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Algorithms and datastructures

Starting from today we are going to talk about datastructures

• More complicated datatypes
• Designing more abstractions

• interfaces
• invariants

We will still discuss algorithms and efficiency

• Introducing datastructures → new tools to
• program efficiently in any context (small/large scale, interactive/batch)
• representations for input/outputs for algorithmic problems
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First, a question to you

What is the running time of the following?

static public String sq(String s)
{

String res = "";
for(int i = 0; i < s.length(); ++i)
res += s;

return res;
}

Vote at slido.com, code #1426271
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Today

• Some high-level considerations (not too long)

• Our first example: linked lists
• If time allows: dynamic arrays, amortized complexity
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Wot’s a datastructure?

Informal concept, high-level
Rough reductionist definition

1. A chunk of memory space layed out in a specified way
(in java, often the attributes an object of a class)

2. A bunch of operations (in java, the methods)

In Java both aspects often materialize as Caveat: not the only way to “ do datastructure”

1. the attribute of a class and its objects
2. the methods of the class
Purpose?
Language-independent designation for a useful reusable abstraction

Examples: arrays (int[]), dynamic arrays (ArrayList), strings (String)
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Interface and comparing datastructures

What is a good datastructure?

• Depends on the application/purpose
• Point of comparison: the operations

Issue
Not all datastructures have the same operations!

Solution: compare across interfaces

Interfaces (again, informal)
The type signatures of operation and their specification

In Java: can be formalized using interface
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Example: a fragment of the Set interface

• Define an interface for datastructure Set
• Represent a set of Ts (while not an official java interface, ∼ Set/Collection interfaces)

Set(); // creates an empty set
void remove(T e); // removes one element
boolean contains(T e); // do I contain the element?
void add(T e); // add one element
Set union(Set s2); // adds all elements of s2
...
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Non-OO version of the same

For didactic purposes; usually more idiomatic in other porgramming languages

Set(); // creates an empty set
static Set remove(Set s, T e); // returns s - {e}
static boolean contains(Set s, T e); // returns whether e is in s
static Set add(Set s, T e); // returns s unioned with {e}
static Set union(Set s1, Set s2); // returns s1 unioned with s2
...

But also useful in java when designing classes meant to hold immutable data
(benefits and examples of immutable datastructure out of scope of the module)
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Comparing different implementations

Different valid implementations for a same inferface

• many parameters for comparison:
time/space complexity, destructive or non-destructive update, …

Complexities for some implementations of Set (we will compute those later)

Op \Data Array List ArrayList TreeSet
Set(T) O(1) O(1) O(1) O(1)
remove O(n) O(n) O(n) O(log(n))
contains O(n) O(n) O(n) O(log(n))

add O(n) O(1) O(n)
O(1) amortized

O(log(n))

union O(n+m) O(1) O(n+m)

O(m) amortized
O(m log(n))
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Datastructure for collections

For today, we will be looking at datastructures for ordered collections

• I won’t give a formal definition
• but essentially, we are going to look at array-like interfaces

Typical operations
• Unique conversion to an array
• adding elements (arbitrarily or at a given indexed)
• removing by name/index.
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Impementation of arrays

Arrays are contiguously represented in memory by an address
(and an integer for the size in languages like java)

4 2 87 9

4 2 87 9
0xddecc1 0xddecc2 0xddecc3 0xddecc40xddecc0

4

Some properties

• reading a cell at a given index is constant-time
• synergize well with hardware optimizations

(i.e., caching, nested loop parallelization)
(this does not matter for asymptotic complexity)

Source of the tradeoff for lists
Non-contiguous representation in memory, but still a linear stucture
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Simply linked lists: high-level idea

Recursive definition
A linked list is either

• a flag denoting an empty list
• or a cell containing a value and a reference to a linked list

4 2 87 9

Useful vocabulary for non-empty values

• head = value of the first cell
• tail = the remainder of the list
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Example implementation in java

We need to use recursively defined classes

class MyLinkedList
{

int head;
MyLinkedList tail;

MyLinkedList(int nHead, MyLinkedList nTail) {
head = nHead; tail = nTail;

}
}

Slight issue: the flag for the empty list

• Can be simulated null
• But bad practice here for java

(cascade of design issues wrt encapsuation, …) 13



In practice

Still, let’s use that for the lecture (proper implementation: tedious OO exercise)

class MyLinkedList {
int head;
MyLinkedList tail;

}

4 2 87 9

Model our example and get the third element:

MyLinkedList empty = null;
MyLinkedList tttail = new MyLinkedList(9,empty);
MyLinkedList ttail = new MyLinkedList(87,tttail);
MyLinkedList tail = new MyLinkedList(2,ttail);
MyLinkedList ex = new MyLinkedList(2,tail);
int third = ex.tail.tail.head;
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Quick comment about the memory layout

Not necessarily contiguous!

