CSCM12: software concepts and efficiency Some algorithmic design paradigms, sorting algorithms

Cécilia PRADIC

Swansea University, 06/20/2023

I will touch on many topics in this lecture

Goals

- Introduce divide-and-conquer algorithms
- Mention two other techniques that may be useful: dynamic programming (recalled from last week) and greedy algorithms
- Finally, introduce classical sorting algorithms over arrays
- I will refer back & and expand on this material later

High-level concept

A kind of recursive algorithm where the size of the input is shrunk by a factor in the recursive calls

High-level concept

A kind of recursive algorithm where the size of the input is shrunk by a factor in the recursive calls $\frac{1}{\frac{1}{2}}$ and $\frac{1}{2}$ is shrunk by a factor in $\frac{1}{2}$ into k subparts

High-level concept

A kind of recursive algorithm where the size of the input is shrunk by a factor in the recursive calls

High-level concept

A kind of recursive algorithm where the size of the input is shrunk by a factor in the recursive calls

• Do you look-up each word sequentially?

- Do you look-up each word sequentially?
- No: start in the middle, and then...

- Do you look-up each word sequentially?
- No: start in the middle, and then...

We have already seen this!

```
/* Assumptions: arr contains an increasing
                  sequence of values
                  arr[\text{mi}] \leq 0 and arr[\text{maj} \geq 0 \times 1]static int dicho_rec(int[] arr, int mi, int ma)
{
   if (ma \leq mi)
      return mi;
   final int mid = (ma+mi)/2;
   if (\arctan 1 \leq 0)
     return dicho_rec(arr,mid,ma);
   else
     return dicho_rec(arr,mi,mid);
}
```
- A good size metric: ma-mi
- Size divided by two at each call! 5

Another example: exponentiation

```
static double naivePow(double a, int n)
  {
    if(n == 0)return 1;
    else if(n < 0)return 1/naivePow(a,-n);
    else
      return a * naivePow(a, n - 1);
  }
Complexity: O(n)
```
Can we do better?

Input: An array *A* of size *n* **Output:** An element *x* of *A* occuring more than $\frac{n}{2}$ times

A naive solution? A divide-and-conquer solution?

Input: An array *A* of size *n* **Output:** An element *x* of *A* occuring more than $\frac{n}{2}$ times

A naive solution? A divide-and-conquer solution?

Naive solution

• Count the number of occurence of an element $\rightarrow \mathcal{O}(n)$

Input: An array *A* of size *n* **Output:** An element *x* of *A* occuring more than $\frac{n}{2}$ times

A naive solution? A divide-and-conquer solution?

Naive solution

- Count the number of occurence of an element $\rightarrow \mathcal{O}(n)$
- Do it for every element of the array

Input: An array *A* of size *n* **Output:** An element *x* of *A* occuring more than $\frac{n}{2}$ times

A naive solution? A divide-and-conquer solution?

Naive solution

- Count the number of occurence of an element $\rightarrow \mathcal{O}(n)$
- Do it for every element of the array $\rightarrow \mathcal{O}(n^2)$

Generic advantages of divide-and-conquer:

- Relatively easy to come up with
- Typically good time complexity
- Easy to parallelize

Generic advantages of divide-and-conquer:

- Relatively easy to come up with
- Typically good time complexity
- Easy to parallelize

 \rightarrow How to compute their time complexity?

Generic advantages of divide-and-conquer:

- Relatively easy to come up with
- Typically good time complexity
- Easy to parallelize

 \rightarrow How to compute their time complexity?

The typical equation

$$
T(n) = aT\left(\frac{n}{b}\right) + f(n)
$$

for some $a, b > 0$ and $f : \mathbb{N} \to \mathbb{N}$

Generic advantages of divide-and-conquer:

- Relatively easy to come up with
- Typically good time complexity
- Easy to parallelize

 \rightarrow How to compute their time complexity?

The typical equation

$$
T(n) = aT\left(\frac{n}{b}\right) + f(n)
$$

for some $a, b > 0$ and $f : \mathbb{N} \to \mathbb{N}$

Previous examples:

- $a = 1, b = 2, f = \mathcal{O}(1)$
- $a = 2, b = 2, f = \mathcal{O}(n)$

Quick technicalities

(feel free to ignore on first reading)

- Complexity functions are function N *→* N
- Not a huge deal:
	- As long as the domain is a superset of $\mathbb N$ (or an suffix thereof)
	- as long as the function is assumed to dominate/be dominated by the real complexity function
	- another possible hack/reduction

The more precise typical equation

$$
T(n) = a'T\left(\left\lceil \frac{n}{b} \right\rceil\right) + a''T\left(\left\lfloor \frac{n}{b} \right\rfloor\right) + f(n)
$$

with $a = a' + a''$ typically yield the same asymptotic result up to Θ

Quick technicalities

(feel free to ignore on first reading)

