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What is recursion?

In general/informally

Self-referential notions

Some example/related concepts:

• Recursive definitions/characterizations F0 = 0 F1 = 1 Fn+2 = Fn+1 + Fn
(ancestor of x) = (parent) or (parent of some ancestor of x)

• Fractals
• …

(credit: wikipedia users)
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Where is recursion in programming?

More specifically, in Java? (applicable to most procedural/functional programming languages)

In function definitions:

static int fibo(int n)
{
if (n <= 1)
return n;

else
return fibo(n-2) + fibo(n-1);

}

In class definitions:

class LinkedList<T>
{

T head;
LinkedList<T> tail;

}
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Plan for today

Today: only recursive functions
(recursive type definitions will be introduced in later lecture on datastructures)

1. Recursive functions in Java (through examples)

• How do they run?
• Comparison with looping constructs (for, while)
• Scopes of variable, mutual recursion

2. When it can useful (NB: not exhaustive!)

• Use: recursion vs iteration?
• Concrete use-cases in problem solving

3. Estimating the complexity of (some) recursive functions
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Recursive functions in Java



A simple example

static int f(int n)
{

if (n%2 != 0 || n == 0)
return n;

else
return f(n/2);

}

Output of f(12): 3

f(12)

function calls

returnsf(6)

f(3)
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if (n%2 != 0 || n == 0)
return n;

else
return f(n/2);

}

Output of f(12): 3

f(12)

function calls

returnsf(6)

f(3)

Termination: the absolute value n decreases across calls.
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A more involved example

static void gray(int n)
{

if (n < 0)
return;

gray(n-1);
System.out.printf("%d ",n);
gray(n-1);

}

How is, say, gray(2) executed?
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A more involved example

static void gray(int n)
{

if (n < 0)
return;

gray(n-1);
System.out.printf("%d ",n);
gray(n-1);

}

Output: 0 1 0 2 0 1 0

gray(2)

gray(1)

gray(0) gray(0)

gray(−1) gray(−1) gray(−1) gray(−1)

gray(1)

gray(0) gray(0)

gray(−1) gray(−1) gray(−1) gray(−1)

function calls

returns

How is, say, gray(2) executed?
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Infinite recursion (1/2)

int bad()
{

return bad()+1;
}

• Will most likely lead to a “stack
overflow” error
(low-level: a stack structure is typically used at the
CPU level to model a path in the call tree)

bad()

function calls

returnsbad()

bad()
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Infinite recursion (2/2)

static int advertise(char* product)
{

Scanner sc = new Scanner(System.in);
System.out.printf("\n Buy %s!\n", product);
if (sc.nextByte() == 'y')

return 0;
else

return advertise(product);
}

... advertise("data") ...

do {
Scanner sc = new Scanner(System.in);
System.out.printf("\n Buy data!\n");

} while (sc.NextByte() != 'y');

advertise("trinket") function calls

returns

advertise("trinket")

advertise("trinket")
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Recursion vs iteration

Use-cases of recursion: similar to those of iteration constructs for and while

int facto_rec(int n)
{

if (n == 0)
return 1;

else
return n * facto_rec(n-1);

}

static int facto_iter(int n)
{

int r = 1;
for (; n != 0; n--)

r *= n;
return r;

}

In theory, one can always pick one or the other without loss of generality.

Comments

• Mutable variables: required for meaningful iterations, not necessarily for recursion
(⇝ sometimes easier to reason about recursive functions)

• Hard to translate recursive functions into iterative ones (easier the other way around)
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Scoping of variables

Variables are local to one callsite of the function
To maintain state across calls, use static or global variables

static void f()
{

int i = 2;
i--;
if(i > 0)
f();

}

static void f1()
{

int i1 = 2;
i1--;
if(i1 > 0)
f();

}

//f,f1: same behaviour
//no guarantee of termination

static void g()
{

static int i = 2;
i--;
if(i > 0)

g();
}
//i is initialized once in the
//whole program
//g always terminate
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Mutual recursion

One can introduce a system of mutually recursive functions

static int halve_l(int);

static int halve(int n)
{

if (n == 0)
return 0;

else
return 1 + halve_l(n-1);

}

static int halve_l(int n)
{

if (n == 0)
return 0;

else
return halve(n-1);

}

halve(3)

function calls

returns

halve(1)

halve l(1)

halve l(0)
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Using recursive functions



High-level considerations

Why use recursive functions over iterations?

