
CSCM12: software concepts and efficiency
Trees & friends

Cécilia PRADIC
March 13th 2023

1



Logistics

• Friday and next Monday: unless I announce otherwise, I am on strike and
Tonicha won’t be there either

• Like last time, I will merely point at a list of exercises in the books that you
might want to look at

• Feel free to come say hello on the picket line
• But otherwise, also feel free to progress on the labs and coursework.

2



Today

Introduce tree-like datastructure

• What are they?
• How to encode them in java?
• Motivating examples & applications

Also an opportunity to recap material on sorting algorithms with heapsort.
(c.f. challenge task of last lab)

3



Today

Introduce tree-like datastructure

• What are they?
• How to encode them in java?
• Motivating examples & applications

Also an opportunity to recap material on sorting algorithms with heapsort.
(c.f. challenge task of last lab)

3



Motivations



What do you mean by a tree-like datastructure?

Recursive definition of a list
A list of As is either

• An empty list

• Or an A and (a reference to) another list of As

← one subobject of the same kind

4 2 87 9

For the most part
Recursive datatypes with possibly multiple subobjects of the same kind

a

a

b4

5

a

a

b

versus2

2 (list-like datatypes are degenerate tree-like datatypes)

4



What do you mean by a tree-like datastructure?

Recursive definition of a list
A list of As is either

• An empty list

• Or an A and (a reference to) another list of As ← one subobject of the same kind

4 2 87 9

For the most part
Recursive datatypes with possibly multiple subobjects of the same kind

a

a

b4

5

a

a

b

versus2

2 (list-like datatypes are degenerate tree-like datatypes)

4



What do you mean by a tree-like datastructure?

Recursive definition of a list
A list of As is either

• An empty list

• Or an A and (a reference to) another list of As ← one subobject of the same kind

4 2 87 9

For the most part
Recursive datatypes with possibly multiple subobjects of the same kind

a

a

b4

5

a

a

b

versus2

2

(list-like datatypes are degenerate tree-like datatypes)

4



What do you mean by a tree-like datastructure?

Recursive definition of a list
A list of As is either

• An empty list

• Or an A and (a reference to) another list of As ← one subobject of the same kind

4 2 87 9

For the most part
Recursive datatypes with possibly multiple subobjects of the same kind

a

a

b4

5

a

a

b

versus2

2 (list-like datatypes are degenerate tree-like datatypes)
4



Why should we care? (1/2)

Tree-like structures come up in a variety of contexts:

• Efficient datastructures: sets/priority queues with O(log(n)) operations,
random access lists, quad/octtrees…

51 88 3

1

10 2

5



Why should we care? (2/2)

Trees can also come up as natual objects we’d like to manipulate

• E.g., anything hierarchical, abstract syntax trees, directory trees

while(i > 0) {
x = x + y % 2;
i--;

}

while

>

i 0

=

x

x

%

+

y

2

--

i

6



Generalities



Recursive mathsy definition of a tree

Formal definition
A tree with labels in L is a pair (label, ⟨c1, . . . , cn⟩) where:

• label ∈ L
• ⟨c1, . . . , cn⟩ is a list of trees with labels in L (possibly an empty list)

5

24

5

2

0

0 5

2

2

0

0

2

1

0

7 207 7

5

7



Vocabulary/basic notions

the root

a leaf

an internal node
Height/depth

(=4)

is an ancestor of

is an descendant of

is a child of

is a parent of

is the least common ancestor of and

level 0

level 1

level 2

level 3

• breadth-first enumeration:• breadth-first enumeration:

depth ≤ size ≤ max(arity)depth

• depth-first infix enumeration: (← only makes sense for binary trees)

• depth-first postfix enumeration:

• depth-first prefix enumeration:

8



In java

• Typically encoded via a recursive class

class Tree<T>
{
public T label;
public ArrayList<Tree<T>> children;

public static <T> Tree<T> Leaf(T x)
{

Tree<T> t = new Tree<T>();
t.children = new ArrayList<Tree<T>>();
t.label = x;
return t;

}
}

Tree<Integer> root = Leaf(10);
root.children.add(Leaf(5));
root.children.add(Leaf(11));
root.children.add(Leaf(12));
root.children.get(1).add(Leaf(3));

What tree is this?