- Complexity functions are function N *→* N
- Not a huge deal:
	- As long as the domain is a superset of $\mathbb N$ (or an suffix thereof)
	- as long as the function is assumed to dominate/be dominated by the real complexity function
	- another possible hack/reduction

The more precise typical equation

$$
T(n) = a'T\left(\left\lceil \frac{n}{b} \right\rceil\right) + a''T\left(\left\lfloor \frac{n}{b} \right\rfloor\right) + f(n)
$$

with $a = a' + a''$ typically yield the same asymptotic result up to Θ

→ it's okay if you are a bit sloppy with rounding at first blush (or only consider inputs whose sizes are powers of *b*)

A tool to solve many of these recurrences

- Useful to solve many of these (but not all)
- A bit of a bore to remember...

Master theorem

Assume that
$$
T(n) = aT(\frac{n}{b}) + f(n)
$$

\n- 1. If
$$
f(n) = \mathcal{O}(n^{\log_b(a) - \varepsilon})
$$
 for some $\varepsilon > 0$, $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b(a)})$
\n- 2. If $f(n) = \Theta\left(n^{\log_b(a)\log(n)^k}\right)$ for some $k \geq 0$, $\varepsilon > 0$, then $T(n) = \Theta\left(n^{\log_b(a)}\log(n)^{k+1}\right)$
\n- 3. If $f(n) = \Omega\left(n^{\log_b(a) + \varepsilon}\right)$ for some $\varepsilon > 0$, and there is $c < 1$ such that $af\left(\frac{n}{b}\right) \leq cf(n)$, $\varepsilon > 0$, then $T(n) = \Theta(f(n))$
\n

Master theorem $(T(n) = aT\left(\frac{n}{b}\right))$ $\frac{n}{b}$ $+ f(n)$

\n- 1. If
$$
f(n) = \mathcal{O}(n^{\log_b(a) - \varepsilon})
$$
 for some $\varepsilon > 0$, $\varepsilon > 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)})$
\n- 2. If $f(n) = \Theta\left(n^{\log_b(a)\log(n)^k}\right)$ for some $k \geq 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)}\log(n)^{k+1})$
\n- 3. If $f(n) = \Omega\left(n^{\log_b(a) + \varepsilon}\right)$ for some $\varepsilon > 0$, $\exists c < 1$. $af\left(\frac{n}{b}\right) \leq cf(n)$, $\varepsilon > 0$ then $T(n) = \Theta(f(n))$
\n

Rough idea: does the pre/post-processing time *f*(*n*) drive the complexity or the way the recursive calls handled?

Master theorem $(T(n) = aT\left(\frac{n}{b}\right))$ $\frac{n}{b}$ $+ f(n)$

\n- 1. If
$$
f(n) = \mathcal{O}(n^{\log_b(a) - \varepsilon})
$$
 for some $\varepsilon > 0$, $\varepsilon > 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)})$
\n- 2. If $f(n) = \Theta\left(n^{\log_b(a)\log(n)^k}\right)$ for some $k \geq 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)\log(n)^{k+1})}$
\n- 3. If $f(n) = \Omega\left(n^{\log_b(a) + \varepsilon}\right)$ for some $\varepsilon > 0$, $\exists c < 1$. $af\left(\frac{n}{b}\right) \leq cf(n)$, $\varepsilon > 0$ then $T(n) = \Theta(f(n))$
\n

Rough idea: does the pre/post-processing time *f*(*n*) drive the complexity or the way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation:

Master theorem $(T(n) = aT\left(\frac{n}{b}\right))$ $\frac{n}{b}$ $+ f(n)$

\n- 1. If
$$
f(n) = \mathcal{O}(n^{\log_b(a) - \varepsilon})
$$
 for some $\varepsilon > 0$, $\varepsilon > 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)})$
\n- 2. If $f(n) = \Theta\left(n^{\log_b(a)\log(n)^k}\right)$ for some $k \geq 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)\log(n)^{k+1})}$
\n- 3. If $f(n) = \Omega\left(n^{\log_b(a) + \varepsilon}\right)$ for some $\varepsilon > 0$, $\exists c < 1$. $af\left(\frac{n}{b}\right) \leq cf(n)$, $\varepsilon > 0$ then $T(n) = \Theta(f(n))$
\n

Rough idea: does the pre/post-processing time *f*(*n*) drive the complexity or the way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: $a = 1$, $b = 2$, $f = \mathcal{O}(1)$

