CSCM12: software concepts and efficiency Estimating the complexity of algorithms

Cécilia Pradic

Swansea University, 06/02/2025

Recommended reading after this lecture

- Chapter 3 "Characterizing Running Times" of *Introduction to Algorithms* (4th ed., 2011) by Cormen et. al
- Chapter 2 "Principles of Algorithm Analysis" of Algorithms in Java (3rd ed., 2004) by Sedgewick

No need to look at the "Basic Recurrences" section for these slides

One running example

An algorithmic problem

Input: An array A of size n and some (say, integer) x

Output: An index i such that A[i] = x or -1 if there is none

Solution #1

```
FindIndex(A, x)

1  res \leftarrow -1

2  n \leftarrow \text{size of } A

3  \text{for } i \text{ } from \ 0 \text{ } to \ n-1 \text{ do}

4  | \text{if } A[i] = x \text{ then}

5  | \text{res} \leftarrow i \text{ return } res
```

Running the first solution

Let us try to run this step-by-step!

```
FindIndex(A, x)

1  res \leftarrow -1

2  n \leftarrow \text{size of } A

3  \text{for } i \text{ from } 0 \text{ to } n-1 \text{ do}

4  | \text{if } A[i] = x \text{ then}

5  | \text{res} \leftarrow i |

6  \text{return } res
```

•
$$A = [2, 4, 7, 7, 10, 15], x = 7$$

Running the first solution

Let us try to run this step-by-step!

```
FindIndex (A, x)

1  res \leftarrow -1

2  n \leftarrow \text{size of } A

3  \text{for } i \text{ from } 0 \text{ to } n-1 \text{ do}

4  | \text{if } A[i] = x \text{ then}

5  | \text{res} \leftarrow i 

6  \text{return } res
```

- A = [2, 4, 7, 7, 10, 15], x = 7
- A = [2, 4, 7, 7, 10, 15], x = 11

Alternative solution 1

Solution #2

```
FindIndex2(A, x)

1   res \leftarrow -1

2   n \leftarrow \text{size of } A

3   \text{for } i \text{ from } n-1 \text{ down to } 0 \text{ do}

4   | \text{if } A[i] = x \text{ then}

5   | \text{res} \leftarrow i |

6   | \text{return } res |
```

- Solves the same problem
- Different outputs on our first sample input
- (Roughly the same complexity)

Alternative solution 2

Solution #3

```
FindIndex3(A, x)
      res \leftarrow -1
1
      n \leftarrow \text{size of } A
2
3
      i \leftarrow 0
      while res = -1 and i < n do
4
           if A[i] = x then
5
               res \leftarrow i
6
           Increment i
       return res
8
```

- Sometimes more efficient
- But is it significant in practice?

A more precise problem and another solution

A more precise algorithmic problem

Input: A sorted array A of size n and some (say, integer) x **Output:** An index i such that A[i] = x or -1 if there is none

• The previous solutions work, but...

A more efficient solution for sorted inputs

```
FindIndexDicho(A, x)
    start \leftarrow 0
    end \leftarrow \text{size of } A
    while start < end do
         mid \leftarrow \lceil \frac{end+start}{2} \rceil
         if A[mid] \leq x then
         \perp start \leftarrow mid
         else
         \perp end \leftarrow mid
    if A/start/ = x then
        return start
    else
         return -1
```

Consideration of efficiency

Given an algorithmic problem:

- Is there an algorithm that solves it? If so is it:
 - feasible?
 - efficient?
 - optimal?

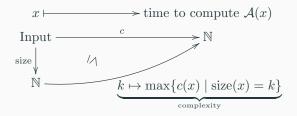
Given an algorithm:

- How efficient is it?
- Is there a more method of getting the same results?

