
CSCM12: software concepts and efficiency
Some algorithmic design paradigms, sorting algorithms

Cécilia PRADIC
Swansea University, 06/20/2023

1

Today

I will touch on many topics in this lecture

Goals

• Introduce divide-and-conquer algorithms
• Mention two other techniques that may be useful: dynamic programming

(recalled from last week) and greedy algorithms
• Finally, introduce classical sorting algorithms over arrays

• I will refer back & and expand on this material later

2

Divide-and-conquer

High-level concept
A kind of recursive algorithm where the size of the input is shrunk by a factor in
the recursive calls

I

I2I1

▷ Split the problem into k subparts

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

▷ Merge into a solution

for the original instance

7−→ Solution

3

Divide-and-conquer

High-level concept
A kind of recursive algorithm where the size of the input is shrunk by a factor in
the recursive calls

I

I2I1

▷ Split the problem into k subparts

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

▷ Merge into a solution

for the original instance

7−→ Solution

3

Divide-and-conquer

High-level concept
A kind of recursive algorithm where the size of the input is shrunk by a factor in
the recursive calls

I

I2I1

▷ Split the problem into k subparts

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

▷ Merge into a solution

for the original instance

7−→ Solution

3

Divide-and-conquer

High-level concept
A kind of recursive algorithm where the size of the input is shrunk by a factor in
the recursive calls

I

I2I1

▷ Split the problem into k subparts

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

I2I1

▷ Split the problem into k subparts

▷ Solve recursively

⇓ ⇓
Solution1 Solution2

I

▷ Merge into a solution

for the original instance

7−→ Solution

3

Example: dichotomy search

Scenario: imagine you are looking up a word in the dictionary

• Do you look-up each word sequentially?
• No: start in the middle, and then…

We have already seen this!

4

Example: dichotomy search

Scenario: imagine you are looking up a word in the dictionary

• Do you look-up each word sequentially?

• No: start in the middle, and then…

We have already seen this!

4

Example: dichotomy search

Scenario: imagine you are looking up a word in the dictionary

• Do you look-up each word sequentially?
• No: start in the middle, and then…

We have already seen this!

4

Example: dichotomy search

Scenario: imagine you are looking up a word in the dictionary

• Do you look-up each word sequentially?
• No: start in the middle, and then…

We have already seen this!

4

Example: dichotomy search

/* Assumptions: arr contains an increasing
sequence of values
arr[mi] <= 0 and arr[ma] >=0*/

static int dicho_rec(int[] arr, int mi, int ma)
{

if (ma <= mi)
return mi;

final int mid = (ma+mi)/2;
if (arr[mid] <= 0)
return dicho_rec(arr,mid,ma);

else
return dicho_rec(arr,mi,mid);

}

• A good size metric: ma-mi
• Size divided by two at each call! 5

Another example: exponentiation

static double naivePow(double a, int n)
{
if(n == 0)
return 1;

else if(n < 0)
return 1/naivePow(a,-n);

else
return a * naivePow(a, n - 1);

}

Complexity: O(n)

Can we do better?

6

Another problem

Problem

Input: An array A of size n
Output: An element x of A occuring more than n

2 times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element → O(n)
• Do it for every element of the array → O(n2)

7

Another problem

Problem

Input: An array A of size n
Output: An element x of A occuring more than n

2 times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element → O(n)

• Do it for every element of the array → O(n2)

7

Another problem

Problem

Input: An array A of size n
Output: An element x of A occuring more than n

2 times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element → O(n)
• Do it for every element of the array

→ O(n2)

7

Another problem

Problem

Input: An array A of size n
Output: An element x of A occuring more than n

2 times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element → O(n)
• Do it for every element of the array → O(n2)

7

Complexity of divide-and-conquer algorithms

Generic advantages of divide-and-conquer:

• Relatively easy to come up with
• Typically good time complexity
• Easy to parallelize

⇝ How to compute their time complexity?
The typical equation

T(n) = aT
(n
b
)
+ f(n)

for some a, b > 0 and f : N → N

Previous examples:

• a = 1, b = 2, f = O(1)
• a = 2, b = 2, f = O(n)

8

Complexity of divide-and-conquer algorithms

Generic advantages of divide-and-conquer:

• Relatively easy to come up with
• Typically good time complexity
• Easy to parallelize

⇝ How to compute their time complexity?