9



Tree example with memory representation

Tree<Integer> root = Leaf(10); root.children.add(Leaf(5));
root.children.add(Leaf(11)); root.children.add(Leaf(12));
root.children.get(1).add(Leaf(3));

A somewhat honest of the representation in memory

10

5 11

3

12
size:

0

size:

0

size:

0

size:

3

size:

1

10



Non-trees?

• With linked lists, possible to create cycles
(and worse pathologies in the case of doubly-linked lists)

• Same here + an additional pitfall: sharing

10

5 11

3

12

size:

0

size:

3

size:

1
size:

1
size:

1

cycle

sharing

11



Are those illegitimate?

Not necessarily:
• They can be seen as graphs

(Topic of next lecture)

• Can represent (potentially infinite)
trees

10

5 11

3

12

11

3

10

5 11

3

12

11

3

...

12



A time and place for sharing and cycles

Cons

• Cycles: no longer a finite well-defined notion of depth
⇒ a lot of tree algorithm no longer terminates like e.g. traversal

• Sharing: a single update modifies several spots in the unravelling
(⇒ not an issue for immutable datastructures)

Pros

• Cycles: can represent infinite trees in finite space
only regular trees, which may arguably admit more convenient representations

• Sharing: saves memory/can represent directed acyclic graphs (DAGs)

• Commonplace tacit assumption: No sharing/cycles in tree-like datastructure
• One just has to be extra clear about what they consider legal inputs/outputs
• For this lecture: no more sharing/cycles

13



A time and place for sharing and cycles

Cons

• Cycles: no longer a finite well-defined notion of depth
⇒ a lot of tree algorithm no longer terminates like e.g. traversal

• Sharing: a single update modifies several spots in the unravelling
(⇒ not an issue for immutable datastructures)

Pros

• Cycles: can represent infinite trees in finite space
only regular trees, which may arguably admit more convenient representations

• Sharing: saves memory/can represent directed acyclic graphs (DAGs)

• Commonplace tacit assumption: No sharing/cycles in tree-like datastructure
• One just has to be extra clear about what they consider legal inputs/outputs
• For this lecture: no more sharing/cycles

13



A time and place for sharing and cycles

Cons

• Cycles: no longer a finite well-defined notion of depth
⇒ a lot of tree algorithm no longer terminates like e.g. traversal

• Sharing: a single update modifies several spots in the unravelling
(⇒ not an issue for immutable datastructures)

Pros

• Cycles: can represent infinite trees in finite space
only regular trees, which may arguably admit more convenient representations

• Sharing: saves memory/can represent directed acyclic graphs (DAGs)

• Commonplace tacit assumption: No sharing/cycles in tree-like datastructure
• One just has to be extra clear about what they consider legal inputs/outputs

• For this lecture: no more sharing/cycles

13



A time and place for sharing and cycles

Cons

• Cycles: no longer a finite well-defined notion of depth
⇒ a lot of tree algorithm no longer terminates like e.g. traversal

• Sharing: a single update modifies several spots in the unravelling
(⇒ not an issue for immutable datastructures)

Pros

• Cycles: can represent infinite trees in finite space
only regular trees, which may arguably admit more convenient representations

• Sharing: saves memory/can represent directed acyclic graphs (DAGs)

• Commonplace tacit assumption: No sharing/cycles in tree-like datastructure
• One just has to be extra clear about what they consider legal inputs/outputs
• For this lecture: no more sharing/cycles

