
CSCM12: software concepts and efficiency
Datastructures for ordered collections

Cécilia PRADIC
March 14th 2024

slido.com, code #1426271

1



Announcement: IT issue

Due to an IT incident, some CS systems are down including:

• Autograder:
• this means I can’t open the submission platform for coursework 2 yet
• will see with the program director what to do with the deadline

• the lab tracker: we will record people who did lab for sign-offs and will port
this back to the lab tracker at a later time, will not affect you besides your
being unable to check what you are signed off for temporarily

• maybe java on the lab machines: unsure about that, will try to remember to
test later today and make an announcement on canvas once I am sure; please
bring your laptop tomorrow if you can.

It’s likely this will be all resolved next week, fingers crossed.

2



What we did last week

• The notion of datastructure
• Interface for set-like datastructue (one motivating example)
• Linked lists (singly, doubly)
• Introduce CW2

Today
• Dynamic arrays
• Stacks
• Queues

For the latter two topics, I will use some (copyrighted) slides from Gary.

3



What we did last week

• The notion of datastructure
• Interface for set-like datastructue (one motivating example)
• Linked lists (singly, doubly)
• Introduce CW2

Today
• Dynamic arrays
• Stacks
• Queues

For the latter two topics, I will use some (copyrighted) slides from Gary.

3



What we did last week

• The notion of datastructure
• Interface for set-like datastructue (one motivating example)
• Linked lists (singly, doubly)
• Introduce CW2

Today
• Dynamic arrays
• Stacks
• Queues

For the latter two topics, I will use some (copyrighted) slides from Gary.

3



Reminders: CW2

Task: complete a doubly-linked implementation!

class Node<T> {
Node<T> prev;
T val;
Node<T> next;

}

class DLList<T> {

Node<T> first;
Node<T> last;
int length;
}

4 2 87 9

4



A question to you (answers in the room or slido)

Does the following bit of code build a correct doubly-linked list? If not, what are
the issues? how should they be fixed?

1 DLList<Integer> l = new DLList<Integer>();
2 Node<Integer> previous = new Node<Integer>();
3 previous.val = -1;
4 l.first = previous;
5 for(int i = 0; i < 3; ++i)
6 {
7 Node<Integer> n = new Node<Integer>();
8 n.val = i;
9 previous.next = n;

10 previous = n;
11 n.prev = previous;
12 }
13 l.last = previous;
14 previous.next = l.last;

5



Answer: no

-1 (Node@7e9e5f8a)

0 (Node@70dea4e)next

null
prev

prev

1 (Node@5c647e05)
next

prev

2 (Node@33909752)
next

next
prev

6



A correction

1 DLList<Integer> l = new DLList<Integer>();
2 Node<Integer> previous = new Node<Integer>();
3 previous.val = -1;
4 l.first = previous;
5 for(int i = 0; i < 3; ++i)
6 {
7 Node<Integer> n = new Node<Integer>();
8 n.val = i;
9 previous.next = n;

10 n.prev = previous;
11 previous = n;
12 }
13 l.last = previous;

-1 (Node@7e9e5f8a)

0 (Node@70dea4e)next

null
prev

prev

1 (Node@5c647e05)next

prev 2 (Node@33909752)

next

next
prev

7



Comments

Advice for the CW2

• Double-check that you handle forward and backward references properly!
• Be mindful of when references are set to null
• Test thoroughly your functions on diverse examples

• Suggestion: at least three kind of list examples: an empty list, a list of size one,
and a larger list

-1 (Node@7e9e5f8a)

0 (Node@70dea4e)next

null
prev

prev

1 (Node@5c647e05)next

prev 2 (Node@33909752)

next

next
prev

(I can make the code that generates the memory graphs for DLList<T> like the one
above available on canvas if you are interested; it generates a textual description in
graphviz that you can turn into a picture using either a local graphviz installation
or an online tool like https://viz-js.com/).