(usable in practice)

Rules of thumb for measuring efficiency

- Typically, (time) complexity mostly depends on the size of the input
- \rightarrow we typically express the time complexity as a function "size \mapsto time"



Note the \leq : typically we want the **worst-case complexity** for inputs of a given size

- best-case: not very interesting
- average: can be interesting, typically harder to compute though :)

Computing time complexity

- Can be roughly be done step-by-step.
- Essentially, each piece of a program can be regarded as a mathematical function

(initial) value of variables/memory
$$\overbrace{State} \longrightarrow State \times \underbrace{\mathbb{N}}_{time\ taken\ to\ compute\ the\ step}$$

- Essentially: basic arithmetic operations, assignments: cost ~ 1 , array allocation \sim size of the array, loop \sim sum of the complexities, . . .
- \rightarrow roughly the number of steps in step-wise execution we've done

The notion of space complexity

There is a notion of **space** complexity

- Essentially, assign a size to State and compute the maximal size that occurs in an execution
- Unless you are doing big data or embedded system, this is not typically a limiting factor

(RAM is cheap)

• In most scenarii, bounded by time complexity

Accurate complexity?

The "time complexity function" we defined might not be *completely* accurate

In practice

- hardware/compiler-dependent behaviors
- not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

 \rightarrow We had to make compromises

Accurate complexity?

The "time complexity function" we defined might not be *completely* accurate

In practice

- hardware/compiler-dependent behaviors
- not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

 \rightarrow We had to make compromises

However, gives reasonable bounds/estimate

- up to a constant factor
- for large inputs

(and that's we care about!)

Suppose that we have two complexity functions $f, g : \mathbb{N} \to \mathbb{R}^+$ (which we assume to be monotone and positive)

\mathcal{O} notation

Say that g asymptotically dominates f if there are some K, K' > 0 such that

$$f(x) \le K \cdot g(x) + K'$$
 for every $x \in \mathbb{N}$

In this case we write $f = \mathcal{O}(g)$

- $\log(n) = \mathcal{O}(n), n^2 = \mathcal{O}(n^3) \text{ and } n^2 = \mathcal{O}(n^2 + 12n + 15)$
 - Check: take K = 1, K' = 0

Suppose that we have two complexity functions $f, g : \mathbb{N} \to \mathbb{R}^+$ (which we assume to be monotone and positive)

\mathcal{O} notation

Say that g asymptotically dominates f if there are some K, K' > 0 such that

$$f(x) \le K \cdot g(x) + K'$$
 for every $x \in \mathbb{N}$

In this case we write $f = \mathcal{O}(g)$

- $\log(n) = \mathcal{O}(n), n^2 = \mathcal{O}(n^3) \text{ and } n^2 = \mathcal{O}(n^2 + 12n + 15)$
 - Check: take K = 1, K' = 0
- $n^2 + 12n + 15 = \mathcal{O}(n^2)$
 - Check: take

Suppose that we have two complexity functions $f, g : \mathbb{N} \to \mathbb{R}^+$ (which we assume to be monotone and positive)

\mathcal{O} notation

Say that g asymptotically dominates f if there are some K, K' > 0 such that

$$f(x) \le K \cdot g(x) + K'$$
 for every $x \in \mathbb{N}$

In this case we write $f = \mathcal{O}(g)$

- $\log(n) = \mathcal{O}(n), n^2 = \mathcal{O}(n^3) \text{ and } n^2 = \mathcal{O}(n^2 + 12n + 15)$
 - Check: take K = 1, K' = 0
- $n^2 + 12n + 15 = \mathcal{O}(n^2)$
 - Check: take K = 20 and K' = 20

Suppose that we have two complexity functions $f, g : \mathbb{N} \to \mathbb{R}^+$ (which we assume to be monotone and positive)

\mathcal{O} notation

Say that g asymptotically dominates f if there are some K, K' > 0 such that

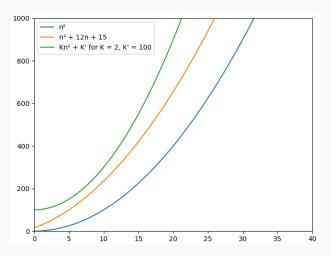
$$f(x) \le K \cdot g(x) + K'$$
 for every $x \in \mathbb{N}$