13



Tree-like datastructures

Often, you may want more/less flexibility than the generic tree datastructure

• Do you want to bound the arity of internal nodes?
• Do you care about the ordering of children?
• Do you care about empty spots for future children?
• Do you want more labels?
• Do you want different type of labels for e.g. leaves?
• . . .

class AST {
boolean isAnOperand;
String repr;
AST lhs;
AST rhs;

}

→ for most situations, similar issues/resolutions 14



One last restriction for today

Binary trees are those trees whose nodes have at most two children.

class BTree<T> {
T label;
BTree<T> leftChild;
BTree<T> rightChild;

}

Conventions:

• leftChild and rightChild may be set to null
(for a leaf: both are null)

• it is possible that leftChild = null and rightChild != null
(we care about the order and “empty spots”)

15



Binary search trees



Motivation: set with O(log(n)) lookup and delete

Set(); // creates an empty set
void remove(T e); // removes one element
boolean contains(T e); // do I contain the element?
void add(T e); // add one element
Set union(Set s2); // adds all elements of s2
...

Op \Data Array List ArrayList TreeSet
Set(T) O(1) O(1) O(1) O(1)
remove O(n) O(n) O(n) O(log(n))
contains O(n) O(n) O(n) O(log(n))

add O(n) O(1) O(n)
O(1) amortized

O(log(n))

union O(n+m) O(1) O(n+m)

O(m) amortized
O(m log(n))

16



A datastructure to represent set of numbers

Definition
A Binary Search Tree is a binary tree labeled by integers such that

x

l r

⇒ l ≤ x ≤ r

2

1

7

5

3

3

2

5

3

2

1

5

3

15

10 57

17



Look up an element boolean contains(int e)

2

1

5

3

15

10 57

2

1

5

3

15

10 57

2

1

5

3

15

10 57

2?

2 < 5

10? 4?

10 > 5

10 < 15

4 < 5

4 > 2

18



Complexity of boolean contains(int e)?

2

1

5

3

15

10 57

4?

4 < 5

4 > 2

→ O(depth)
Relation to the size of the set

• Best case: the tree is balanced → depth = O(size)
• Worst case: one child everywhere → depth = Ω(size)

→ Important concern: work on balanced trees

19



Complexity of boolean contains(int e)?

2

1

5

3

15

10 57

4?

4 < 5

4 > 2

→ O(depth)

Relation to the size of the set

• Best case: the tree is balanced → depth = O(size)
• Worst case: one child everywhere → depth = Ω(size)

→ Important concern: work on balanced trees

19



Complexity of boolean contains(int e)?

2

1

5

3

15

10 57

4?

4 < 5

4 > 2

→ O(depth)
Relation to the size of the set

• Best case: the tree is balanced → depth = O(size)
• Worst case: one child everywhere → depth = Ω(size)

→ Important concern: work on balanced trees

19



Insert an element void add(int e)

2

1

5

15

10 57

insert(4)

3

4

2

1

5

3

15

10 57

↦

• Complexity: still O(depth)
• Issue: repeatedly inserting bigger and bigger elements can unbalance a tree

Try inserting 1, 2, 3, . . . to Leaf(0)

20



Insert an element void add(int e)

2

1

5

15

10 57

insert(4)

3

4

2

1

5

3

15

10 57

↦

• Complexity: still O(depth)
• Issue: repeatedly inserting bigger and bigger elements can unbalance a tree

Try inserting 1, 2, 3, . . . to Leaf(0)

20



Solutions (not covered in-depth here)

• Either try to do some probabilistic analysis and try to prove things are not that
bad on average for a given use-case . . .

