
CSCM12: software concepts and efficiency

Estimating the complexity of algorithms

Cécilia Pradic

Swansea University, 06/02/2025

1

Recommended reading after this lecture

• Chapter 3 “Characterizing Running Times”

of Introduction to Algorithms (4th ed., 2011) by Cormen et. al

• Chapter 2 “Principles of Algorithm Analysis”

of Algorithms in Java (3rd ed., 2004) by Sedgewick

No need to look at the “Basic Recurrences” section for these slides

2

One running example

An algorithmic problem

Input: An array A of size n and some (say, integer) x

Output: An index i such that A[i] = x or −1 if there is none

Solution #1

FindIndex(A, x)

1 res← −1
2 n← size of A

3 for i from 0 to n− 1 do

4 if A[i] = x then

5 res← i

6 return res

3

Running the first solution

Let us try to run this step-by-step!

FindIndex(A, x)

1 res← −1
2 n← size of A

3 for i from 0 to n− 1 do

4 if A[i] = x then

5 res← i

6 return res

• A = [2, 4, 7, 7, 10, 15], x = 7

• A = [2, 4, 7, 7, 10, 15], x = 11

4

Running the first solution

Let us try to run this step-by-step!

FindIndex(A, x)

1 res← −1
2 n← size of A

3 for i from 0 to n− 1 do

4 if A[i] = x then

5 res← i

6 return res

• A = [2, 4, 7, 7, 10, 15], x = 7

• A = [2, 4, 7, 7, 10, 15], x = 11

4

Alternative solution 1

Solution #2

FindIndex2(A, x)

1 res← −1
2 n← size of A

3 for i from n− 1 down to 0 do

4 if A[i] = x then

5 res← i

6 return res

• Solves the same problem

• Different outputs on our first sample input

• (Roughly the same complexity)

5

Alternative solution 2

Solution #3

FindIndex3(A, x)

1 res← −1
2 n← size of A

3 i← 0

4 while res = −1 and i < n do

5 if A[i] = x then

6 res← i

7 Increment i

8 return res

• Sometimes more efficient

• But is it significant in practice?

6

A more precise problem and another solution

A more precise algorithmic problem

Input: A sorted array A of size n and some (say, integer) x

Output: An index i such that A[i] = x or −1 if there is none

• The previous solutions work, but. . .

7

A more efficient solution for sorted inputs

FindIndexDicho(A, x)

start← 0

end← size of A

while start < end do

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

8

Consideration of efficiency

Given an algorithmic problem:

• Is there an algorithm that solves it? If so is it:

• feasible? (usable in practice)

• efficient?

• optimal?

Given an algorithm:

• How efficient is it?

• Is there a more method of getting the same results?

9

Rules of thumb for measuring efficiency

• Typically, (time) complexity mostly depends on the size of the input

→ we typically express the time complexity as a function “size 7→ time”

x
� // time to compute A(x)

Input
c //

≤

size
��

N

N k 7→ max{c(x) | size(x) = k}︸ ︷︷ ︸
complexity

99

Note the ≤: typically we want the worst-case complexity for inputs of a given

size

• best-case: not very interesting

• average: can be interesting, typically harder to compute though :)

10

Computing time complexity

• Can be roughly be done step-by-step.

• Essentially, each piece of a program can be regarded as a mathematical

function
(initial) value of variables/memory︷ ︸︸ ︷

State −→ State× N︸︷︷︸
time taken to compute the step

• Essentially: basic arithmetic operations, assignments: cost ∼ 1, array

allocation ∼ size of the array, loop ∼ sum of the complexities, . . .

→ roughly the number of steps in step-wise execution we’ve done

11

The notion of space complexity

There is a notion of space complexity

• Essentially, assign a size to State and compute the maximal size that occurs in

an execution

• Unless you are doing big data or embedded system, this is not typically a

limiting factor

(RAM is cheap)

• In most scenarii, bounded by time complexity

12

Accurate complexity?