In this case we write $f = \mathcal{O}(g)$

- $\log(n) = \mathcal{O}(n), n^2 = \mathcal{O}(n^3) \text{ and } n^2 = \mathcal{O}(n^2 + 12n + 15)$
 - Check: take K = 1, K' = 0
- $n^2 + 12n + 15 = \mathcal{O}(n^2)$
 - Check: take K = 20 and K' = 20
- n is **not** a $\mathcal{O}(\log(n))$

The example in a picture

$$n^2 + 12n + 15 = \mathcal{O}(n^2)$$



Some comments

O notation

g asymptotically dominates f $f = \mathcal{O}(g)$ if there are some K, K' > 0 such that

$$f(x) \le K \cdot g(x) + K'$$
 for every $x \in \mathbb{N}$

About choosing K and K':

- \bullet K' compensate a head start, K a proportional advantage
- Never hurts to go **big** and have K = K'

Warning

The \mathcal{O} notation is **awkward**:

- The equality $f = \mathcal{O}(g)$ is not an equality
- $\mathcal{O}(g) = f$ is nonsense
- grumble grumble there could have been more sensible conventions for that, but that's how it is

Θ the symmetric version

Asymptotically equivalent

We write $f = \Theta(g)$ to mean

$$f = \mathcal{O}(g)$$
 and $g = \mathcal{O}(f)$

Basic examples:

- $n = \mathcal{O}(n^2)$
- $n^3 + n^2 + \log(n) = \Theta(5n^3)$
- $\log(n)2^n + n^5 + 5 = \Theta(\log(n)2^n)$
- $42 + \frac{1}{n} = \mathcal{O}(1)$

Limit of a function at $+\infty$

 $\lim_{n\to+\infty} f(n) = K$ means formally

$$\forall \epsilon > 0.$$
 $\underbrace{\forall^{\infty} N}_{\text{for all but finitely } Ns} |f(n) - K| < \epsilon$

Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

$$\longrightarrow$$
 Idea: try to compute $\lim_{n\to+\infty} \frac{f(n)}{g(n)}$

Limit of a function at $+\infty$

 $\lim_{n\to+\infty} f(n) = K$ means formally

$$\forall \epsilon > 0.$$
 $\underbrace{\forall^{\infty} N}_{\text{for all but finitely } N_{\text{S}}} |f(n) - K| < \epsilon$

Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

$$\longrightarrow$$
 Idea: try to compute $\lim_{n\to+\infty} \frac{f(n)}{g(n)}$

• if that's finite and non-zero: f and g are commensurate

Limit of a function at $+\infty$

 $\lim_{n\to+\infty} f(n) = K$ means formally

$$\forall \epsilon > 0.$$
 for all but finitely Ns $|f(n) - K| < \epsilon$

Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

$$\longrightarrow$$
 Idea: try to compute $\lim_{n\to+\infty} \frac{f(n)}{g(n)}$

- ullet if that's finite and non-zero: f and g are commensurate
- if that's $+\infty$: f dominates strictly g asymptotically

Limit of a function at $+\infty$

 $\lim_{n\to+\infty} f(n) = K$ means formally

$$\forall \epsilon > 0.$$
 for all but finitely N_s $|f(n) - K| < \epsilon$

Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

$$\longrightarrow$$
 Idea: try to compute $\lim_{n\to+\infty} \frac{f(n)}{g(n)}$

- \bullet if that's finite and non-zero: f and g are commensurate
- if that's $+\infty$: f dominates strictly g asymptotically
- if that's 0: g dominates f strictly asymptotically

Very important notations

• $f(n) = \mathcal{O}(g(n))$ means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$ That's the one you'll see all the time