The typical equation

T(n) = aT
(n
b
)
+ f(n)

for some a, b > 0 and f : N → N

Previous examples:

• a = 1, b = 2, f = O(1)
• a = 2, b = 2, f = O(n)

8

Complexity of divide-and-conquer algorithms

Generic advantages of divide-and-conquer:

• Relatively easy to come up with
• Typically good time complexity
• Easy to parallelize

⇝ How to compute their time complexity?
The typical equation

T(n) = aT
(n
b
)
+ f(n)

for some a, b > 0 and f : N → N

Previous examples:

• a = 1, b = 2, f = O(1)
• a = 2, b = 2, f = O(n)

8

Complexity of divide-and-conquer algorithms

Generic advantages of divide-and-conquer:

• Relatively easy to come up with
• Typically good time complexity
• Easy to parallelize

⇝ How to compute their time complexity?
The typical equation

T(n) = aT
(n
b
)
+ f(n)

for some a, b > 0 and f : N → N

Previous examples:

• a = 1, b = 2, f = O(1)
• a = 2, b = 2, f = O(n)

8

Quick technicalities

(feel free to ignore on first reading)

• Complexity functions are function N → N
• Not a huge deal:

• As long as the domain is a superset of N (or an suffix thereof)
• as long as the function is assumed to dominate/be dominated by the real

complexity function
• another possible hack/reduction

The more precise typical equation

T(n) = a′T
(⌈n

b
⌉)

+ a′′T
(⌊n

b
⌋)

+ f(n)

with a = a′ + a′′ typically yield the same asymptotic result up to Θ

→ it’s okay if you are a bit sloppy with rounding at first blush (or only consider
inputs whose sizes are powers of b)

9

Quick technicalities

(feel free to ignore on first reading)

• Complexity functions are function N → N
• Not a huge deal:

• As long as the domain is a superset of N (or an suffix thereof)
• as long as the function is assumed to dominate/be dominated by the real

complexity function
• another possible hack/reduction

The more precise typical equation

T(n) = a′T
(⌈n

b
⌉)

+ a′′T
(⌊n

b
⌋)

+ f(n)

with a = a′ + a′′ typically yield the same asymptotic result up to Θ

→ it’s okay if you are a bit sloppy with rounding at first blush (or only consider
inputs whose sizes are powers of b)

9

A tool to solve many of these recurrences

• Useful to solve many of these (but not all)

• A bit of a bore to remember…

Master theorem
Assume that T(n) = aT

(n
b
)
+ f(n)

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,
▷ then T(n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)k

)
for some k ≥ 0,

▷ then T(n) = Θ
(
nlogb(a) log(n)k+1)

3. If f(n) = Ω
(
nlogb(a)+ε

)
for some ε > 0,

and there is c < 1 such that af
(n
b
)
≤ cf(n),

▷ then T(n) = Θ(f(n))

10

Intuitions for the master theorem

Master theorem (T(n) = aT
(n
b
)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,
▷ then T(n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)k

)
for some k ≥ 0,

▷ then T(n) = Θ
(
nlogb(a) log(n)k+1)

3. If f(n) = Ω
(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(n
b
)
≤ cf(n),

▷ then T(n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the
way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:
(
log(n))

• Majority: a = 2 = b, f = O(n) → 2. →O(n log(n))

11

Intuitions for the master theorem

Master theorem (T(n) = aT
(n
b
)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,
▷ then T(n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)k

)
for some k ≥ 0,

▷ then T(n) = Θ
(
nlogb(a) log(n)k+1)

3. If f(n) = Ω
(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(n
b
)
≤ cf(n),

▷ then T(n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the
way the recursive calls handled?
Our examples

• Dichotomy/fast exponentiation:

a = 1, b = 2, f = O(1) Not covered:
(
log(n))

• Majority: a = 2 = b, f = O(n) → 2. →O(n log(n))

11

Intuitions for the master theorem

Master theorem (T(n) = aT
(n
b
)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,
▷ then T(n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)k

)
for some k ≥ 0,

▷ then T(n) = Θ
(
nlogb(a) log(n)k+1)

3. If f(n) = Ω
(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(n
b
)
≤ cf(n),

▷ then T(n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the
way the recursive calls handled?
Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1)

Not covered:
(
log(n))

• Majority: a = 2 = b, f = O(n) → 2. →O(n log(n))

11

Intuitions for the master theorem

Master theorem (T(n) = aT
(n
b
)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,
▷ then T(n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)k

)
for some k ≥ 0,

▷ then T(n) = Θ
(
nlogb(a) log(n)k+1)

3. If f(n) = Ω
(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(n
b
)
≤ cf(n),

▷ then T(n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the
way the recursive calls handled?
Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:
(
log(n))

