0 0 0 0 1 1 0


int[][] adjMat = new int[7][7];

adjMat[0][1] = adjMat[1][0] = 1;

adjMat[1][2] = 1;

...
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Adjacency lists

Have an array of lists of successors for each node

0 → 1

1 → 0, 2, 3

2 → 1, 3, 4

3 → 1, 2, 5

4 → 2, 6

5 → 3, 6

6 → 4, 5

LinkedList<Integer>[] adjList =

new LinkedList<Integer>[7];

adjList[0].add(1);

adjList[1].add(0);

...

19



Pros and cons

Adjacency matrices

• very easy to implement

• very fast access to edge information

• O(|V |2) space used → not good for sparse graphs

Adjacency lists

• efficient operations

• might need a predecessor table as well for efficient info

• O(|E|+ |V |) space used → good for all graphs
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Now let us traverse graphs!

Goal

Given a graph G = (V,E) and v ∈ G, enumerate all the vertices connected to v.

Two typical strategies: breadth-first and depth-first
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breadth-first search (BFS):

0, 1, 2, 3, 4, 5, 6

depth-first search (DFS): 0, 1, 2, 3, 5, 6, 4

applications:

• Topological sort (∼= figure out an order for dependencies)

• Checking connectedness

(BFS/DFS, then check that all vertices were reached)

• Computing minimal paths/distance

(BFS, keeping track of paths/distance)
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How to write a BFS

Breadth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty queue. Enqueue v.

3. While the queue is non-empty:

3.1 Dequeue a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Time complexity (with adjacency lists): O(|V |+ |E|)

• Each node is dequeued at most once; 3. runs at most |V | times

• 3. runs in O(degree(v)) where v is the dequeued vertex, so

time complexity ≤
∑
v∈V

K(1 + degree(v)) = K(2|E|+ |V |)
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What about writing a DFS

• The difference between a DFS and BFS is the order in which we explore new

nodes

• Using a queue we explore first the nodes closest to the origin

→ Using a stack instead, we get a DFS!

Depth-first search

Given an input graph (V,E) with V = {0, . . . , n− 1} and v ∈ V

1. Allocate an array to keep track of visited vertices; initially regard all vertices

as non-visited

2. Create an empty stack. Push v.

3. While the stack is non-empty:

3.1 Pop a vertex u and enumerate it; consider it visited.

3.2 For each neighbour of u, if it was not visited before, enqueue it

Same space/time complexity.
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Application: using a BFS to compute distances

For now let us assume all edges denote a distance of 1 between two nodes

(no edges mean an ∞ distance)

Distance using a kind of BFS

Given an input graph (V,E) with V = {0, . . . , n− 1} two vertices s and t:

1. Allocate an array A of integers; set A(s) = 0 and A(v) =∞ for v ̸= s

2. Create an empty queue. Enqueue s.

3. While the queue is non-empty and A(t) =∞:

3.1 Dequeue a vertex u.

3.2 For each neighbour v of u, if A(v) =∞, set A(v) = A(u) + 1 and enqueue v

One can also check that this is in O(|E|+ |V |).
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Distances in weighted graphs

If length of a path = sum of the weights of its edges, this won’t do! (2 → 5 below?)
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Dijkstra’s algorithm

Use a priority queue instead of a queue.
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Dijkstra’s algorithm

Djikstra(G, source)

Q← an empty priority queue

Enqueue source with priority 0 in Q

while Q is not empty do

Dequeue the element v with minimal priority d from Q

if v was not visited before then

Set the distance between source and v to be d

for all edges v
w−→ v′ do

Enqueue v′ with priority d+ w in Q

return the computed distances

Running time O((|E|+ |V |) log(|V |))
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What if we want all distances between nodes?

• Run Dijkstra for every node O(|V |(|E|+ |V |) log(|V |))
• We can do a bit better and simpler for dense graphs: O(|V |3)

The Floyd-Warshall algorithm

FloydWarshall(M)

D ← a copy of M

n← dimension of M

for k from 0 to n− 1 do

for i from 0 to n− 1 do

for j from 0 to n− 1 do
D[i][j]← min(D[i][j], D[i][k] +D[k][j])

return D
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To conclude

• Graphs = powerful abstraction/modelling tools

• We have seen how to traverse graphs, compute distance

• Many problems that you can tackle using BFS/DFS

• Compute connected components

• Detect cycles

• . . .

• We have just scratched the surface though!

• Computing minimum spanning trees

• Computing maximal flows

• Computing Eulerian cycles

• Many classical NP-complete problems:

• e.g., vertex cover, colorability and finding hamiltonian cycles

→ in real life: do check if you are trying to do something that is known to be hard!

In short: I can’t do the topic justice in a single lecture :)
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