CSCM12: software concepts and efficiency Algorithms and their complexity

Arno Pauly (for Cécilia PRADIC) Swansea University, 01/02/2024

- Chapter 3 "Characterizing Running Times" of *Introduction to Algorithms* (4th ed., 2011) by Cormen et. al
- Chapter 2 "Principles of Algorithm Analysis"

of Algorithms in Java (3rd ed., 2004) by Sedgewick

No need to look at the "Basic Recurrences" section for now

Definition (Vagueish)

An algorithm is comprised of unambiguous instructions for carrying out a calculation.

Definition (Vagueish)

An algorithm is comprised of unambiguous instructions for carrying out a calculation.

We might deal with numbers, words or more complicated objects.

• Asking when two algorithms are the same is a bit distracting.

- Asking when two algorithms are the same is a bit distracting.
- But we can certainly write the same algorithm in different programming languages.

- Asking when two algorithms are the same is a bit distracting.
- But we can certainly write the same algorithm in different programming languages.
- Figuring out the algorithm you want to use comes before coding.

The specification states **what** we want to compute, the algorithm states **how** we are computing it.

• Programming languages are how we explain algorithms to computers.

- Programming languages are how we explain algorithms to computers.
- They are often less convenient when communicating with humans.

- Programming languages are how we explain algorithms to computers.
- They are often less convenient when communicating with humans.
- Pseudocode is a way to communicate algorithms to humans in a style similar to programming languages.

- Programming languages are how we explain algorithms to computers.
- They are often less convenient when communicating with humans.
- Pseudocode is a way to communicate algorithms to humans in a style similar to programming languages.
- You can get very far in exploring algorithms with pen and paper alone.

An algorithmic problem

Input: An array A of size n and some integer x **Output:** An index i such that A[i] = x or -1 if there is none

Solution #1

```
FindIndex (A, x)

1 res \leftarrow -1

2 n \leftarrow \text{size of } A

3 for i from 0 to n-1 do

4 | \text{ if } A[i] = x \text{ then}

5 | res \leftarrow i

6 return res
```

Running the first solution

Let us try to run this step-by-step!

```
FindIndex (A, x)1res \leftarrow -12n \leftarrow size of A3for i from 0 to n-1 do4| if A[i] = x then5| res \leftarrow i6return res
```

• A = [2, 4, 7, 7, 10, 15], x = 7

Running the first solution

Let us try to run this step-by-step!

```
FindIndex (A, x)

1 | res \leftarrow -1

2 n \leftarrow \text{size of } A

3 for i from 0 to n-1 do

4 | \text{if } A[i] = x \text{ then}

5 | res \leftarrow i

6 return res

• A = [2, 4, 7, 7, 10, 15], x = 7
```

• A = [2, 4, 7, 7, 10, 15], x = 11

Alternative solution 1

	S	olution #2			
	F	indIndex2(A, x)			
1		$res \leftarrow -1$			
2		$n \leftarrow \text{size of } A$			
3		for $i from n-1 down to 0 do$			
4		$\mathbf{if} \ A[i] = x \mathbf{then}$			
5		$res \leftarrow i$			
6		return res			

- Solves the same problem
- Different outputs on our first sample input
- (Roughly the same complexity)

Alternative solution 2

Solution #3

		π^{0}		
	F	indIndex3(A, x)		
1		$res \leftarrow -1$		
2		$n \leftarrow \text{size of } A$		
3		$i \leftarrow 0$		
4		while $res = -1$ and $i < n$ do		
5		if $A[i] = x$ then		
6		$res \leftarrow i$		
7		Increment i		
8		return res		

- Sometimes more efficient
- But is it significant in practice?

A more precise algorithmic problem

Input: A sorted array A of size n and some (say, integer) x **Output:** An index i such that A[i] = x or -1 if there is none

• The previous solutions work, but...

```
FindIndexDicho(A, x)
    start \leftarrow 0
    end \leftarrow size of A
    while start < end do
         mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
        if A[mid] \leq x then
         start \leftarrow mid
         else
         end \leftarrow mid
    if A/start = x then
        return start
     else
         return -1
```

Given an algorithmic problem:

- Is there an algorithm that solves it? If so is it:
 - feasible?
 - efficient?
 - optimal?

Given an algorithm:

- How efficient is it?
- Is there a more method of getting the same results?

(usable in practice)

Rules of thumb for measuring efficiency

- Typically, (time) complexity mostly depends on the size of the input
- $\rightarrow\,$ we typically express the time complexity as a function "size $\mapsto\,$ time"

Note the \leq : typically we want the **worst-case complexity** for inputs of a given size

- best-case: not very interesting
- average: can be interesting, typically harder to compute though :)

- Can be roughly be done step-by-step.
- Essentially, each piece of a program can be regarded as a mathematical function

(initial) value of variables/memory

$$\widetilde{\text{State}} \longrightarrow \operatorname{State} \times \underbrace{\mathbb{N}}$$

time taken to compute the step

- Essentially: basic arithmetic operations, assignments: cost \sim 1, array allocation \sim size of the array, loop \sim sum of the complexities, ...
- $\rightarrow\,$ roughly the number of steps in step-wise execution we've done

There is a notion of ${\bf space}$ complexity

- Essentially, assign a size to State and compute the maximal size that occurs in an execution
- Unless you are doing big data or embedded system, this is not typically a limiting factor

(RAM is cheap)

• In most scenarii, bounded by time complexity

Accurate complexity?

The "time complexity function" we defined might not be *completely* accurate

In practice

- hardware/compiler-dependent behaviors
- not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

 \rightarrow We had to make compromises

Accurate complexity?

The "time complexity function" we defined might not be *completely* accurate

In practice

- hardware/compiler-dependent behaviors
- not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

 \rightarrow We had to make compromises

However, gives reasonable bounds/estimate

- up to a **constant factor**
- for large inputs

(and that's we care about!)