• . . . or use fancier invariants to have classes of trees with depth = O(log(size))
• Paradigmatic examples: red-black trees and AVLs

• Involved “repair” procedures to maintain the invariants after an
insertion/deletion running in O(depth)

• Something like this is implemented for TreeSet 21



So now, you should be able to tell why this table is like this

Op \Data Array List ArrayList TreeSet
Set(T) O(1) O(1) O(1) O(1)
remove O(n) O(n) O(n) O(log(n))
contains O(n) O(n) O(n) O(log(n))

add O(n) O(1) O(n)
O(1) amortized

O(log(n))

union O(n+m) O(1) O(n+m)

O(m) amortized
O(m log(n))

22



Priority queues, heaps and heapsort



Quick note

Motivation
Implement a priority queue with O(log(n)) operations
+ → a new in-place sorting algorithm in O(n log(n))

The two operations supported by a priority queue

void enqueue(T e, int priority);
T dequeue();

This material is explained in some details in last week’s lab!

• The last task was marked as challenge because it’s about trees and we had not
covered that last week

• But now you should try to do it!

23



What’s a heap?

Definition
A min-heap is a binary tree such that

• The label of every node is smaller than its children’s
• All of its levels are full, except possibly the last
• The last level is completely filled left-to-right

51 88 3

1

10 2

(for priority queues: numbers are priorities + extra label type T in nodes)

24



Examples/counter-examples

51 88 3 4

1

10 2

↑ valid heap

51 88

1

10 2

↑ valid heap

51 3 4

1

10 2

↑ not a heap (unbalanced)

51 88

1

99 2

↑ not a heap (99 > 88) 25



Inserting a new element and repairing in O(log(n))

1

3 4

2

99 88

51

7

10

88

1

11 9

2

99 88

51

10

7

88

1

11 9

8

99 88

51

10

88

7

1

11 9

8

99 88

51

10

88

add 7

bubble 7 up

bubble 7 up

valid heap 26



Deleting the root and repairing in O(log(n))

1

5

77 66

8

9 77 66

8

9

5

77

8

9

5

66

77

8

5

9

66

5

77 66

8

9

77

8

5

66

9

delete root bubble down

bubble down

restore completeness bubble up

↑ valid heap

27



Representing trees as arrays

While the shape of a tree is good ot keep in mind, when they are of bounded arity
and close to complete, it might be better to represent them as arrays

51 3

1

10

88

2 1 10 2 51 3 88null

• Fast access due to O(1) lookup in arrays
• Downsides: potentially wasting memory and bounding a priori arities

(absent nodes = cells filled with null)

For heaps: that’s a good representation!

28



Heap sort

The algorithm

• start with an empty heap
• insert all the elements in the collection you want sorted∑n

i=1 K log(i) + K′ = O(n log(n))

• insert the value of the root at the back of your output and delete the root∑n
i=1 K′′ log(i) + K′′′ = O(n log(n))

• Optimal asymptotic complexity for a comparison-based sort!
• Can be done in-place in an array wiht minor adjustement

O(n) space complexity

29



Heap sort

The algorithm

• start with an empty heap
• insert all the elements in the collection you want sorted∑n

i=1 K log(i) + K′ = O(n log(n))

• insert the value of the root at the back of your output and delete the root∑n
i=1 K′′ log(i) + K′′′ = O(n log(n))

• Optimal asymptotic complexity for a comparison-based sort!
• Can be done in-place in an array wiht minor adjustement

O(n) space complexity

29



Quick recap on sorting algorithm over arrays (1/2)

Bubble sort

• O(n2)

• In-place

Quick sort

• O(n2), O(n log(n)) on average with randomized pivot
• Easily done in-place for arrays
• O(n log(n)) with a smart pivot, but this breaks the in-place aspect of the algo.

30



Quick recap on sorting algorithm over arrays (1/2)

Merge sort

• O(n log(n)), good for parallelization
• Not in-place for arrays
• A stable sort (does not disturb elements that are “equal”)

Heap sort

• O(n log(n))
• In-place!

CountSort

• Not a comparison-based sort, can run in linear time if working with numbers
in a restricted range.

31



That’s all for today

See you in the lab to practice working with trees!

Next time we will introduces graphs.

0

32


	Motivations
	Generalities
	Binary search trees
	Priority queues, heaps and heapsort