Cons:

• Arguably less idomiatic in procedural languages like Java
• Harder to compile away function calls (so maybe less intuitive at first)
• Performances losses (minor)

Pros:

• Meaningful procedures w/o mutable variables In previous slides: where you can put finals?

⇝ Easier to reason about Can be thought of mathematical functions w/o side effects

• Allow to express easily more complicated control flow Think of gray
Also, later, for traversing complex datastructure

Morality
Focus on writing correct code…

…so don’t hesitate to use recursive functions when it helps
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Our first problem to be solved by recursion

Problem
If I give you n undistinguishable socks, how many ways Pn do you have to group them
pairwise?

For n = 3?

P3 = 0 n = 4?

1 3

2 4

1 3

2 4

{{1, 2}, {3, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

→ P4 = 3

15



Our first problem to be solved by recursion

Problem
If I give you n undistinguishable socks, how many ways Pn do you have to group them
pairwise?

For n = 3? P3 = 0

n = 4?

1 3

2 4

1 3

2 4

{{1, 2}, {3, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

→ P4 = 3

15



Our first problem to be solved by recursion

Problem
If I give you n undistinguishable socks, how many ways Pn do you have to group them
pairwise?

For n = 3? P3 = 0 n = 4?

1 3

2 4

1 3

2 4

{{1, 2}, {3, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

→ P4 = 3

15



Our first problem to be solved by recursion

Problem
If I give you n undistinguishable socks, how many ways Pn do you have to group them
pairwise?

For n = 3? P3 = 0 n = 4?

1 3

2 4

1 3

2 4

{{1, 2}, {3, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

→ P4 = 3

15



Our first problem to be solved by recursion

Problem
If I give you n undistinguishable socks, how many ways Pn do you have to group them
pairwise?

For n = 3? P3 = 0 n = 4?

1 3

2 4

1 3

2 4

{{1, 2}, {3, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

→ P4 = 3

15



Our first problem to be solved by recursion

Problem
If I give you n undistinguishable socks, how many ways Pn do you have to group them
pairwise?

For n = 3? P3 = 0 n = 4?

1 3

2 4

1 3

2 4

{{1, 2}, {3, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

→ P4 = 3

15



Our first problem to be solved by recursion

Problem
If I give you n undistinguishable socks, how many ways Pn do you have to group them
pairwise?

For n = 3? P3 = 0 n = 4?

1 3

2 4

1 3

2 4

{{1, 2}, {3, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}}

1 3

2 4

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

→ P4 = 3
15



Thinking this through with recursion

• Do we have an easy solution for inputs of size 0/small sizes?
• Can we obtain a solution for size n if I know the solutions for k < n?

• There is a single way of pairing 0 socks together and no way of pairing a single sock
with no socks.

• If I want to pair n socks {1, . . . n}
• I must necessarily pair n with another sock k ∈ {1, . . . , n− 1}

→ n− 1 ways of picking such a sock
• Then I can pair the remaining n− 2 socks in {1, . . . , n− 1} − {k} arbitrarily

→ Pn−2 ways of doing that

Putting everything together

P0 = 1 P1 = 0 Pn+2 = (n+ 1)× Pn
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In code

Easy to translate directly:

static int numberPairings(int n)
{
switch(n)
{

case 0: return 1;
case 1: return 0;
default: return (n-1) * numberPairings(n-2);

}
}

Complexity
cn+2 = O(1) + cn c0 = O(1) c1 = O(1)

So here cn = O(n) (exponential complexity (the size of n is O(log2(n))))
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Computing the complexity of simple recursive functions

Typically, if we use recursion to reduce an input of size n to size n− 1, we have a
complexity satifying

un+1 = a× un + b for a, b, u0 ≥ 1

General recipe

• un = Θ(an) if a > 1
• un = Θ(n) if a = 1

Proof for a = 1
Assume m ≤ a, b, u0 ≤ M.
By induction, mn ≤ un ≤ M(n+ 1).

Proof for a > 1
By induction anm ≤ un ≤ Man+1

Maths exercise: exact solutions (Hint for a ̸= 1: compute first un − ℓ for ℓ = aℓ+ b)
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Extended example: binomial (1/4)

Problem
Compute the number of ways

(n
k
)
to pick k elements among n.

,{ }(
4
2

)
= # , , , ,

(
n
k

)
= #{X ⊆ {1, . . . , n} | #X = k} =

n!
k!(n− k)!