The “time complexity function” we defined might not be completely

accurate

In practice

• hardware/compiler-dependent behaviors

• not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

→ We had to make compromises

However, gives reasonable bounds/estimate

• up to a constant factor

• for large inputs (and that’s we care about!)

13

Accurate complexity?

The “time complexity function” we defined might not be completely

accurate

In practice

• hardware/compiler-dependent behaviors

• not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

→ We had to make compromises

However, gives reasonable bounds/estimate

• up to a constant factor

• for large inputs (and that’s we care about!)

13

Functions at infinity up to a constant

Suppose that we have two complexity functions f, g : N→ R+

(which we assume to be monotone and positive)

O notation

Say that g asymptotically dominates f if there are some K,K ′ > 0 such that

f(x) ≤ K · g(x) +K ′ for every x ∈ N

In this case we write f = O(g)

Examples

• log(n) = O(n), n2 = O(n3) and n2 = O(n2 + 12n+ 15)

• Check: take K = 1, K ′ = 0

• n2 + 12n+ 15 = O(n2)

• Check: take K = 20 and K ′ = 20

• n is not a O(log(n))

14

Functions at infinity up to a constant

Suppose that we have two complexity functions f, g : N→ R+

(which we assume to be monotone and positive)

O notation

Say that g asymptotically dominates f if there are some K,K ′ > 0 such that

f(x) ≤ K · g(x) +K ′ for every x ∈ N

In this case we write f = O(g)

Examples

• log(n) = O(n), n2 = O(n3) and n2 = O(n2 + 12n+ 15)

• Check: take K = 1, K ′ = 0

• n2 + 12n+ 15 = O(n2)

• Check: take

K = 20 and K ′ = 20

• n is not a O(log(n))

14

Functions at infinity up to a constant

Suppose that we have two complexity functions f, g : N→ R+

(which we assume to be monotone and positive)

O notation

Say that g asymptotically dominates f if there are some K,K ′ > 0 such that

f(x) ≤ K · g(x) +K ′ for every x ∈ N

In this case we write f = O(g)

Examples

• log(n) = O(n), n2 = O(n3) and n2 = O(n2 + 12n+ 15)

• Check: take K = 1, K ′ = 0

• n2 + 12n+ 15 = O(n2)

• Check: take K = 20 and K ′ = 20

• n is not a O(log(n))

14

Functions at infinity up to a constant

Suppose that we have two complexity functions f, g : N→ R+

(which we assume to be monotone and positive)

O notation

Say that g asymptotically dominates f if there are some K,K ′ > 0 such that

f(x) ≤ K · g(x) +K ′ for every x ∈ N

In this case we write f = O(g)

Examples

• log(n) = O(n), n2 = O(n3) and n2 = O(n2 + 12n+ 15)

• Check: take K = 1, K ′ = 0

• n2 + 12n+ 15 = O(n2)

• Check: take K = 20 and K ′ = 20

• n is not a O(log(n))

14

The example in a picture

n2 + 12n+ 15 = O(n2)

15

Some comments

O notation

g asymptotically dominates f f = O(g) if there are some K,K ′ > 0 such that

f(x) ≤ K · g(x) +K ′ for every x ∈ N

About choosing K and K ′:

• K ′ compensate a headstart, K a proportional advantage

• Never hurts to go big and have K = K ′

Warning

The O notation is awkward:

• The equality f = O(g) is not an equality

• O(g) = f is nonsense

• grumble grumble there could have been more sensible conventions for that,

but that’s how it is

16

Θ the symmetric version

Asymptotically equivalent

We write f = Θ(g) to mean

f = O(g) and g = O(f)

Basic examples:

• n = O(n2)

• n3 + n2 + log(n) = Θ(5n3)

• log(n)2n + n5 + 5 = Θ(log(n)2n)

• 42 + 1
n = O(1)

17

Same definition with limits

Limit of a function at +∞
limn→+∞ f(n) = K means formally

∀ϵ > 0. ∀∞N︸ ︷︷ ︸
for all but finitely Ns

|f(n)−K| < ϵ

Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

−→ Idea: try to compute lim
n→+∞

f(n)

g(n)

