CSCM12: software concepts and efficiency
Algorithms and their complexity

Arno Pauly (for Cécilia PRADIC)
Swansea University, 01,/02/2024



Recommended reading after this lecture

e Chapter 3 “Characterizing Running Times”
of Introduction to Algorithms (4th ed., 2011) by Cormen et. al

e Chapter 2 “Principles of Algorithm Analysis”
of Algorithms in Java (3rd ed., 2004) by Sedgewick

No need to look at the “Basic Recurrences” section for now



An algorithm is comprised of unambiguous instructions for carrying out a

calculation.



An algorithm is comprised of unambiguous instructions for carrying out a

calculation.

We might deal with numbers, words or more complicated objects.



e Asking when two algorithms are the same is a bit distracting.



When are two algorithms the same?

o Asking when two algorithms are the same is a bit distracting.

e But we can certainly write the same algorithm in different programming
languages.



When are two algorithms the same?

o Asking when two algorithms are the same is a bit distracting.

e But we can certainly write the same algorithm in different programming
languages.

e Figuring out the algorithm you want to use comes before coding.



The specification states what we want to compute, the algorithm states how we
are computing it.



e Programming languages are how we explain algorithms to computers.



e Programming languages are how we explain algorithms to computers.

e They are often less convenient when communicating with humans.



On pseudo-code

e Programming languages are how we explain algorithms to computers.
e They are often less convenient when communicating with humans.

e Pseudocode is a way to communicate algorithms to humans in a style similar
to programming languages.



On pseudo-code

e Programming languages are how we explain algorithms to computers.
e They are often less convenient when communicating with humans.

e Pseudocode is a way to communicate algorithms to humans in a style similar
to programming languages.

e You can get very far in exploring algorithms with pen and paper alone.



One running example

Input: An array A of size n and some integer x
Output: An index i such that A[j] = z or —1 if there is none

FindIndex (A, z)
res < —1
n < size of A
for i from 0 to n— 1 do
if Ali = z then
| res < 14

(= NS B N

return res



Running the first solution

Let us try to run this step-by-step!

FindIndex (A4, x)

1 res < —1

2 n < size of A

3 for i from 0 to n— 1 do
4 if A[i]] = z then

5 ‘ res <— 14

6 return res

e A=[2,4,7,7,10,15], =17



Running the first solution

Let us try to run this step-by-step!

FindIndex (A4, x)

1 res < —1

2 n < size of A

3 for i from 0 to n— 1 do
4 if A[i]] = z then

5 ‘ res <— 14

6 return res

o« A=1[2,4,7,7,10,15], z=7
e A=1[2,4,7,7,10,15], z =11



Alternative solution 1

Solution #2

FindIndex2(A, 1)
res < —1
n < size of A
for ¢ from n— 1 down to 0 do
if A[i{] = z then
‘ res < i

[SL T NV R VR

return res

=]

e Solves the same problem
e Different outputs on our first sample input

o (Roughly the same complexity)



Alternative solution 2

@ I o otk W N =

Solution #3

FindIndex3(A, x)
res <+ —1
n < size of A

140

while res = —1 and i < n do
if A[j] = z then
‘ res <— i

Increment 7

return res

e Sometimes more efficient

e But is it significant in practice?

10



A more precise problem and another solution

Input: A sorted array A of size n and some (say, integer) z
Output: An index ¢ such that A[j] = z or —1 if there is none

e The previous solutions work, but...

11



A more efficient solution for sorted inputs

FindIndexDicho (A, )
start < 0
end < size of A
while start < end do
. d
mzd — (en gstart]
if A[mid] < z then
| start < mid

else
| end < mid

if Afstart] = r then
| return start

else
| return -7




Consideration of efficiency

Given an algorithmic problem:

e Is there an algorithm that solves it? If so is it:
o feasible?
o efficient?

e optimal?

Given an algorithm:

e How efficient is it?

e Is there a more method of getting the same results?

(usable in practice)

13



Rules of thumb for measuring efficiency

o Typically, (time) complexity mostly depends on the size of the input

— we typically express the time complexity as a function “size — time”

zt time to compute A(x)
Input - N
Size\L //\

N k— max{c(z) | size(z) = k}

complexity

Note the <: typically we want the worst-case complexity for inputs of a given

size

e best-case: not very interesting

o average: can be interesting, typically harder to compute though :)

14



Computing time complexity

e Can be roughly be done step-by-step.

o Essentially, each piece of a program can be regarded as a mathematical

function

(initial) value of variables/memory
~ =
State — State x N
~—
time taken to compute the step
o Essentially: basic arithmetic operations, assignments: cost ~ 1, array

allocation ~ size of the array, loop ~ sum of the complexities, ..

— roughly the number of steps in step-wise execution we’ve done

15



The notion of space complexity

There is a notion of space complexity

o Essentially, assign a size to State and compute the maximal size that occurs in

an execution

e Unless you are doing big data or embedded system, this is not typically a
limiting factor
(RAM is cheap)

e In most scenarii, bounded by time complexity

16



In practice

o hardware/compiler-dependent behaviors

e not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

— We had to make compromises



Accurate complexity?

The “time complexity function” we defined might not be completely
accurate

In practice

o hardware/compiler-dependent behaviors

e not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

— We had to make compromises

However, gives reasonable bounds/estimate

e up to a constant factor

o for large inputs (and that’s we care about!)

17