Very important notations

- $f(n) = \mathcal{O}(g(n))$ means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$ That's the one you'll see all the time
- $f(n) = \Omega(g(n))$ means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$

Very important notations

- $f(n) = \mathcal{O}(g(n))$ means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$ That's the one you'll see all the time
- $f(n) = \Omega(g(n))$ means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$
- $f(n) = \Theta(g(n))$ means $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$

Very important notations

- $f(n) = \mathcal{O}(g(n))$ means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$ That's the one you'll see all the time
- $f(n) = \Omega(g(n))$ means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$
- $f(n) = \Theta(g(n))$ means $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$
- f(n) = o(g(n)) means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$

Very important notations

- $f(n) = \mathcal{O}(g(n))$ means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$ That's the one you'll see all the time
- $f(n) = \Omega(g(n))$ means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$
- $f(n) = \Theta(g(n))$ means $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$
- f(n) = o(g(n)) means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$

Examples for o:

- $\log(n) = o(\sqrt{n})$
- $n^2 = o(n^3)$
- $15 = o(\log(n))$

Basic tips for computing with \mathcal{O}

- If $f(n) \leq g(n)$ then $f(n) = \mathcal{O}(g(n))$
- f(n) = o(g(n)) implies $f(n) = \mathcal{O}(g(n))$
- for any k > 0, $kf(n) = \mathcal{O}(f(n))$
- If $f(n) = \mathcal{O}(g(n))$ and $g(n) = \mathcal{O}(h(n))$ then $f(n) = \mathcal{O}(h(n))$
- $\log(n)^k = o(n), n^k = o(2^n)$ for any constant $k \in \mathbb{R}^+$

$$k = \frac{1}{2}$$
 corresponds to $\sqrt{}$

- $n^k = o(n^{k'})$ for k < k'
- $f_1(n) = \mathcal{O}(g_1(n))$ and $f_2 = \mathcal{O}(g_2(n))$ imply $f_1(n)f_2(n) = \mathcal{O}(g_1(n)g_2(n))$
- If $f(n) = \mathcal{O}(g(n))$, then $f(n) + g(n) = \mathcal{O}(g(n))$

Back to our examples (1/4)

```
Solution #1

FindIndex(A, x)

1  res \leftarrow -1

2  n \leftarrow \text{size of } A

3  for i from 0 to n-1 do

4  | if A[i] = x then

5  | res \leftarrow i

6  return res
```

Worst-case complexity?

Back to our examples (1/4)

Solution #1

```
FindIndex(A, x)

1  res \leftarrow -1

2  n \leftarrow \text{size of } A

3  \text{for } i \text{ } from \text{ } 0 \text{ } to \text{ } n-1 \text{ do}

4  | \text{ if } A[i] = x \text{ then}

5  | \text{ } res \leftarrow i \text{ }

6  | \text{ return } res
```

Worst-case complexity? $\rightarrow \mathcal{O}(n)$ (linear)

Back to our examples (1/4)

Solution #1

```
FindIndex (A, x)

1  res \leftarrow -1

2  n \leftarrow \text{size of } A

3  \text{for } i \text{ from } 0 \text{ to } n-1 \text{ do}

4  | \text{if } A[i] = x \text{ then}

5  | \text{res} \leftarrow i \text{ return } res
```

Worst-case complexity? $\rightarrow \mathcal{O}(n)$ (linear)

worst-case	best-case	average case
$\Theta(n)$	$\Theta(n)$	$\Theta(n)$

Useful heuristics

- \bullet If/then/else \leadsto can be over-approximated by the max of each branch
- Loops: if the body runs in $\mathcal{O}(f(n))$ and there are $\mathcal{O}(g(n))$ iterations $\to \mathcal{O}(f(n)g(n))$

```
Solution #2

FindIndex2(A, x)

1 | res \leftarrow -1

2 | n \leftarrow \text{size of } A

3 | for i from n-1 down to 0 do

4 | if A[i] = x then

5 | res \leftarrow i

6 | return res
```

Worst-case complexity?

