
CSCM12 – Software concepts and efficiency February 2nd 2024
Manjiri Joshi, Cécilia Pradic

Lab 1

The goal of this lab is to reacclimate yourself with basic Java and try to impress
upon you that some pieces of code may be faster than others. Try to complete
Questions 1 and 2. If you do not have for Question 3, please give it some thought
before the next lecture.

The Challenge tasks go beyond our expectations of you. Kudos if you can do
them, but it is fine if you don’t engage with those.

In one question you are asked to produce some graphs. There is a script that we
provide you on canvas that can help you with this, we would recommend you do
this if you are not familiar with excel, but that script requires that matplotlib (a
python library) is installed on the machine you are using. It is not installed by
default on the lab machine, so you need to install it as follows if you are
using a lab machine: go to ZenWorks and install a version of Jupyter notebook
(any should do). Then open a terminal1, type pip install matplotlib and hit
enter. It will take a few minutes, but you can start doing the lab sheet/other things
while it’s installing.

1. Warm-up Write pseudo-code for a function that takes as input an array of
integers and outputs the minimal value. Then, write the same thing in java.
You may assume that the array is non-empty.

2. Some experiments Open the file Lab1.java provided to you on Canvas.

(a) Write a function that counts the number of pairs (i, j) such that a[i] == a[j]

and i < j < n, where n is the argument. You should complete the fol-
lowing definition in Lab1.java:

static int countDup1(int n)

Note that a is a large array of integers which is defined globally in the
class defined in the file . You can always assume that n is smaller or
equal to the size of the array. Please do not look at the code for the
functions countDup2, countDup3 and countDup4 yet :)

(b) Lab1.java contains three other implementations countDup2, countDup3
and countDup4 that you may now look at. They should do the same
thing, but with varying efficiency. What the main function does is that
measures the running time of those implementations on various inputs
and output some data in a file called Lab1.csv. Take a quick read of the
whole program, compile it, run it and try to understand how it roughly
works (note that it tries to create/modify a file Lab1.csv). Modify the
program2 so that it also mesures outputs a spreadsheet containing time
measurements for all of the four countDup functions.

1You can do this by going to windows start menu and searching for “command line” or “ter-
minal”. Otherwise you can use the shortcut windows key + R on your keyboard, type cmd in the
textbox and run that.

2You might need to use the syntax for lambdas as in the example. If you want to understand the
details you may look at https://dev.java/learn/lambdas/, but you do not need to understand
the nitty-gritty to complete the lab sheet.

1

https://dev.java/learn/lambdas/


(c) Plot the different time complexity of the four functions. You can do this
by downloading the file Lab1.py provided to you on canvas, putting it
in the same folder as your data file Lab1.csv and double-clicking on it.
If you do this, please make sure beforehand that matplotlib is installed
on the machine you are using (c.f. start of the lab sheet). Alternatively,
you could open Lab1.csv in a spreadsheet editor like excel and generate
the plots by hand, up to you!

(d) Looking at the plot, which implementation do you find the more effi-
cient?

(e) Try to match the curves you obtain with the following three functions
of n:

n log(n) n2 n3

If using the python script, to do that, you can uncomment lines 31 – 34
(by removing the # character and the space afterwards) and re-run the
script; it will plot the graph of those functions (approximately) as well
as your previous data.

3. Write a function

static int exp(int n)

that computes 2n = 2× . . .× 2︸ ︷︷ ︸
n times

(you can assume n is a positive natural num-

ber). Then, compare it for efficiency with the following alternative imple-
mentation:

static int expOtherImplementation(int n)

{

if(n == 0)

return 1;

int r = expOtherImplementation(n / 2);

return (n % 2 == 0) ? r * r : r * r * 2;

}

How does it work? Is it more efficient than your implementation or less? Try
to justify your answer if you can!

2



Challenge task: Finding a maximum and a minimum
simultaneously

For this exercise, please use the template code provided in the file minAndMax.java
on canvas. It contains some helpful functions that will allow you to test your
functions (feel free to spend some time with it to understand how it works).

(a) Write a naive java function that takes as input an array of numbers and
returns a pair of numbers where the first component is the minimum
element of the array and where the second component is the maximum.

(b) How many time will you invoke the comparison operator if you input
an example of size n? (don’t hesitate to run the provided code to make
conjectures)

(c) Now, consider an (alternative most probably) algorithm that works as
follows: first group elements of the array in pairs. Declare auxiliary
arrays Top and Bot of size n

2 Compare all elements pairwise; for each
pair, put the maximal element in Top and the minimal one in Bot.
Then, compute naively the minimal element m in Bot and the maximal
element m′ in Top and return (m,m′).

i. Write this procedure in java; you will need to code the subprocedures
picking a maxmium and a minimum as auxiliary functions.

ii. How many times will you invoke the comparison operator if you
input an example of size 2n? Is it better than your previous algo-
rithm.

iii. Note that the above procedure works when n is even. Adapt your
algorithm so that it works when n may be odd. How many compar-
isons do you need then for inputs of size 2n+ 1?

Super-Challenge: prove that the algorithm that was given as a final so-
lution is optimal in number of comparisons (i.e., that any algorithm doing
strictly less comparisons necessarily gives wrong outputs).

3