Issue with the closed formula: n! overflows fast while
(k
n
)
is polynomial if k = O(1).

Alternative way of computing?
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Extended example: binomial (2/4)

Decomposition by fixing an element and asking whether it is picked or not.

,{

}

(
4
2

)
=

# ,

, ,

}

{#
+

,{

}
=

# ,

, ,

}

{#
+

=
(
3
1

)
+
(
3
2

)

(
n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1
k

)
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Extended example: binomial (3/4)

int binom(int k, int n)
{

if (k > n)
return 0;

if (k == 0 )
return 1;

else
return binom(k-1,n-1) + binom(k,n-1);

}

Proof of termination: by induction over n.
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Complexity

uk,n = O(1) when k > n or k = 0

uk+1,n+1 = uk,n + uk+1,n +O(1) ≤ 2uk+1,n +O(1)

So un,k = O(2n−k).

(keeping in mind that the size of an integer n is log(n), this is double exponential
complexity!)
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Extended example: binomial (3/5)

Issue: exponential number of calls (inefficient)

binom(2, 4)

binom(2, 3)

binom(2, 2) binom(1, 2)

binom(2, 1)binom(1, 1) binom(1, 1) binom(0, 1)

binom(1, 3)

binom(1, 2) binom(0, 2)

binom(1, 1)binom(0, 1)

function calls

returns

...
...

...
...

...

But there are redundant calls! Two ways of adressing this:

• Caching the common subcomputation a.k.a. (dynamic programming or memoization)

• Translating to an iterative program
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Extended example: binomial (4/5)

• Assume N and K are sufficiently large for our needs.
Otherwise: bureaucratic memory management with ArrayList

final int N = 100;
final int K = 20;

final int[][] cache = new Array[K][N];
//assume that main() initializes cache with -1

static int binom(int k, int n)
{

if (cache[k][n] != -1)
return cache[k][n];

if (k > n)
return cache[k][n] = 0;

if (k == 0)
return cache[k][n] = 1;

else
return cache[k][n] = binom(k-1,n-1) + binom(k,n-1);

}

Complexity? Hint: bound the number of recursive calls O(k× n)
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Extended example: binomial (5/5)

final int N = 100;
final int K = 20;

int binom[K][N];
binom[0][0] = 1;
for(int n = 1; n < N; n++)
{
binom[0][n] = 1;
for(int k = 1; k <= min(n,K); k++)

binom[k][n] = binom[k][n-1] + binom[k-1][n-1];
}

• The proof of correctness is slightly more subtle
Need to reason about the mutable values of binom[k][n]

• The recursive variant is easier to write and an acceptable naive first implementation!
• Fill all the values upfront

(the other method is better for incremental computation)

Complexity? O(K×N)
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binom[k][n] = binom[k][n-1] + binom[k-1][n-1];
}

• The proof of correctness is slightly more subtle
Need to reason about the mutable values of binom[k][n]

• The recursive variant is easier to write and an acceptable naive first implementation!
• Fill all the values upfront

(the other method is better for incremental computation)

Complexity?

O(K×N)
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Exercise from last week to revisit

/* Assumptions: arr contains an increasing
sequence of values
arr[mi] <= 0 and arr[ma] >=0*/

static int dicho_rec(int[] arr, int mi, int ma)
{

if (ma <= mi)
return mi;

final int mid = (ma+mi)/2;
if (arr[mid] <= 0)

return dicho_rec(arr,mid,ma);
else

return dicho_rec(arr,mi,mid);
}

static int dicho_iter(int[] arr, int mi, int ma)
{

while (ma > mi)
{

int mid = (ma+mi)/2;
if (arr[mid] <= 0)

mi = mid;
else

ma = mid;
}
return mi;

}
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In a nutshell

Recursion

• Seemingly circular definitions, but productive because you define a task in terms of
smaller tasks

• Can seamlessly be used in most programming languages
• Might be harder to trace executions but…
• …very intuitive abstraction for seemingly stateless computations and problem-solving
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Next

• Two other paradigmatic case of recursion
• greedy algorithms
• divide-and-conquer

• One class of motivating examples: sorting algorithms
• A bit more of dynamic programming/memoization
• (strike this week Tuesday-Thursday ⇒ I won’t be available)

Important
No systematic way of coming up with efficient algorithms

→ Practice is key!

Thank you for your attention! Questions?
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