• Majority: a = 2 = b, f = O(n) → 2. →O(n log(n))

11

Intuitions for the master theorem

Master theorem (T(n) = aT
(n
b
)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,
▷ then T(n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)k

)
for some k ≥ 0,

▷ then T(n) = Θ
(
nlogb(a) log(n)k+1)

3. If f(n) = Ω
(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(n
b
)
≤ cf(n),

▷ then T(n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the
way the recursive calls handled?
Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:
(
log(n))

• Majority:

a = 2 = b, f = O(n) → 2. →O(n log(n))

11

Intuitions for the master theorem

Master theorem (T(n) = aT
(n
b
)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,
▷ then T(n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)k

)
for some k ≥ 0,

▷ then T(n) = Θ
(
nlogb(a) log(n)k+1)

3. If f(n) = Ω
(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(n
b
)
≤ cf(n),

▷ then T(n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the
way the recursive calls handled?
Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:
(
log(n))

• Majority: a = 2 = b, f = O(n)

→ 2. →O(n log(n))

11

Intuitions for the master theorem

Master theorem (T(n) = aT
(n
b
)
+ f(n))

1. If f(n) = O(nlogb(a)−ε) for some ε > 0,
▷ then T(n) = Θ(nlogb(a))

2. If f(n) = Θ
(
nlogb(a) log(n)k

)
for some k ≥ 0,

▷ then T(n) = Θ
(
nlogb(a) log(n)k+1)

3. If f(n) = Ω
(
nlogb(a)+ε

)
for some ε > 0, ∃c < 1. af

(n
b
)
≤ cf(n),

▷ then T(n) = Θ(f(n))

Rough idea: does the pre/post-processing time f(n) drive the complexity or the
way the recursive calls handled?
Our examples

• Dichotomy/fast exponentiation: a = 1, b = 2, f = O(1) Not covered:
(
log(n))

• Majority: a = 2 = b, f = O(n) → 2. →O(n log(n))
11

Other paradigms

We have seen a few high-level ideas to develop efficient algorithms:

• try to generalize intuitive already available solutions you’d naturally execute
on some examples

• think recursively: reduce solving an instance of size n to an instance of size
n− k

• divide and conquer: reduce solving an instance of size n to solving instances
of size n

k

• dynamic programming: cache common subcomputation across recursive
calls

Maybe one more today: greedy algorithms

12

Other paradigms

We have seen a few high-level ideas to develop efficient algorithms:

• try to generalize intuitive already available solutions you’d naturally execute
on some examples

• think recursively: reduce solving an instance of size n to an instance of size
n− k

• divide and conquer: reduce solving an instance of size n to solving instances
of size n

k

• dynamic programming: cache common subcomputation across recursive
calls

Maybe one more today: greedy algorithms

12

A motivating example: the change problem

Problem

Input: Coin values c0, . . . , cn and an amount x
Output: A number of coins of each type a0, . . . , ak such that

∑
i aici = x

13

High-level considerations

• For these kind of optimization problems, dynamic programming typically
gives optimal solutions in the most reasonable times

• But in many situations, a simple greedy algorithm might give optimal
solutions!

Optimized change problem

Input: Coin values c0, . . . , cn and an amount x
Output: A number of coins of each type a0, . . . , ak such that

∑
i aici = x and∑

i ai minimal amongs all possible solutions

Greedy algo: optimal if 2ci ≤ ci + 1 for all i < n!

14

High-level considerations

• For these kind of optimization problems, dynamic programming typically
gives optimal solutions in the most reasonable times

• But in many situations, a simple greedy algorithm might give optimal
solutions!

Optimized change problem

Input: Coin values c0, . . . , cn and an amount x
Output: A number of coins of each type a0, . . . , ak such that

∑
i aici = x and∑

i ai minimal amongs all possible solutions

Greedy algo: optimal if 2ci ≤ ci + 1 for all i < n!

14

High-level considerations

• For these kind of optimization problems, dynamic programming typically
gives optimal solutions in the most reasonable times

• But in many situations, a simple greedy algorithm might give optimal
solutions!

Optimized change problem

Input: Coin values c0, . . . , cn and an amount x
Output: A number of coins of each type a0, . . . , ak such that

∑
i aici = x and∑

i ai minimal amongs all possible solutions

Greedy algo: optimal if 2ci ≤ ci + 1 for all i < n!