Worst-case complexity? $\rightarrow \mathcal{O}(n)$

(nothing so different)

worst-case	best-case	average case
$\Theta(n)$	$\Theta(n)$	$\Theta(n)$

```
Solution #3
  FindIndex3(A, x)
      res \leftarrow -1
      n \leftarrow \text{size of } A
      i \leftarrow 0
3
      while res = -1 and i < n do
4
          if A[i] = x then
              res \leftarrow i
6
          Increment i
7
8
      return res
```

Worst-case complexity? $\rightarrow \mathcal{O}(n)$

(nothing too different)

Solution #3

```
FindIndex3(A, x)
       res \leftarrow -1
       n \leftarrow \text{size of } A
      i \leftarrow 0
3
       while res = -1 and i < n do
4
           if A[i] = x then
               res \leftarrow i
6
           Increment i
7
8
       return res
```

Worst-case complexity? $\to \mathcal{O}(n)$

 $({\rm nothing\ too\ different})$

But...

worst-case	best-case	average case
$\Theta(n)$	$\Theta(1)$	$\Theta(n)$

return start

return -1

else

(Recall that this one only works for *sorted* inputs) FindIndexDicho(A, x) $start \leftarrow 0$ $end \leftarrow \text{size of } A$ while start < end do • Difficulty: number of iterations? $mid \leftarrow \lceil \frac{end + start}{2} \rceil$ if $A[mid] \leq x$ then l $start \leftarrow mid$ else \perp end \leftarrow mid if A/start/ = x then

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0
    end \leftarrow \text{size of } A
    while start < end do
         mid \leftarrow \lceil \frac{end + start}{2} \rceil
         if A[mid] \leq x then
          \exists start \leftarrow mid
         else
          \perp end \leftarrow mid
    if A/start/ = x then
         return start
    else
         return -1
```

- Difficulty: number of iterations?
- At step k, $end start \le \left\lfloor \frac{n}{2^k} \right\rfloor$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0
    end \leftarrow \text{size of } A
    while start < end do
         mid \leftarrow \lceil \frac{end+start}{2} \rceil
         if A[mid] \leq x then
          \exists start \leftarrow mid
         else
          \perp end \leftarrow mid
    if A/start/ = x then
         return start
    else
         return -1
```

- Difficulty: number of iterations?
- At step k, $end start \leq \left\lfloor \frac{n}{2^k} \right\rfloor$
- Main loop ends when start = end

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
```

```
start \leftarrow 0
end \leftarrow \text{size of } A
while start < end do
     mid \leftarrow \lceil \frac{end+start}{2} \rceil
    if A[mid] \leq x then
      \exists start \leftarrow mid
     else
     \perp end \leftarrow mid
if A/start/ = x then
     return start
else
```

return -1

- Difficulty: number of iterations?
- At step k, $end start \leq \left\lfloor \frac{n}{2^k} \right\rfloor$
- Main loop ends when start = end
- \rightarrow when $\frac{n}{2^k} < 1$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
start \leftarrow 0
```