8

https://viz-js.com/


Comparison list/arrays

Op \Data Array List
deletion/insertion at i O(n) O(i)
getting/replacing the value at i O(1) O(i)
concatenating O(n) O(1)

Consequences:

• Note that everything is linear time (rather fast in the grand scheme of things)

• For batch processing where we can bound the size statically → arrays win
• For real-time simulations (e.g. video games) with unbounded collections

→ lists win

What about batch-processing with unbounded size?

9



Comparison list/arrays

Op \Data Array List
deletion/insertion at i O(n) O(i)
getting/replacing the value at i O(1) O(i)
concatenating O(n) O(1)

Consequences:

• Note that everything is linear time (rather fast in the grand scheme of things)

• For batch processing where we can bound the size statically → arrays win
• For real-time simulations (e.g. video games) with unbounded collections

→ lists win

What about batch-processing with unbounded size?

9



Comparison list/arrays

Op \Data Array List
deletion/insertion at i O(n) O(i)
getting/replacing the value at i O(1) O(i)
concatenating O(n) O(1)

Consequences:

• Note that everything is linear time (rather fast in the grand scheme of things)

• For batch processing where we can bound the size statically → arrays win

• For real-time simulations (e.g. video games) with unbounded collections
→ lists win

What about batch-processing with unbounded size?

9



Comparison list/arrays

Op \Data Array List
deletion/insertion at i O(n) O(i)
getting/replacing the value at i O(1) O(i)
concatenating O(n) O(1)

Consequences:

• Note that everything is linear time (rather fast in the grand scheme of things)

• For batch processing where we can bound the size statically → arrays win
• For real-time simulations (e.g. video games) with unbounded collections

→ lists win

What about batch-processing with unbounded size?

9



Comparison list/arrays

Op \Data Array List
deletion/insertion at i O(n) O(i)
getting/replacing the value at i O(1) O(i)
concatenating O(n) O(1)

Consequences:

• Note that everything is linear time (rather fast in the grand scheme of things)

• For batch processing where we can bound the size statically → arrays win
• For real-time simulations (e.g. video games) with unbounded collections

→ lists win

What about batch-processing with unbounded size?

9



Dynamic arrays

The answer is the workhorse behind ArrayList<T>

In a nutshell
An overlay on top of an array with a smart memory management policy.

public class DynArrayInt {
private int[] internalArray;
private int size;

... }

Invariant: the size of internalArray is = 2⌈log2(size)⌉

• This is more than needed
• Idea: plan ahead and reserve some space for future additions

10



Adding an element in a dynamic array

Let’s picture adding 7 and 8 at the end of our running example:

4 2 87 9 7 0 0 08

4 2 87 9 7 0 0 0

4 2 87 9
push(7)

push(8)

Sometimes Θ(n), sometimes O(1)…

Constant amortized complexity!
Adding k elements to an array of size n the empty array is O(n+ k)

11



Adding an element in a dynamic array

Let’s picture adding 7 and 8 at the end of our running example:

4 2 87 9 7 0 0 08

4 2 87 9 7 0 0 0

4 2 87 9
push(7)

push(8)

Sometimes Θ(n), sometimes O(1)…

Constant amortized complexity!
Adding k elements to an array of size n the empty array is O(n+ k)

11



Adding an element in a dynamic array

Let’s picture adding 7 and 8 at the end of our running example:

4 2 87 9 7 0 0 08

4 2 87 9 7 0 0 0

4 2 87 9
push(7)

push(8)

Sometimes Θ(n), sometimes O(1)…

Constant amortized complexity!
Adding k elements to an array of size n the empty array is O(n+ k)

11



Exercises about dynamic arrays

You can look up the 2022 exam of CSCM41J question III :)

(will upload it later today on the module’s page)

12



To wrap up

Worth recalling the example comparison with the examples we have seen:

Complexities for some implementations of Set

Op \Data Array List ArrayList
Set(T) O(1) O(1) O(1)
remove O(n) O(n) O(n)
contains O(n) O(n) O(n)

add O(n) O(1) O(n)
O(1) amortized

union O(n+m) O(1) O(n+m)

O(m) amortized

(Table limited to set operations while we have considered more operations in the
lecture) (e.g. insertion; dynamic arrays are not better than arrays at this)

13


