
CSCM12 – Software concepts and efficiency February 2nd 2024
Arno Pauly & Cécilia Pradic

Lab 1

The goal of this lab is to reacclimate yourself with basic Java and try to impress
upon you that some pieces of code may be faster than others. It would be nice if
you engage with the first two questions. The last one is a bit more recreational and
there to get you in the mood of designing your own efficient algorithms (as we are
going to see later, the sort of optimizations this last question asks you to consider
would be barely noticeable on most practical examples, so it is not a huge issue if
you do not complete it (but it’s fun!)).

1. Warm-up Write pseudo-code for a function that takes as input an array of
integers and outputs the minimal value. Then, write the same thing in java.
You may assume that the array is non-empty.

Challenge: show that your code does the minimal number of comparisons
possible between elements of the arrays.

2. Some experiments Open the file Lab1.java provided to you on Canvas.

(a) In Lab1.java, there is a prototype to be completed:

static int countDup1(int n)

Write a function that counts the number of pairs (i, j) such that a[i] == a[j]

and i < j < n, where n is the argument.

(b) The file contains three other implementations countDup2, countDup3
and countDup4 that should do the same thing, but with varying effi-
ciency. Take a read of the whole program, compile it, run it and try to
assess what it does. Modify the program1 so that it outputs a spread-
sheet containing time measurements for all of the four countDupx func-
tions.

(c) Using a spreadsheet editor, plot the different time complexity of the four
functions. Which is the one which looks more efficient for large inputs?

(d) Try to match the curves you obtain with the following three functions
of n:

n log(n) n2 n3

(e) Write a function

static int exp(int n)

that computes 2n. Then, compare it for efficiency with the following
alternative implementation:

static int expOtherImplementatin(int n)

{

if(n == 0)

return 1;

1You might need to use the syntax for lambdas as in the example. If you want to under-
stand the details you may look at https://docs.oracle.com/javase/tutorial/java/javaOO/

lambdaexpressions.html, but you do not necessarily need to understand the nitty-gritty.

1

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html


int r = exp3(n / 2);

return (n % 2 == 0) ? r * r : r * r * 2;

}

Which of these function is the more efficient? Modify the code of
Lab1.java to compare these functions and give your answer.

3. Finding a maximum and a minimum simultaneously For this exercise,
please use the template code provided in the file minAndMax.java on canvas.
It contains some helpful functions that will allow you to test your functions
(feel free to spend some time with it to understand how it works).

(a) Write a naive java function that takes as input an array of numbers and
returns a pair of numbers where the first component is the minimum
element of the array and where the second component is the maximum.

(b) How many time will you invoke the comparison operator if you input
an example of size n? (don’t hesitate to run the provided code to make
conjectures)

(c) Now, consider an (alternative most probably) algorithm that works as
follows: first group elements of the array in pairs. Declare auxiliary
arrays Top and Bot of size n

2 Compare all elements pairwise; for each
pair, put the maximal element in Top and the minimal one in Bot.
Then, compute naively the minimal element m in Bot and the maximal
element m′ in Top and return (m,m′).

i. Write this procedure in java; you will need to code the subprocedures
picking a maxmium and a minimum as auxiliary functions.

ii. How many times will you invoke the comparison operator if you
input an example of size 2n? Is it better than your previous algo-
rithm.

iii. Note that the above procedure works when n is even. Adapt your
algorithm so that it works when n may be odd. How many compar-
isons do you need then for inputs of size 2n+ 1?

Challenge (hard!): prove that the algorithm that was given as a final
solution is optimal in number of comparisons (i.e., that any algorithm doing
strictly less comparisons necessarily gives wrong outputs).

(Comment: I am not aware of practical applications for this problem, but
maybe there is; as we shall see later, when it comes to writing java, this is a
bit of a frivolous question. But I hope it’s somewhat fun at least!)

2


