CSCM12: software concepts and efficiency Trees & friends

Cécilia PRADIC

March 21st 2024

slido.com, code #1426271

Logistics

Coursework 1 feedback released

• Rather high marks

(up to 6 bonus marks, lenient marking)

- If you do not have 30/30, please pay attention to the feedback
- Overall, fine except the answers to $4)c$) which were often unclear/non-specific

Tomorrow: deadline for coursework 2

- Official deadline at 11am
- (just let me know if you need a bit of slack, it should be fine, I will leave the submission portal open for a couple of extra hours in case you have technical difficulties)
- I will try to be in the lab tomorrow morning, but otherwise won't be available for support

I released a revision sheet **for the whole module**.

- Should contain **all** of the material you would be reasonably expected to know for the exam
- Based on last year's lecture content
- I would recommend you take a look to check that you know most of the things covered so far **excluding graphs, trees and hash tables/functions**.
- If there is anything unclear, feel free to ask!

Today

Introduce tree-like datastructure

- What are they?
- How to encode them in java?
- Motivating examples & applications

Today

Introduce tree-like datastructure

- What are they?
- How to encode them in java?
- Motivating examples & applications

Also an opportunity to **recap material on sorting algorithms** with heapsort. (c.f. challenge task of last lab)

Motivations

Recursive definition of a list

A list of *A*s is either

- An empty list
- Or an *A* and (a reference to) another list of *A*s

4 2 37 9

For the most part

Recursive datatypes with possibly **multiple** subobjects of the same kind

(list-like datatypes are degenerate tree-like datatypes)

Tree-like structures come up in a variety of contexts:

• Efficient datastructures: sets/priority queues with $\mathcal{O}(\log(n))$ operations, random access lists, quad/octtrees…

Trees can also come up as natual objects we'd like to manipulate

• E.g., anything hierarchical, abstract syntax trees, directory trees

Generalities

Recursive mathsy definition of a tree

Formal definition

A tree with labels in *L* is a pair (label, $\langle c_1, \ldots, c_n \rangle$) where:

- label *∈ L*
- $\langle c_1, \ldots, c_n \rangle$ is a list of trees with labels in *L* (possibly an empty list)

Vocabulary/basic notions

depth \leq size \leq max $(arity)^{\text{depth}}$

- \bullet breadth-first enumeration:
-
-
-
- depth-first prefix enumeration: \bigcirc \bigcirc

In java

• Typically encoded via a recursive class

```
class Tree<T>
{
  public T label;
  public ArrayList<Tree<T>> children;
  public static <T> Tree<T> Leaf(T x)
  {
      Tree\leqT> t = new Tree \leq T>( );
      t.children = new ArrayList<Tree<T>>();
      t.label = x;
      return t;
  }
}
```
 $Tree \leq Integer$ root = $Leaf(9)$; root.children.add(Leaf(8)); root.children.add(Leaf(1)); root.children.add(Leaf(2)); Tree<Integer> someNode = $root.get(1)$; someNode.add(Leaf(6)): someNode.get(0).add(Leaf(8));

slido exercise, #1426271

Tree example with memory representation

 $Tree \leq Integer$ root = Leaf(10); root.children.add(Leaf(5)); root.children.add(Leaf(11)); root.children.add(Leaf(12)); root.children.get(1).add(Leaf(3));

A somewhat honest of the representation in memory

Non-trees?

• With linked lists, possible to create **cycles**

(and worse pathologies in the case of doubly-linked lists)

• Same here + an additional pitfall: **sharing**

Not necessarily:

• They can be seen as **graphs**

(Topic of next lecture)

• Can represent (potentially infinite) trees

Cons

• **Cycles**: no longer a finite well-defined notion of **depth**

⇒ a lot of tree algorithm no longer terminates like e.g. traversal

• **Sharing**: a single update modifies **several spots** in the unravelling

(*⇒* not an issue for **immutable** datastructures)

Cons

• **Cycles**: no longer a finite well-defined notion of **depth**

⇒ a lot of tree algorithm no longer terminates like e.g. traversal

• **Sharing**: a single update modifies **several spots** in the unravelling

(*⇒* not an issue for **immutable** datastructures)

Pros

• **Cycles**: can represent infinite trees in finite space

only regular trees, which may arguably admit more convenient representations

• **Sharing**: saves memory/can represent *directed acyclic graphs* (DAGs)

Cons

• **Cycles**: no longer a finite well-defined notion of **depth**

⇒ a lot of tree algorithm no longer terminates like e.g. traversal

• **Sharing**: a single update modifies **several spots** in the unravelling

(*⇒* not an issue for **immutable** datastructures)

Pros

• **Cycles**: can represent infinite trees in finite space

only regular trees, which may arguably admit more convenient representations

- **Sharing**: saves memory/can represent *directed acyclic graphs* (DAGs)
- Commonplace tacit assumption: No sharing/cycles in tree-like datastructure
- One just has to be extra clear about what they consider legal inputs/outputs

Cons

• **Cycles**: no longer a finite well-defined notion of **depth**

⇒ a lot of tree algorithm no longer terminates like e.g. traversal

• **Sharing**: a single update modifies **several spots** in the unravelling

(*⇒* not an issue for **immutable** datastructures)

Pros

• **Cycles**: can represent infinite trees in finite space

only regular trees, which may arguably admit more convenient representations

- **Sharing**: saves memory/can represent *directed acyclic graphs* (DAGs)
- Commonplace tacit assumption: No sharing/cycles in tree-like datastructure
- One just has to be extra clear about what they consider legal inputs/outputs
- **For this lecture:** no more sharing/cycles