• if that’s finite and non-zero: f and g are commensurate

• if that’s +∞: f dominates strictly g asymptotically

• if that’s 0: g dominates f strictly asymptotically

18

Same definition with limits

Limit of a function at +∞
limn→+∞ f(n) = K means formally

∀ϵ > 0. ∀∞N︸ ︷︷ ︸
for all but finitely Ns

|f(n)−K| < ϵ

Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

−→ Idea: try to compute lim
n→+∞

f(n)

g(n)

• if that’s finite and non-zero: f and g are commensurate

• if that’s +∞: f dominates strictly g asymptotically

• if that’s 0: g dominates f strictly asymptotically

18

Same definition with limits

Limit of a function at +∞
limn→+∞ f(n) = K means formally

∀ϵ > 0. ∀∞N︸ ︷︷ ︸
for all but finitely Ns

|f(n)−K| < ϵ

Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

−→ Idea: try to compute lim
n→+∞

f(n)

g(n)

• if that’s finite and non-zero: f and g are commensurate

• if that’s +∞: f dominates strictly g asymptotically

• if that’s 0: g dominates f strictly asymptotically

18

Same definition with limits

Limit of a function at +∞
limn→+∞ f(n) = K means formally

∀ϵ > 0. ∀∞N︸ ︷︷ ︸
for all but finitely Ns

|f(n)−K| < ϵ

Intuitively: the curve of f sticks closer and closer to K

Picture on the board!

−→ Idea: try to compute lim
n→+∞

f(n)

g(n)

• if that’s finite and non-zero: f and g are commensurate

• if that’s +∞: f dominates strictly g asymptotically

• if that’s 0: g dominates f strictly asymptotically

18

Big O notation and friends with limits

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))

• f(n) = o(g(n)) means lim
n→+∞

f(n)
g(n) = 0

Examples for o:

• log(n) = o(
√
n)

• n2 = o(n3)

• 15 = o(log(n))

19

Big O notation and friends with limits

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))

• f(n) = o(g(n)) means lim
n→+∞

f(n)
g(n) = 0

Examples for o:

• log(n) = o(
√
n)

• n2 = o(n3)

• 15 = o(log(n))

19

Big O notation and friends with limits

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))

• f(n) = o(g(n)) means lim
n→+∞

f(n)
g(n) = 0

Examples for o:

• log(n) = o(
√
n)

• n2 = o(n3)

• 15 = o(log(n))

19

Big O notation and friends with limits

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))

• f(n) = o(g(n)) means lim
n→+∞

f(n)
g(n) = 0

Examples for o:

• log(n) = o(
√
n)

• n2 = o(n3)

• 15 = o(log(n))

19

Big O notation and friends with limits

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))

• f(n) = o(g(n)) means lim
n→+∞

f(n)
g(n) = 0

Examples for o:

• log(n) = o(
√
n)

• n2 = o(n3)

• 15 = o(log(n))

19

Basic tips for computing with O

• If f(n) ≤ g(n) then f(n) = O(g(n))
• f(n) = o(g(n)) impies f(n) = O(g(n))
• for any k > 0, kf(n) = O(f(n))
• If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))
• log(n)k = o(n), nk = o(2n) for any constant k ∈ R+

k = 1
2
corresponds to

√

• nk = o(nk′) for k < k′

• f1(n) = O(g1(n)) and f2 = O(g2(n)) imply f1(n)f2(n) = O(g1(n)g2(n))
• If f(n) = O(g(n)), then f(n) + g(n) = O(g(n))

20

Back to our examples (1/4)

Solution #1

FindIndex(A, x)

1 res← −1
2 n← size of A

3 for i from 0 to n− 1 do

4 if A[i] = x then

5 res← i

6 return res

Worst-case complexity?

