
CSCM12 – Coursework II

Due March 22nd 11am

Cécilia Pradic

c.pradic@swansea.ac.uk

Guidelines

• By submitting this work, you state that you fully understand and are complying with
the university’s policy on Academic Integrity and Academic Misconduct. The policy
can be found at https://www.swansea.ac.uk/academic-services/academic-guide/

assessment-issues/academic-integrity-academic-misconduct.

• This is an individual assignment, and you must not collaborate with others or share solu-
tions.

• In this assignment, you are given template java files defining a class implementing a doubly-
linked lists with some functions missing. Your goal will be to implement those functions.

• For this coursework, you are not allowed to use import statements at the beginning of the
file such as import java.util.*;

• You should not modify the type or name of the attributes and methods already in the
file. You are however perfectly allowed to add your own methods if you want.

• There are 30 marks to be earned in total. Each of lab sheets 1-5 earns you 1 bonus mark
(but 30 total is the maximum achievable). Following the submission instructions correctly
is worth 4 marks, the questions are worth 56 marks.

• Submission instructions will be found at the end of this document.

Update from 15/03/24

I was finally able to set up autograder and it should be live now, however there are a couple
modification to the handout you should take into account:

• Because of the IT issue, I felt it was fairer to push back the deadline by a day, so now it
is March 22nd. I also elected to make the feedback from the tests more informative than
what I had previously announced, except for the last two questions.

• Autograder does not let me set up half-marks, which annoyed me wrt the marking criteria
I wanted to put; so now the overall amount of marks have doubled. This should not change
anything from your perspective, the coursework is still worth 15% of your final mark and
the intended marking scheme is the same.

https://www.swansea.ac.uk/academic-services/academic-guide/assessment-issues/academic-integrity-academic-misconduct
https://www.swansea.ac.uk/academic-services/academic-guide/assessment-issues/academic-integrity-academic-misconduct


2 CSCM12 – Coursework II

• I noticed that setting things up was needlessly hard for me if the class Node<T> was
contained in the same file as the class DLList<T>. So I modified the template accordingly:
you are given both files Node.java and DLList.java on canvas, but should only modify
and upload the latter. This was the option that should introduce the least disruption on
your end. (the system will do a minimal effort to fix your submission if you still have the
Node<T> class defined in DLList.java and process it, but I cannot guarantee it will work
in all cases and would rather you did not include it!)

Overview

The goal of this coursework will be to implement doubly-linked lists as described in the lectures,
so as to familiarize yourself with programming with recursive structures in Java. To do so, we
provide you with template files Node.java and DLList.java and a number of placeholder func-
tions for you to fill in the latter one1. Then you should check that everything compiles without
errors (i.e., javac Node.java DLList.java should terminate without errors or warnings) and
upload DLList.java to autograder. Note that you should not upload Node.java to autograder;
there is a local copy on the server identical to the one provided to you, so you should not modify
it.

I suggest that you test your code whenever you have finished writing a function so that you
spend a reasonable amount of time debugging – to do so you should probaby create another file
with a main function.

Before starting writing your code, please read the file DLList.java in full. The idea is that
the class should ultimately implements doubly-linked lists with references at the front and the
back in a principled way, as alluded to in the lecture.

Internally, essentially two kind of representations should be allowed during the run of any
application that uses the DLList<T> class:

• either first = last = null and we consider the list empty

• or we have first.prev = last.next = null and for every other node n accessible from
first and last, we should have n.next.prev = n = n.prev.next Furthermore, we should
be able to reach last from first by taking first.next. ... .next a certain number
of times. Note that in the particular case where we have a single element, we have
first = last; otherwise, first != last

All of your functions should preserve those invariants by default. Additionally, this class has
a length attribute that should correspond to the actual length of the list at all times. It is your
responsibility to write your code so that this remains true when calling your method.

Some methods and constructors not mentioned in the handout are just there for your conve-
nience if you want to run some tests on your code, which I strongly recommend before submitting!

Questions (56 marks)

1. (8 marks) Write an implementation for the method

public void push_back(T x);

1and some dummy return statement that you should get rid of ultimately - they are there so that the code
compiles even if it is unfinished.



C. Pradic 3

that adds the element x at the end of the list. This should run in constant time (O(1)).

2. (8 marks) Write an implementation for the method

public void push_front(T x);

that adds the element x at the front of the list. This should run in constant time (O(1)).

3. (8 marks) Write an implementation for the method

public T pop_front();

that removes the element x at the front of the list and returns it. This should run in
constant time (O(1)).

4. (8 marks) Write an implementation for the methode

public void concatenate(DLList<T> xs);

which takes an additional list xs as input and adds it at the end of the current list. You
may break the invariant that xs is a correct doubly-linked list to do so. Your method
should work in constant time O(1).

5. (8 marks) Implement a method

public T get(int idx);

which returns the ith element of the list without modifying it, assuming that we start
counting at 0 (so that calling get from the list [22, 1, 3, 5] with idx = 2 returns 3). For
full marks, your solution should run in O(idx, length - idx).

6. (8 marks) Implement a method

public void insertAt(int idx, T x)

that inserts x at the position number idx in the list. If called from the list [5, 2, 7] with
idx = 2 and x = 8, the list should become [5, 2, 8, 7]. For full marks, your solution should
run in O(idx, length - idx).

7. (8 marks) Implement a method

public void reverse();

that reverses the list it is called from. It should run in linear time in the size of the list.

Submission instructions (4 marks)

• You submit your solutions by uploading your filled copy of the DLList.java file to https:
//csautograder.swansea.ac.uk. The submission page for this module will open from
March 14th.

• If you cannot access https://csautograder.swansea.ac.uk because you are getting a
503 error, try clearing your cookies or set your web browser to private/incognito mode and
try again.

• Part of the grading will done automatically on the server by checking whether your im-
plementations are correct on a large number of randomly drawn examples, but your sub-
mission will be also reviewed by a marker to allocate the remaining marks that are hard
to check automatically (such as the fact that your solution are efficient).

https://csautograder.swansea.ac.uk
https://csautograder.swansea.ac.uk
https://csautograder.swansea.ac.uk


4 CSCM12 – Coursework II

• Before submitting, check that your file compiles as a stand-alone file. That is, issuing
javac Node.java DLList.java should terminate without any errors or warning being
issued. Something that often makes this go wrong is if students use an IDE that inserts a
package directive at the top of a file - you should not have that. This is a necessary but
not sufficient condition for your file to go through the grading setup on the server.

• Reminder that you are not allowed to import anything! If the system see you used the
word import anywhere, it will simply reject your submission without testing it (it also
means you should avoid this word in variable names).

• You will be allowed to submit your coursework multiple times, and you will get some
automated feedback from the server; please try it out early to make sure it manages to
process your submission

• For any other technical issues with autograder, please contact me. Dropping a message
on the discussion board on canvas is the preferred option if your problem is of general
interest.