Tree-like datastructures

• *. . .*

Often, you may want more/less flexibility than the generic tree datastructure

- Do you want to bound the arity of internal nodes?
- Do you care about the ordering of children?
- Do you care about empty spots for future children?
- Do you want more labels?
- Do you want different type of labels for e.g. leaves?

```
class AST {
  boolean isAnOperand;
  String repr;
  AST lhs;
  AST rhs;
}
```
→ for most situations, similar issues/resolutions 15

Binary trees are those trees whose nodes have at most two children.

```
class BTree<T> {
  T label;
  BTree<T> leftChild;
  BTree<T> rightChild;
}
```
Conventions:

• leftChild and rightChild may be set to **null**

(for a leaf: both are **null**)

• it is possible that leftChild = **null** and rightChild != **null**

(we care about the order and "empty spots")

Binary search trees

Motivation: set with $\mathcal{O}(\log(n))$ **lookup and delete**

...

Set(); // creates an empty set **void** remove(T e); // removes one element **boolean** contains(T e): // do I contain the element? **void** add(T e); // add one element Set union(Set s2); // adds all elements of s2

A datastructure to represent set of numbers

Definition

A **Binary Search Tree** is a binary tree labeled by integers such that

$$
\Rightarrow \qquad l \leq x \leq r
$$

Look up an element boolean contains(int e)

Complexity of boolean contains(int e)?

Complexity of boolean contains(int e)?

→ O(depth)

Complexity of boolean contains(int e)?

→ O(depth)

Relation to the size of the set

- Best case: the tree is balanced \rightarrow depth = $\mathcal{O}(size)$
- Worst case: one child everywhere \rightarrow depth = Ω (size)

→ **Important concern:** work on **balanced trees**

Insert an element void add(int e)

Insert an element void add(int e)

- Complexity: still *O*(depth)
- **Issue:** repeatedly inserting bigger and bigger elements can unbalance a tree

Try inserting 1*,* 2*,* 3*, . . .* to Leaf(0)

Solutions (not covered in-depth here)

- Either try to do some probabilistic analysis and try to prove things are not that bad on average for a given use-case *. . .*
- \ldots or use fancier invariants to have classes of trees with depth = $\mathcal{O}(\log(\text{size}))$
- Paradigmatic examples: red-black trees and AVLs

- Involved "repair" procedures to maintain the invariants after an insertion/deletion running in *O*(depth)
- Something like this is implemented for TreeSet 22

So now, you should be able to tell why this table is like this

Priority queues, heaps and heapsort

Quick note

Motivation

Implement a priority queue with $\mathcal{O}(\log(n))$ operations $+$ \rightarrow a new in-place sorting algorithm in $\mathcal{O}(n \log(n))$

The two operations supported by a priority queue

```
void enqueue(T e, int priority);
```
T dequeue();

This material is explained in some details in last week's lab!

- The last task was marked as challenge because it's about trees and we had not covered that last week
- But now you should try to do it!

What's a heap?

Definition

A min-heap is a binary tree such that

- The label of every node is smaller than its children's
- All of its levels are full, except possibly the last
- The last level is completely filled left-to-right

(for priority queues: numbers are priorities $+$ extra label type \top in nodes)

Examples/counter-examples

Inserting a new element and repairing in $\mathcal{O}(\log(n))$

Deleting the root and repairing in $\mathcal{O}(\log(n))$

↑ valid heap

Representing trees as arrays

While the shape of a tree is good ot keep in mind, when they are of bounded arity and close to complete, it might be better to represent them as arrays

- Fast access due to $\mathcal{O}(1)$ lookup in arrays
- Downsides: *potentially* **wasting memory** and bounding a priori arities

 $(absent nodes = cells filled with **null**)$

For heaps: that's a good representation!

Heap sort

The algorithm

- start with an empty heap
- insert all the elements in the collection you want sorted

 $\sum_{i=1}^{n} K \log(i) + K' = \mathcal{O}(n \log(n))$

• insert the value of the root at the back of your output and delete the root

 $\sum_{i=1}^{n} K'' \log(i) + K''' = \mathcal{O}(n \log(n))$

Heap sort

The algorithm

- start with an empty heap
- insert all the elements in the collection you want sorted

 $\sum_{i=1}^{n} K \log(i) + K' = \mathcal{O}(n \log(n))$

- insert the value of the root at the back of your output and delete the root $\sum_{i=1}^{n} K'' \log(i) + K''' = \mathcal{O}(n \log(n))$
- Optimal asymptotic complexity for a comparison-based sort!
- Can be done *in-place* in an array wiht minor adjustement

 $O(n)$ space complexity

Bubble sort

- \bullet $\mathcal{O}(n^2)$
- In-place

Quick sort

- \bullet $\mathcal{O}(n^2)$, $\mathcal{O}(n \log(n))$ on average with randomized pivot
- Easily done in-place for arrays
- $\mathcal{O}(n \log(n))$ with a smart pivot, but this breaks the in-place aspect of the algo.

Merge sort

- $\mathcal{O}(n \log(n))$, good for parallelization
- Not in-place for arrays
- A *stable* sort (does not disturb elements that are "equal")

Heap sort

- \bullet $\mathcal{O}(n \log(n))$
- In-place!

CountSort

• Not a comparison-based sort, can run in linear time **if working with numbers in a restricted range**.

That's all for today

See you in the lab to practice working with trees!

Next time we will introduces **graphs**.