→ O(n) (linear)

worst-case best-case average case

Θ(n) Θ(n) Θ(n)

21

Back to our examples (1/4)

Solution #1

FindIndex(A, x)

1 res← −1
2 n← size of A

3 for i from 0 to n− 1 do

4 if A[i] = x then

5 res← i

6 return res

Worst-case complexity? → O(n) (linear)

worst-case best-case average case

Θ(n) Θ(n) Θ(n)

21

Back to our examples (1/4)

Solution #1

FindIndex(A, x)

1 res← −1
2 n← size of A

3 for i from 0 to n− 1 do

4 if A[i] = x then

5 res← i

6 return res

Worst-case complexity? → O(n) (linear)

worst-case best-case average case

Θ(n) Θ(n) Θ(n)

21

Useful heuristics

• If/then/else ⇝ can be over-approximated by the max of each branch

• Loops: if the body runs in O(f(n)) and there are O(g(n)) iterations
→ O(f(n)g(n))

22

Back to our examples (2/4)

Solution #2

FindIndex2(A, x)

1 res← −1
2 n← size of A

3 for i from n− 1 down to 0 do

4 if A[i] = x then

5 res← i

6 return res

Worst-case complexity?

→ O(n) (nothing so different)

worst-case best-case average case

Θ(n) Θ(n) Θ(n)

23

Back to our examples (2/4)

Solution #2

FindIndex2(A, x)

1 res← −1
2 n← size of A

3 for i from n− 1 down to 0 do

4 if A[i] = x then

5 res← i

6 return res

Worst-case complexity? → O(n) (nothing so different)

worst-case best-case average case

Θ(n) Θ(n) Θ(n)

23

Back to our examples (3/4)

Solution #3

FindIndex3(A, x)

1 res← −1
2 n← size of A

3 i← 0

4 while res = −1 and i < n do

5 if A[i] = x then

6 res← i

7 Increment i

8 return res

Worst-case complexity? → O(n) (nothing too different)

But. . .
worst-case best-case average case

Θ(n) Θ(1) Θ(n)

24

Back to our examples (3/4)

Solution #3

FindIndex3(A, x)

1 res← −1
2 n← size of A

3 i← 0

4 while res = −1 and i < n do

5 if A[i] = x then

6 res← i

7 Increment i

8 return res

Worst-case complexity? → O(n) (nothing too different)

But. . .
worst-case best-case average case

Θ(n) Θ(1) Θ(n)

24

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)

start← 0

end← size of A

while start < end do

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?

• At step k, end− start ≤
⌊

n
2k

⌋
• Main loop ends when start = end

→ when n
2k

< 1

→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

25

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)

start← 0

end← size of A

while start < end do

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?

• At step k, end− start ≤
⌊

n
2k

⌋

• Main loop ends when start = end

→ when n
2k

< 1

→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

25

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)

start← 0

end← size of A

while start < end do

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?

• At step k, end− start ≤
⌊

n
2k

⌋
• Main loop ends when start = end

→ when n
2k

< 1

→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

25

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)

start← 0

end← size of A

while start < end do

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?

• At step k, end− start ≤
⌊

n
2k

⌋
• Main loop ends when start = end

→ when n
2k

< 1

→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

25

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)

start← 0

end← size of A

while start < end do

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?

• At step k, end− start ≤
⌊

n
2k

⌋
• Main loop ends when start = end

→ when n
2k

< 1

→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

25

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)

start← 0

end← size of A

while start < end do

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?

• At step k, end− start ≤
⌊

n
2k

⌋
• Main loop ends when start = end

→ when n
2k

< 1

→ when n < 2k

→ when log2(n) < k

Complexity?

→ Θ(log(n))

25

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)

start← 0

end← size of A

while start < end do

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?

• At step k, end− start ≤
⌊

n
2k

⌋
• Main loop ends when start = end

→ when n
2k

< 1

→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))
25

Some simple examples (1/3)

SumTensor(A)

n← size of A

r ← 0

for i from n− 1 down to 0 do

for j from 0 to n− 1 do
r ← A[i]×A[j]

return r

Complexity?