- Difficulty: number of iterations?
- At step k, $end start \le \left\lfloor \frac{n}{2^k} \right\rfloor$
- Main loop ends when start = end
- \rightarrow when $\frac{n}{2^k} < 1$
- \rightarrow when $n < 2^k$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
start \leftarrow 0
end \leftarrow \text{size of } A
```

 $\mathbf{while} \ start < end \ \mathbf{do}$

$$mid \leftarrow \lceil \frac{end + start}{2} \rceil$$

if $A[mid] \le x$ **then**
 $\mid start \leftarrow mid$

else

$$\vdash$$
 end \leftarrow mid

if
$$A[start] = x$$
 then
 | return $start$ else | return -1

Complexity?

- Difficulty: number of iterations?
- At step k, $end start \leq \left\lfloor \frac{n}{2^k} \right\rfloor$
- \bullet Main loop ends when start = end
- \rightarrow when $\frac{n}{2^k} < 1$
- \rightarrow when $n < 2^k$
- \rightarrow when $\log_2(n) < k$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0
    end \leftarrow \text{size of } A
    while start < end do
         mid \leftarrow \lceil \frac{end + start}{2} \rceil
         if A[mid] \leq x then
          \exists start \leftarrow mid
         else
          \perp end \leftarrow mid
    if A/start/ = x then
         return start
    else
         return -1
  Complexity? \rightarrow \Theta(\log(n))
```

- Difficulty: number of iterations?
- At step k, $end start \le \left\lfloor \frac{n}{2^k} \right\rfloor$
- Main loop ends when start = end
- \rightarrow when $\frac{n}{2^k} < 1$
- \rightarrow when $n < 2^k$
- \rightarrow when $\log_2(n) < k$

```
\begin{array}{|c|c|c|c|c|} \text{SumTensor}(A) & & & \\ & n \leftarrow \text{size of } A \\ & r \leftarrow 0 \\ & & \text{for } i \text{ } \textit{from } n-1 \text{ } \textit{down to } 0 \text{ do} \\ & & & | & \text{for } j \text{ } \textit{from } 0 \text{ } \textit{to } n-1 \text{ do} \\ & & & | & r \leftarrow A[i] \times A[j] \\ & & \text{return } r \end{array}
```

Complexity?

```
\begin{array}{|c|c|c|c|c|} \text{SumTensor}(A) & & & \\ & n \leftarrow \text{size of } A \\ & r \leftarrow 0 \\ & \text{for } i \text{ } \textit{from } n-1 \text{ } \textit{down to } 0 \text{ do} \\ & & | & \text{for } j \text{ } \textit{from } 0 \text{ } \textit{to } n-1 \text{ do} \\ & & | & r \leftarrow A[i] \times A[j] \\ & \text{return } r \end{array}
```

Complexity? $\rightarrow \Theta(n^2)$ (quadratic)

Complexity?

Complexity? $\to \mathcal{O}(n^2)$

```
\begin{array}{|c|c|c|c|c|} \textbf{SumLowerTensor}(A) & n \leftarrow \text{size of } A \\ \hline & r \leftarrow 0 \\ & \textbf{for } i \ \textbf{\textit{from}} \ n-1 \ \textbf{\textit{down to}} \ 0 \ \textbf{do} \\ & & | \ \textbf{\textit{for }} j \ \textbf{\textit{from}} \ 0 \ \textbf{\textit{to}} \ i \ \textbf{do} \\ & & | \ r \leftarrow A[i] \times A[j] \\ & \textbf{\textit{return }} r \end{array}
```

```
\begin{array}{|c|c|c|c|c|} \textbf{SumLowerTensor}(A) \\ \hline & n \leftarrow \text{size of } A \\ & r \leftarrow 0 \\ \hline & \textbf{for } i \ \textbf{\textit{from}} \ n-1 \ \textbf{\textit{down to}} \ 0 \ \textbf{do} \\ & & | \ \textbf{\textit{for }} j \ \textbf{\textit{from}} \ 0 \ \textbf{\textit{to}} \ i \ \textbf{do} \\ & & | \ r \leftarrow A[i] \times A[j] \\ \hline & \textbf{\textit{return }} r \end{array}
```

Complexity? $\to \mathcal{O}(n^2)$ in fact $\Theta(n^2)$

0.

```
SumLowerTensor (A)

\begin{array}{c|cccc}
n \leftarrow \text{size of } A \\
r \leftarrow 0 \\
\text{for } i \text{ from } n-1 \text{ down to } 0 \text{ do} \\
& | \text{ for } j \text{ from } 0 \text{ to } i \text{ do} \\
& | r \leftarrow A[i] \times A[j] \\
\text{return } r
\end{array}
```

