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Recommended reading after this lecture

e Chapter 3 “Characterizing Running Times”
of Introduction to Algorithms (4th ed., 2011) by Cormen et. al

e Chapter 2 “Principles of Algorithm Analysis”
of Algorithms in Java (3rd ed., 2004) by Sedgewick

No need to look at the “Basic Recurrences” section for these slides



One running example

Input: An array A of size n and some (say, integer) z
Output: An index i such that A[i] =z or —1 if there is none

FindIndex (A, z)

1 res <— —1

2 n < size of A

3 for ¢ from 0 to n — 1 do
4 if A[i] =« then

5 | res <1

6 return res




Running the first solution

Let us try to run this step-by-step!

FindIndex (A, x)

1 res < —1

2 n < size of A

3 for ¢ from 0 ton —1 do
4 if Ai] = x then

5 ‘ res <1

6 return res

e A=1[2,4,7,7,10,15], 2 =7



Running the first solution

Let us try to run this step-by-step!

FindIndex (A, x)

1 res < —1

2 n < size of A

3 for ¢ from 0 ton —1 do
4 if Ai] = x then

5 ‘ res <1

6 return res
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o A=2,4,7,7,10,15], z = 11



Alternative solution 1

Tk W N =

(=)

Solution #2

FindIndex2 (A, x)
res < —1
n < size of A
for i from n —1 down to 0 do
if A[i] =z then
‘ TeS <1

return res

e Solves the same problem
e Different outputs on our first sample input

e (Roughly the same complexity)
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Alternative solution 2

Solution #3

FindIndex3 (A, x)

Increment 7

1 res < —1

2 n < size of A

3 140

4 while res = —1 and 7 < n do
5 if A[i] =z then

6 ‘ res <1

7

8

return res

e Sometimes more efficient

e But is it significant in practice?



A more precise problem and another solution

Input: A sorted array A of size n and some (say, integer) x
Output: An index i such that Afi] = x or —1 if there is none

e The previous solutions work, but. ..



A more efficient solution for sorted inputs

FindIndexDicho (A, x)
start < 0
end <+ size of A
while start < end do
. d
mzd — "en —Estart‘|
if A[mid] < = then
| start < mid

else
| end < mid

if A/start] = z then
| return start

else
| return -I




Consideration of efficiency

Given an algorithmic problem:

e [s there an algorithm that solves it? If so is it:

e feasible? (usable in practice)
o efficient?
e optimal?

Given an algorithm:

e How efficient is it?

e [s there a more method of getting the same results?



Rules of thumb for measuring efficiency

e Typically, (time) complexity mostly depends on the size of the input

— we typically express the time complexity as a function “size — time”

x| time to compute A(x)
Input - N
sizel N

N k — max{c(z) | size(z) = k}

complexity

Note the <: typically we want the worst-case complexity for inputs of a given

size

e best-case: not very interesting

e average: can be interesting, typically harder to compute though :)
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Computing time complexity

e Can be roughly be done step-by-step.

e Essentially, each piece of a program can be regarded as a mathematical

function

(initial) value of variables/memory
~
State — State x N
~—~—
time taken to compute the step
o Essentially: basic arithmetic operations, assignments: cost ~ 1, array
allocation ~ size of the array, loop ~ sum of the complexities, ...

— roughly the number of steps in step-wise execution we’ve done
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The notion of space complexity

There is a notion of space complexity

e Essentially, assign a size to State and compute the maximal size that occurs in

an execution

e Unless you are doing big data or embedded system, this is not typically a
limiting factor
(RAM is cheap)

e In most scenarii, bounded by time complexity
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In practice

e hardware/compiler-dependent behaviors

e not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

— We had to make compromises



Accurate complexity?