• Typically elements that are added in quick succession might be close, but this
is up to the implementation of new

0xd2

4 2 87 9
0xd3 0xdb 0xdc 0x0a 0xab 0xef 0xf0 0x02

0xdb 0xef0x0a 0x02
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Adding an element

The easiest thing is to add an element in front

• Non-OO-style:
static MyLinkedList push(MyLinkedList xs, int x){
return new MyLinkedList(x, xs);

}
• OO-style:

MyLinkedList push(int x){
return new MyLinkedList(x, this);

}

Careful: xs.push(2) does not modify xs

O(1)!
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Inserting an element (OO-style)

Suppose we want to insert an integer x at index i:

• Typically, recursion is nice to operate over recursively defined classes:
MyLinkedList insert(int i, int x){
if(i == 0) then
return push(x);

return push(head, tail.insert(i-1, x));
}

Complexity: O(i)
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The same with loops

Lists can also be rather easily handled with loops

MyLinkedList insert(int i, int x){
if(i == 0)
return push(x);

MyLinkedList previousNode;
for(tmp = this; i > 1; --i)

tmp = tmp.tail;
tmp.tail = tmp.tail.push(x);
return this;

}
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Exercises!

Setting an element at index i O(i)
Deleting an element at index i O(i)
Reversing a list of size n O(n)
Array conversion O(n)
Concatenating

O(n)
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The issue with concatenation

It seems concatenation should be O(1)

• Just modify the last tail pointer!

4 2 87 9

5 0 9

Solution: modify the datastructure to include a pointer to the end!

• To check: other operations doable with the same complexity
that happens to be true here

• Similar exercise: adapt the datastructure so that reverse is O(1)
add a boolean to simulate reversing and adapt
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Representing linked lists in OO properly

class MyCell {
int head;
MyCell tail;

}

class MyLinkedList {
protected boolean empty;
protected MyCell start;
protected MyCell last;
...

}

The recursion is still essential, but not exposed by MyLinkedList.

21



Further improvement: bidirectional links

Further improvement: doubly-linked lists

4 2 87 9

• In practice, that is what Java does for List<T>
• easier to navigate around → insertion in O(min(i, n− i))
• hard to do doubly-linked lists with non-destructive updates

(straightforward for singly linked-list, hence why they are useful)

22



Further improvement: bidirectional links

Further improvement: doubly-linked lists

4 2 87 9

• In practice, that is what Java does for List<T>
• easier to navigate around → insertion in O(min(i, n− i))
• hard to do doubly-linked lists with non-destructive updates

(straightforward for singly linked-list, hence why they are useful)

22



In java

class MyCell {
MyCell prev;
int head;
MyCell next;

}

class MyDoublyLinkedList {
protected boolean empty;
protected MyCell start;
protected MyCell last;
...

}

Coursework 2 topic: filling in (some of) the rest!
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Comparison with arrays

Op \Data Array List
deletion/insertion at i O(n) O(i)
getting/replacing the value at i O(1) O(i)
concatenating O(n) O(1)

Consequences:

• Note that everything is linear time (rather fast in the grand scheme of things)

• For batch processing where we can bound the size statically → arrays win
• For real-time simulations (e.g. video games) with unbounded collections

→ lists win

What about batch-processing with unbounded size?
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Dynamic arrays

The answer is the workhorse behind ArrayList<T>

In a nutshell
An overlay on top of an array with a smart memory management policy.

public class DynArrayInt {
private int[] internalArray;
private int size;

... }

Invariant: the size of internalArray is = 2⌈log2(size)⌉

• This is more than needed
• Idea: plan ahead and reserve some space for future additions
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Adding an element in a dynamic array

Let’s picture adding 7 and 8 at the end of our running example:

4 2 87 9 7 0 0 08

4 2 87 9 7 0 0 0

4 2 87 9
push(7)

push(8)

Sometimes Θ(n), sometimes O(1)…

Constant amortized complexity!
Adding k elements to an array of size n the empty array is O(n+ k)
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To wrap up

Worth recalling the example comparison with the examples we have seen:

Complexities for some implementations of Set

Op \Data Array List ArrayList
Set(T) O(1) O(1) O(1)
remove O(n) O(n) O(n)
contains O(n) O(n) O(n)

add O(n) O(1) O(n)
O(1) amortized

union O(n+m) O(1) O(n+m)

O(m) amortized

(Table limited to set operations while we have considered more operations in the
lecture) (e.g. insertion; dynamic arrays are not better than arrays at this)
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