Complexity?
$$\to \mathcal{O}(n^2)$$
 in fact $\Theta(n^2)$

Lower bound:
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

$\begin{array}{|c|c|c|c|c|} \text{SumLowerTensor}(A) \\ \hline n \leftarrow \text{size of } A \\ r \leftarrow 0 \\ \textbf{for } i \ \textit{from } n-1 \ \textit{down to } 0 \ \textbf{do} \\ \hline & \textbf{for } j \ \textit{from } 0 \ \textit{to } i \ \textbf{do} \\ \hline & | r \leftarrow A[i] \times A[j] \\ \textbf{return } r \end{array}$

Complexity?
$$\to \mathcal{O}(n^2)$$
 in fact $\Theta(n^2)$

Lower bound:
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

(more generally,
$$\sum_{i=0}^{n} i^k = \Theta(n^k)$$
, so that kind of approximation is often safe)

```
Recall that SumTensor is \mathcal{O}(n^2)

Something weird(A)

n \leftarrow \text{size of } A

r \leftarrow 0

for i from n-1 down to 0 do

| r \leftarrow A[i\%2] \times \text{SumTensor}(A)

return r

Complexity?
```

```
Recall that SumTensor is \mathcal{O}(n^2)

Something weird(A)

n \leftarrow \text{size of } A

r \leftarrow 0

for i from n-1 down to 0 do

r \leftarrow A[i\%2] \times \text{SumTensor}(A)

return r

Complexity? \rightarrow \mathcal{O}(n^3)
```

Complexity of an algorithmic problem

- Recall that an algorithmic problem \neq algorithm.
- Common shorthands for the intrinsic hardness of a problem **P**:
 - **P** is in $\mathcal{O}(f(n)) \to \text{there is a } \mathcal{O}(f(n)) \text{ algorithm solving } \mathbf{P}$
 - P is in $\Theta(f(n)) \to \text{there is an optimal solution to P in } \Theta(f(n))$

(out of scope) complexity theory

Are some problem intrinsically hard \rightarrow yes!

- Complexity theorists study that!
- Problems solvable in $\mathcal{O}(n^k)$ = solvable in polynomial time, class P
- Problems whose solution can be checked in polynomial time NP

Typically

- Polynomial time problems are tractable
- Problems that are NP-hard do not have known subexponential solution
- \rightarrow to prove that some problem is intricically hard, prove it is necessarily as hard as all NP problems

Big open problem

Is $P \neq NP$?

(there are classes that are strictly harder than NP, such as EXPTIME)

Next challenge to compute complexities

```
FindIndexDicho2(A, x, start, end)
    if end < start then
        if A/start/ = x then
         return start
         else
             return -1
    mid \leftarrow \lceil \frac{end + start}{2} \rceil
    if A[mid] \leq x then
         FindIndexDicho2(A, x, mid, end)
    else
         FindIndexDicho2(A, x, start, mid)
C(0) = \mathcal{O}(1)
C(n+1) = C\left(\left|\frac{n+1}{2}\right|\right) + \mathcal{O}(1)
```

Next challenge to compute complexities

```
FindIndexDicho2(A, x, start, end)
    if end < start then
         if A/start/ = x then
         return start
         else
             return -1
    mid \leftarrow \lceil \frac{end + start}{2} \rceil
    if A[mid] \leq x then
         FindIndexDicho2(A, x, mid, end)
    else
         FindIndexDicho2(A, x, start, mid)
C(0) = \mathcal{O}(1)
C(n+1) = C\left(\left|\frac{n+1}{2}\right|\right) + \mathcal{O}(1)
\rightarrow C(n) = \mathcal{O}(\log(n))
```

Conclusion

Thanks for listening!

Please look at the resources on canvas as well

Questions?