The “time complexity function” we defined might not be completely
accurate

In practice

e hardware/compiler-dependent behaviors

e not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

— We had to make compromises

However, gives reasonable bounds/estimate

e up to a constant factor

e for large inputs (and that’s we care about!)
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Functions at infinity up to a constant

Suppose that we have two complexity functions f,g: N — R*

(which we assume to be monotone and positive)

Say that g asymptotically dominates f if there are some K, K’ > 0 such that
flx) < K-g(z)+ K forevery z € N

In this case we write f = O(g)

e log(n) = O(n), n? = O(n3) and n? = O(n? + 12n + 15)
e Check: take K =1, K/ =0
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Functions at infinity up to a constant

Suppose that we have two complexity functions f,g: N — R*

(which we assume to be monotone and positive)

Say that g asymptotically dominates f if there are some K, K’ > 0 such that
flx) < K-g(z)+ K forevery z € N

In this case we write f = O(g)

e log(n) = O(n), n? = O(n3) and n? = O(n? + 12n + 15)
e Check: take K =1, K/ =0

o 24 12n 4 15 = O(n?)
e Check: take K = 20 and K’ = 20

e 1 is not a O(log(n))
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The example in a picture

n? +12n + 15 = O(n?)

1000
—_—
n* +12n + 15
— Kn* + K'forK =2,K' =100
800 1

600

400 4

2004




Some comments

g asymptotically dominates f f = O(g) if there are some K, K’ > 0 such that
f(x) < K-g(z)+ K forevery z €N

About choosing K and K':

e K’ compensate a headstart, K a proportional advantage
e Never hurts to go big and have K = K’

The O notation is awkward:

e The equality f = O(g) is not an equality
e O(g) = f is nonsense

e grumble grumble there could have been more sensible conventions for that,
but that’s how it is
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We write f = ©(g) to mean
f=0(g) and g=0(f)

Basic examples:

o n=0(n?

n3 4+ n? + log(n) = O(5n?)
log(n)2™ + n® + 5 = O(log(n)2")
e 42+1=0(1)



Same definition with limits

lim,,, 4 f(n) = K means formally

Ve > 0. VN |f(n) — K| <e
——
for all but finitely N's
Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

S~

(n)

— Idea: try to compute lim )
n

n—-+o00 q

—
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Same definition with limits

lim,,, 4 f(n) = K means formally

Ve > 0. VN |f(n) — K| <e
——
for all but finitely N's
Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

— Idea: try to compute lim m
n—+oo g(n)

e if that’s finite and non-zero: f and g are commensurate
e if that’s +o0: f dominates strictly g asymptotically
e if that’s 0: g dominates f strictly asymptotically
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° f(n) = O(g(n)) means nhm ggg < +00 That’s the one you’ll see all the time



Big O notation and friends with limits

° f(n) = (’)(g(n)) means llm ;EZ? < +00 That’s the one you’ll see all the time
n—
o f(n) =Q(g(n)) means 0 < lim %

n——+oo 9
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Big O notation and friends with limits

f(n)
(9(n)) means nhm o)

°
=
2

I

S

< +00 That’s the one you’ll see all the time

[
=
2

I

2

n——+o0o

(9(n)) means 0 < lim gg ;
¢ f(n) = 6(g(n)) means f(n) = O(g(n
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Big O notation and friends with limits

o f(n) =0O(g(n)) means nhm ;EZ; < 400 That’s the one you’ll see all the time
o f(n) =Q(g(n)) means 0 < nll)r_{r_loo g ;

¢ f(n) = ©(g(n)) means f(n) = O(g(n)) and f(n) = Q(g(n))

e f(n) =o0(g(n)) means lim fm g

n—-—+o00 g(n)
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Big O notation and friends with limits

o f(n) =0O(g(n)) means nhm :;EZ; < 400 That’s the one you’ll see all the time
o f(n) =Q(g(n)) means 0 < nll)r_{r_loo g ;

¢ f(n) = ©(g(n)) means f(n) = O(g(n)) and f(n) = Q(g(n))

o f(n) =o(g(n)) means lim ™ =g¢

n=s+o0 9(1)

Examples for o:

o log(n) = o(v/)
o n% =o(n?)

e 15 =o(log(n))
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Basic tips for computing with O

o If f(n) < g(n) then f(n) = O(g(n ))
e f(n)=o(g(n)) impies f(n)

e for any k > 0, kf(n) = O(f(n))
o If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) =

e log(n)* = o(n), n* = o(2") for any constant k € R*

o nf =o(n*) for k < K/
e fi(n) = O(g1(n)) and fa = O(ga(n)) imply fi(n)fa(n) =
o If f(n) = O(g(n)), then f(n) +g(n) = O(g(n))

O(h(n))

h= % corresponds to

O(g1(n)g2(n))

v
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S A W N =

FindIndex (A, x)
res < —1

n < size of A
for ¢ from 0 ton — 1 do
if A[i] = x then
| res 1

return res

Worst-case complexity?




