
CSCM12 – Software concepts and efficiency February 24th 2025
Manjiri Joshi, Cécilia Pradic & Deshan Sumanathilaka

Lab 4: more recursion!

• For sign-off, if the exercise is code, you are expected to show one working copy
of the code. Otherwise, write down a worked solution (i.e., as you would in
an exam) to show us.

• The questions marked as Challenge are going beyond what we expect from
you. Kudos if you manage them, but they won’t count towards extra marks
on the coursework.

1. Bubble sort Let us try to introduce our first algorithm to sort arrays. This
one is known as bubble sort. You can use either recursion or loops (or mix
them) to solve this exercise.

(a) Write a function

static void bubbleDownStep(int[] arr, int i)

that takes as input an array a and an index i of that array, and that
swaps the elements of index i and i+ 1 if a(i) > a(i+ 1). This function
should run in constant time (O(1)).

(b) Deduce a function

static void bubbleDown(int[] arr, int i)

that takes as input an array a and an index i of that array, and assuming
that arr is sorted up to index i, applies bubbleDownStep a number of
times so that arr is sorted up to index i+ 1. This function should run
in linear time (O(n)).

(c) Deduce a function

static void bubbleSort(int[] arr)

which sorts the array arr. What is its asymptotic complexity?

2. Time complexity of recursive functions For each of the following func-
tion, estimate its time complexity.

(a) static int horner(ArrayList<Integer> p, int v)

{

if(p.size() <= 0)

return 0;

else

{

final int p0 = p.remove(p.size()-1);

// you can assume that p.remove(p.size()) is O(1)

return p0 + v * horner(p, v);

}

}

(b) static int exp(double a, int n)

{

if(n == 0)

1



return 1;

int r = exp(n / 2);

return (n % 2 == 0) ? r * r : r * r * a;

}

(c) static double evalPoly(double[] p, double v)

{

int n = p.length;

double r = 0;

for(int i = 0; i < n; ++i)

r += p[i] * exp(v, i);

return r;

}

3. Tournaments For this question, we will view instant elimination tourna-
ments as a recursive algorithm to identify the best team.

(a) Assume you have a class Team and a function static boolean match(Team a, Team b)

which returns true if team a wins and false if team b wins (there are
no draws). Write a recursive function of type

static Team tournamentWinner(Team[] arg)

in java that simulates a tournament and outputs the winner.

(b) What is the time complexity of your solution? (use the master theorem
to determine it)

(c) Consider the following function.

static Team bestTeam(Team[] arg) {

bestteam = arg[0];

for (i=1,i++,i<arg.length) {

if match(arg[i],bestteam) {

bestteam = arg[i];

}

}

return bestteam;

}

Does it output the same thing as yours always? If not, provide a concrete
type Team, a concrete function match and an array arg for which the
two functions disagree.

2


