
CSCM12: software concepts and efficiency
Algorithms and their complexity

Arno Pauly (for Cécilia Pradic)
Swansea University, 01/02/2024

1



Recommended reading after this lecture

• Chapter 3 “Characterizing Running Times”
of Introduction to Algorithms (4th ed., 2011) by Cormen et. al

• Chapter 2 “Principles of Algorithm Analysis”
of Algorithms in Java (3rd ed., 2004) by Sedgewick

No need to look at the “Basic Recurrences” section for now

2



What is an algorithm?

Definition (Vagueish)
An algorithm is comprised of unambiguous instructions for carrying out a
calculation.

We might deal with numbers, words or more complicated objects.

3



What is an algorithm?

Definition (Vagueish)
An algorithm is comprised of unambiguous instructions for carrying out a
calculation.

We might deal with numbers, words or more complicated objects.

3



When are two algorithms the same?

• Asking when two algorithms are the same is a bit distracting.

• But we can certainly write the same algorithm in different programming
languages.

• Figuring out the algorithm you want to use comes before coding.

4



When are two algorithms the same?

• Asking when two algorithms are the same is a bit distracting.
• But we can certainly write the same algorithm in different programming

languages.

• Figuring out the algorithm you want to use comes before coding.

4



When are two algorithms the same?

• Asking when two algorithms are the same is a bit distracting.
• But we can certainly write the same algorithm in different programming

languages.
• Figuring out the algorithm you want to use comes before coding.

4



Algorithm versus specification

The specification states what we want to compute, the algorithm states how we
are computing it.

5



On pseudo-code

• Programming languages are how we explain algorithms to computers.

• They are often less convenient when communicating with humans.
• Pseudocode is a way to communicate algorithms to humans in a style similar

to programming languages.
• You can get very far in exploring algorithms with pen and paper alone.

6



On pseudo-code

• Programming languages are how we explain algorithms to computers.
• They are often less convenient when communicating with humans.

• Pseudocode is a way to communicate algorithms to humans in a style similar
to programming languages.

• You can get very far in exploring algorithms with pen and paper alone.

6



On pseudo-code

• Programming languages are how we explain algorithms to computers.
• They are often less convenient when communicating with humans.
• Pseudocode is a way to communicate algorithms to humans in a style similar

to programming languages.

• You can get very far in exploring algorithms with pen and paper alone.

6



On pseudo-code

• Programming languages are how we explain algorithms to computers.
• They are often less convenient when communicating with humans.
• Pseudocode is a way to communicate algorithms to humans in a style similar

to programming languages.
• You can get very far in exploring algorithms with pen and paper alone.

6



One running example

An algorithmic problem
Input: An array A of size n and some integer x
Output: An index i such that A[i] = x or −1 if there is none

Solution #1

FindIndex(A, x)
1 res← −1
2 n← size of A
3 for i from 0 to n− 1 do
4 if A[i] = x then
5 res← i
6 return res

7



Running the first solution

Let us try to run this step-by-step!

FindIndex(A, x)
1 res← −1
2 n← size of A
3 for i from 0 to n− 1 do
4 if A[i] = x then
5 res← i
6 return res

• A = [2, 4, 7, 7, 10, 15], x = 7

• A = [2, 4, 7, 7, 10, 15], x = 11

8



Running the first solution

Let us try to run this step-by-step!

FindIndex(A, x)
1 res← −1
2 n← size of A
3 for i from 0 to n− 1 do
4 if A[i] = x then
5 res← i
6 return res

• A = [2, 4, 7, 7, 10, 15], x = 7
• A = [2, 4, 7, 7, 10, 15], x = 11

8



Alternative solution 1

Solution #2

FindIndex2(A, x)
1 res← −1
2 n← size of A
3 for i from n− 1 down to 0 do
4 if A[i] = x then
5 res← i
6 return res

• Solves the same problem
• Different outputs on our first sample input
• (Roughly the same complexity)

9



Alternative solution 2

Solution #3

FindIndex3(A, x)
1 res← −1
2 n← size of A
3 i← 0
4 while res = −1 and i < n do
5 if A[i] = x then
6 res← i
7 Increment i
8 return res

• Sometimes more efficient
• But is it significant in practice?

10



A more precise problem and another solution

A more precise algorithmic problem

Input: A sorted array A of size n and some (say, integer) x
Output: An index i such that A[i] = x or −1 if there is none

• The previous solutions work, but…

11



A more efficient solution for sorted inputs

FindIndexDicho(A, x)
start← 0
end← size of A
while start < end do

mid← d end+start
2 e

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

12



Consideration of efficiency

Given an algorithmic problem:

• Is there an algorithm that solves it? If so is it:
• feasible? (usable in practice)
• efficient?
• optimal?

Given an algorithm:

• How efficient is it?
• Is there a more method of getting the same results?

13



Rules of thumb for measuring efficiency

• Typically, (time) complexity mostly depends on the size of the input
→ we typically express the time complexity as a function “size 7→ time”

x � // time to compute A(x)

Input c / /

≤

size
��

N

N k 7→ max{c(x) | size(x) = k}︸ ︷︷ ︸
complexity

99

Note the ≤: typically we want the worst-case complexity for inputs of a given
size

• best-case: not very interesting
• average: can be interesting, typically harder to compute though :)

14



Computing time complexity

• Can be roughly be done step-by-step.
• Essentially, each piece of a program can be regarded as a mathematical

function
(initial) value of variables/memory︷ ︸︸ ︷

State −→ State× N︸︷︷︸
time taken to compute the step

• Essentially: basic arithmetic operations, assignments: cost ∼ 1, array
allocation ∼ size of the array, loop ∼ sum of the complexities, …

→ roughly the number of steps in step-wise execution we’ve done

15



The notion of space complexity

There is a notion of space complexity

• Essentially, assign a size to State and compute the maximal size that occurs in
an execution

• Unless you are doing big data or embedded system, this is not typically a
limiting factor

(RAM is cheap)

• In most scenarii, bounded by time complexity

16



Accurate complexity?

The “time complexity function” we defined might not be completely
accurate
In practice

• hardware/compiler-dependent behaviors
• not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

→ We had to make compromises

However, gives reasonable bounds/estimate

• up to a constant factor
• for large inputs (and that’s we care about!)

17



Accurate complexity?

The “time complexity function” we defined might not be completely
accurate
In practice

• hardware/compiler-dependent behaviors
• not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

→ We had to make compromises

However, gives reasonable bounds/estimate

• up to a constant factor
• for large inputs (and that’s we care about!)

17