S A W N =

FindIndex (A, x)
res < —1

n < size of A
for ¢ from 0 ton — 1 do
if Afi] =z then
| res 1

return res

Worst-case complexity? — O(n) (linear)




Back to our examples (1/4)

Tk W N =

[=2)

Solution #1

FindIndex (A, x)
res < —1
n < size of A

‘ res <1

return res

Worst-case complexity? — O(n) (linear)

for ¢ from 0 ton — 1 do
if A[i] =z then

‘ worst-case | best-case

average case

| O(n) O(n)

O(n)
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e If/then/else ~~ can be over-approximated by the max of each branch

e Loops: if the body runs in O(f(n)) and there are O(g(n)) iterations
— O(f(n)g(n))
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S o W =

FindIndex2(A, )
res = =1
n < size of A
for i from n — 1 down to 0 do
if A[i] =« then
| res 1

return res

Worst-case complexity?




Ba

[, SR NV R VR

=]

ck to our examples (2/4)

Solution #2

FindIndex2(A, z)

res < —1

n < size of A

for i from n —1 down to 0 do

if Afi] = = then
‘ res <1

return res
Worst-case complexity? — O(n) (nothing so different)
‘ worst-case | best-case | average case

| O(n) O(n) O(n)
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Back to our examples (3/4)

o I o ook W N =

Solution #3

FindIndex3 (A, x)
res < —1
n < size of A
10
while res = —1 and i < n do
if Ali] = x then
‘ res <1
Increment ¢

return res

Worst-case complexity? — O(n)

(nothing too different)
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Back to our examples (3/4)

o I o ook W N =

Solution #3

FindIndex3 (A, x)
res +— —1

n < size of A
10

‘ res <1

Increment 72

return res

Worst-case complexity? — O(n)

while res = —1 and i < n do
if Ali] = x then

worst-case

best-case

average case

But. ..

O(n)

o)

O(n)

(nothing too different)
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Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho (A, z)

start <— 0

end < size of A

while start < end do e Difficulty: number of iterations?
mid (endzstart‘l

if Almid] < x then
| start < mid

else
| end < mid

if A/start] = z then
| return start

else
| return -7
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Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho (A, z)

start <— 0

end < size of A

while start < end do e Difficulty: number of iterations?
mid (WW e At step k, end — start < LQ%J

if Almid] < x then

| start « mid e Main loop ends when start = end
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| end < mid
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| return start

else
| return -7
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Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho (A, z)
start <0
end < size of A
while start < end do e Difficulty: number of iterations?
g end+start
mid « [ o At step k, end — start < | 2 |
if Almid] < x then
| start < mid
else — when gz <1
| end < mid

e Main loop ends when start = end

if A/start] = z then
| return start

else
| return -7




Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho (A, z)
start <0
end < size of A
while start < end do e Difficulty: number of iterations?
g end+start
mid « [ o At step k, end — start < | 2 |
if Almid] < x then
| start < mid
else — when gz <1
| end < mid

e Main loop ends when start = end

— when n < 2F

if A/start] = z then
| return start

else
| return -7




Back to our examples (4/4)

(Recall that this one only works for

FindIndexDicho (A, z)
start <+ 0
end + size of A
while start < end do
. d+start
mzd<— (en +2$ ar ‘l

if Almid] < x then
| start < mid

else
| end < mid

if A/start] = z then
| return start

else
| return -7

Complexity?