14

Sorting algorithms

The problem

The sorting problem

Input: An array of integers of size n
Output: A sorted array containing the same elements

• For now, only arrays
• Later, fancier datastructures but essentially same asymptotic time
• Motivation: very classical problem and solutions, good case studies

Last lab: bubble sort presented recursively! O(n2)

15

The problem

The sorting problem

Input: An array of integers of size n
Output: A sorted array containing the same elements

• For now, only arrays
• Later, fancier datastructures but essentially same asymptotic time
• Motivation: very classical problem and solutions, good case studies

Last lab: bubble sort presented recursively! O(n2)

15

The problem

The sorting problem

Input: An array of integers of size n
Output: A sorted array containing the same elements

• For now, only arrays
• Later, fancier datastructures but essentially same asymptotic time
• Motivation: very classical problem and solutions, good case studies

Last lab: bubble sort presented recursively! O(n2)

15

Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x
Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

16

Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x
Output: A sorted array containing the same elements as A plus x

Can you write that?

What complexity? O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

16

Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x
Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity?

O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

16

Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x
Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

16

Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x
Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm?

What complexity? O(n2)

16

Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x
Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm? What complexity?

O(n2)

16

Insertion sort

Subproblem

Input: A sorted array of integers A of size n and element x
Output: A sorted array containing the same elements as A plus x

Can you write that? What complexity? O(n)

Can you deduce a sorting algorithm? What complexity? O(n2)

16

Merge sort

Can you think of a divide-and-conquer approach?

Idea

• Split the array into two equal pieces
• Sort the two pieces recursively
• Merge the two pieces back together

17

Merge sort

Can you think of a divide-and-conquer approach?

Idea

• Split the array into two equal pieces
• Sort the two pieces recursively
• Merge the two pieces back together

17

Merging two arrays

Subproblem

Input: Two sorted arrays of integers A and B
Output: A sorted array containing the same elements as A plus B

Complexity? O(n)

18

Merging two arrays

Subproblem

Input: Two sorted arrays of integers A and B
Output: A sorted array containing the same elements as A plus B

Complexity?

O(n)

18

Merging two arrays

Subproblem

Input: Two sorted arrays of integers A and B
Output: A sorted array containing the same elements as A plus B

Complexity? O(n)

18

Merge sort’s complexity

• Splitting the arrays: O(n) naively,O(1)with some mild alteration to the inputs
(use arrays + sorted ranges as inputs rather than arrays and work in-place)

• Merging things together: O(n)

Complexity?

→ Master theorem → O(n log(n))

19

Merge sort’s complexity

• Splitting the arrays: O(n) naively,O(1)with some mild alteration to the inputs
(use arrays + sorted ranges as inputs rather than arrays and work in-place)

• Merging things together: O(n)

Complexity? → Master theorem →

O(n log(n))

19

Merge sort’s complexity

• Splitting the arrays: O(n) naively,O(1)with some mild alteration to the inputs
(use arrays + sorted ranges as inputs rather than arrays and work in-place)

• Merging things together: O(n)

Complexity? → Master theorem → O(n log(n))

19

Quick sort

Idea: instead of making the splitting trivial, make the merging trivial

• Pick an element, the pivot
• Write two subarrays of elements: those smaller than the pivot, and those

larger
• Sort recursively and concatenate the results

20

Quick sort’s complexity

• Worst case: O(n2) for a bad choice of pivot
• Best case: O(n log(n)) for a good choice (the median) (or if lucky)

(A median can be picked in linear time actually)
(but a lot of implementations don’t bother)

(it’s a fancy divide-and-conquer algo)

• Average case: O(n log(n))

21

Actually O(n log(n)) is optimal

22

But is it? (sorting by counting)

23

Advanced considerations: sorting in-place, stable sorts, parallelism

24

Reading suggestions

• The background reading here⇝ go more in-depth with the material
(you don’t need to read all of that immediately)

Algorithms in Java (3rd ed., 2004) by Sedgewick
Relevant chapters: 6,7,8 and 10
Explain and study sorting algorithms in details

Introduction to Algorithms (4th ed., 2011) by Cormen et. al
Relevant chapters: 4,7,8,14,15
More focus on paradigms

25

What now?

• Practice! Both coming up with algorithms and implementation
• You’ve had roughly a quick overview of the main points an undergrad first

algorithmics module would cover
• The first CW will be over this material.
• Next up: datastuctures!

• Algorithms for and with datastructures!

OK, time for questions?

26

What now?

• Practice! Both coming up with algorithms and implementation
• You’ve had roughly a quick overview of the main points an undergrad first

algorithmics module would cover
• The first CW will be over this material.
• Next up: datastuctures!

• Algorithms for and with datastructures!

OK, time for questions?

26

	Sorting algorithms