→ Θ(n2) (quadratic)

26

Some simple examples (1/3)

SumTensor(A)

n← size of A

r ← 0

for i from n− 1 down to 0 do

for j from 0 to n− 1 do
r ← A[i]×A[j]

return r

Complexity? → Θ(n2) (quadratic)

26

Some simple examples (2/3)

SumLowerTensor(A)

n← size of A

r ← 0

for i from n− 1 down to 0 do

for j from 0 to i do
r ← A[i]×A[j]

return r

Complexity?

→ O(n2) in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

27

Some simple examples (2/3)

SumLowerTensor(A)

n← size of A

r ← 0

for i from n− 1 down to 0 do

for j from 0 to i do
r ← A[i]×A[j]

return r

Complexity? → O(n2)

in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

27

Some simple examples (2/3)

SumLowerTensor(A)

n← size of A

r ← 0

for i from n− 1 down to 0 do

for j from 0 to i do
r ← A[i]×A[j]

return r

Complexity? → O(n2) in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

27

Some simple examples (2/3)

SumLowerTensor(A)

n← size of A

r ← 0

for i from n− 1 down to 0 do

for j from 0 to i do
r ← A[i]×A[j]

return r

Complexity? → O(n2) in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

27

Some simple examples (2/3)

SumLowerTensor(A)

n← size of A

r ← 0

for i from n− 1 down to 0 do

for j from 0 to i do
r ← A[i]×A[j]

return r

Complexity? → O(n2) in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

27

Some simple examples (3/3)

Recall that SumTensor is O(n2)

Something weird(A)

n← size of A

r ← 0

for i from n− 1 down to 0 do
r ← A[i%2]× SumTensor(A)

return r

Complexity?

→ O(n3)

28

Some simple examples (3/3)

Recall that SumTensor is O(n2)

Something weird(A)

n← size of A

r ← 0

for i from n− 1 down to 0 do
r ← A[i%2]× SumTensor(A)

return r

Complexity? → O(n3)

28

Complexity of an algorithmic problem

• Recall that an algorithmic problem ̸= algorithm.

• Common shorthands for the intrinsic hardness of a problem P:

• P is in O(f(n)) → there is a O(f(n)) algorithm solving P

• P is in Θ(f(n)) → there is an optimal solution to P in Θ(f(n))

• P is in Ω(f(n)) → any algorithm solving P has complexity Ω(f(n))

29

(out of scope) complexity theory

Are some problem intrinsically hard → yes!

• Complexity theorists study that!

• Problems solvable in O(nk) = solvable in polynomial time, class P

• Problems whose solution can be checked in polynomial time NP

Typically

• Polynomial time problems are tractable

• Problems that are NP-hard do not have known subexponential solution

→ to prove that some problem is intricically hard, prove it is necessarily as hard

as all NP problems

Big open problem

Is P ̸= NP?

(there are classes that are strictly harder than NP, such as EXPTIME)

30

Next challenge to compute complexities

FindIndexDicho2(A, x, start, end)

if end ≤ start then

if A[start] = x then
return start

else
return -1

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
FindIndexDicho2(A, x,mid, end)

else
FindIndexDicho2(A, x, start,mid)

C(0) = O(1)

C(n+ 1) = C
(⌊

n+1
2

⌋)
+O(1)

→ C(n) = O(log(n))

31

Next challenge to compute complexities

FindIndexDicho2(A, x, start, end)

if end ≤ start then

if A[start] = x then
return start

else
return -1

mid← ⌈ end+start
2 ⌉

if A[mid] ≤ x then
FindIndexDicho2(A, x,mid, end)

else
FindIndexDicho2(A, x, start,mid)

C(0) = O(1)

C(n+ 1) = C
(⌊

n+1
2

⌋)
+O(1)

→ C(n) = O(log(n))

31

Conclusion

Thanks for listening!

Please look at the resources on canvas as well

Questions?

32