sorted inputs)

e Difficulty: number of iterations?
o At step k, end — start < LQ%J

e Main loop ends when start = end
when 5 <1

when n < 2F

Lok L

when logy(n) < k
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. d+start
mzd<— (en +2$ ar ‘l

if Almid] < x then
| start < mid

else
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if A/start] = z then
| return start

else
| return -7

Complexity? — O(log(n))
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when n < 2F

Lok L
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Some simple examples (1/3)

SumTensor (A)

n < size of A

r <0

for ¢ from n —1 down to 0 do

for j from 0 ton — 1 do
| <+ Ali] x Alj]

return r

Complexity?
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Some simple examples (1/3)

SumTensor (A)

n < size of A

r <0

for ¢ from n —1 down to 0 do

for j from 0 ton — 1 do
| <+ Ali] x Alj]

return r

Complexity? — ©(n?) (quadratic)
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Some simple examples (2/3)

SumLowerTensor (A)

n < size of A

r <0

for ¢ from n —1 down to 0 do

for 7 from 0 to i do
| <« Afi] x A[j]

return r

Complexity?
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return r
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Some simple examples (2/3)

SumLowerTensor (A)

n < size of A

r <0

for ¢ from n —1 down to 0 do

for 7 from 0 to i do
| <« Afi] x A[j]
return r

Complexity? — O(n?) in fact O(n?)

Lower bound: > i = "(n;l) = 0O(n?)
i=0
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Some simple examples (2/3)

SumLowerTensor (A)

n < size of A

r <0

for ¢ from n —1 down to 0 do

for 7 from 0 to i do
| <« Afi] x A[j]
return r

Complexity? — O(n?) in fact O(n?)

Lower bound: Z: i = "(n;rl) = 0O(n?)

=0

n
(more generally, > i* = ©(n*), so that kind of approximation is often safe)
i=0
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Some simple examples (3/3)

Recall that SumTensor is O(n?)

Something weird(A)
n < size of A
r <0

for i from n —1 down to 0 do
| 7+ A[i%2] x SumTensor(A)
return r

Complexity?
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Some simple examples (3/3)

Recall that SumTensor is O(n?)

Something weird(A)
n < size of A
r <0

for i from n —1 down to 0 do
| 7+ A[i%2] x SumTensor(A)
return r

Complexity? — O(n?)
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Complexity of an algorithmic problem

e Recall that an algorithmic problem # algorithm.
e Common shorthands for the intrinsic hardness of a problem P:
e Pisin O(f(n)) — there is a O(f(n)) algorithm solving P

o Pisin O(f(n)) — there is an optimal solution to P in ©(f(n))
e Pisin Q(f(n)) — any algorithm solving P has complexity Q(f(n))
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(out of scope) complexity theory

Are some problem intrinsically hard — yes!

e Complexity theorists study that!
e Problems solvable in O(n*) = solvable in polynomial time, class P

e Problems whose solution can be checked in polynomial time NP
Typically

e Polynomial time problems are tractable
e Problems that are NP-hard do not have known subexponential solution
— to prove that some problem is intricically hard, prove it is necessarily as hard
as all NP problems

Big open problem
Is P # NP?

(there are classes that are strictly harder than NP, such as EXPTIME)
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Next challenge to compute complexities

FindIndexDicho2(A, x, start, end)
if end < start then

if A/start] = x then
return start

else
| return -I
. end+start
mid « [ endtstart]

if A[mid] < z then
| FindIndexDicho2(A, z, mid, end)

else
| FindIndexDicho2(A, z, start, mid)

C(0) = 0(1)
Cln+1)=C(|%2])+0@1)




Next challenge to compute complexities

FindIndexDicho2(A, x, start, end)
if end < start then

if A/start] = x then
return start

else
| return -I
. end+start
mid « [ endtstart]

if A[mid] < z then
| FindIndexDicho2(A, z, mid, end)

else
| FindIndexDicho2(A, z, start, mid)

C(0)=0(1)
Cln+1)=C(|%2])+0@1)
— C(n) = O(log(n))
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Thanks for listening!
Please look at the resources on canvas as well

Questions?
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