Master theorem $(T(n) = aT\left(\frac{n}{b}\right))$ $\frac{n}{b}$ $+ f(n)$

\n- 1. If
$$
f(n) = \mathcal{O}(n^{\log_b(a) - \varepsilon})
$$
 for some $\varepsilon > 0$, $\varepsilon > 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)})$
\n- 2. If $f(n) = \Theta\left(n^{\log_b(a)\log(n)^k}\right)$ for some $k \geq 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a) \log(n)^{k+1}})$
\n- 3. If $f(n) = \Omega\left(n^{\log_b(a) + \varepsilon}\right)$ for some $\varepsilon > 0$, $\exists c < 1$. $af\left(\frac{n}{b}\right) \leq cf(n)$, $\varepsilon > 0$ then $T(n) = \Theta(f(n))$
\n

Rough idea: does the pre/post-processing time *f*(*n*) drive the complexity or the way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: $a = 1$, $b = 2$, $f = \mathcal{O}(1)$ Not covered: $(\log(n))$

Master theorem $(T(n) = aT\left(\frac{n}{b}\right))$ $\frac{n}{b}$ $+ f(n)$

\n- 1. If
$$
f(n) = \mathcal{O}(n^{\log_b(a) - \varepsilon})
$$
 for some $\varepsilon > 0$, $\varepsilon > 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)})$
\n- 2. If $f(n) = \Theta\left(n^{\log_b(a)\log(n)^k}\right)$ for some $k \geq 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a) \log(n)^{k+1}})$
\n- 3. If $f(n) = \Omega\left(n^{\log_b(a) + \varepsilon}\right)$ for some $\varepsilon > 0$, $\exists c < 1$. $af\left(\frac{n}{b}\right) \leq cf(n)$, $\varepsilon > 0$ then $T(n) = \Theta(f(n))$
\n

Rough idea: does the pre/post-processing time *f*(*n*) drive the complexity or the way the recursive calls handled?

Our examples

- Dichotomy/fast exponentiation: $a = 1$, $b = 2$, $f = \mathcal{O}(1)$ Not covered: $(\log(n))$
- Majority:

Master theorem $(T(n) = aT\left(\frac{n}{b}\right))$ $\frac{n}{b}$ $+ f(n)$

\n- 1. If
$$
f(n) = \mathcal{O}(n^{\log_b(a) - \varepsilon})
$$
 for some $\varepsilon > 0$, $\varepsilon > 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)})$
\n- 2. If $f(n) = \Theta\left(n^{\log_b(a)\log(n)^k}\right)$ for some $k \geq 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a) \log(n)^{k+1}})$
\n- 3. If $f(n) = \Omega\left(n^{\log_b(a) + \varepsilon}\right)$ for some $\varepsilon > 0$, $\exists c < 1$. $af\left(\frac{n}{b}\right) \leq cf(n)$, $\varepsilon > 0$ then $T(n) = \Theta(f(n))$
\n

Rough idea: does the pre/post-processing time *f*(*n*) drive the complexity or the way the recursive calls handled?

Our examples

• Dichotomy/fast exponentiation: $a = 1$, $b = 2$, $f = \mathcal{O}(1)$ Not covered: $(\log(n))$

• Majority:
$$
a = 2 = b, f = \mathcal{O}(n)
$$

Master theorem $(T(n) = aT\left(\frac{n}{b}\right))$ $\frac{n}{b}$ $+ f(n)$

\n- 1. If
$$
f(n) = \mathcal{O}(n^{\log_b(a) - \varepsilon})
$$
 for some $\varepsilon > 0$, $\varepsilon > 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a)})$
\n- 2. If $f(n) = \Theta\left(n^{\log_b(a)\log(n)^k}\right)$ for some $k \geq 0$, $\varepsilon > 0$ then $T(n) = \Theta(n^{\log_b(a) \log(n)^{k+1}})$
\n- 3. If $f(n) = \Omega(n^{\log_b(a) + \varepsilon})$ for some $\varepsilon > 0$, $\exists c < 1$. $af\left(\frac{n}{b}\right) \leq cf(n)$, $\varepsilon > 0$ then $T(n) = \Theta(f(n))$
\n

Rough idea: does the pre/post-processing time *f*(*n*) drive the complexity or the way the recursive calls handled?

Our examples

- Dichotomy/fast exponentiation: $a = 1$, $b = 2$, $f = \mathcal{O}(1)$ Not covered: $(\log(n))$
- Majority: $a = 2 = b$, $f = \mathcal{O}(n) \rightarrow 2$. $\rightarrow \mathcal{O}(n \log(n))$

We have seen a few high-level ideas to develop efficient algorithms:

- try to generalize intuitive already available solutions you'd naturally execute on some examples
- think **recursively**: reduce solving an instance of size *n* to an instance of size *n − k*
- **divide and conquer**: reduce solving an instance of size *n* to solving instances of size $\frac{n}{k}$
- **dynamic programming**: cache common subcomputation across recursive calls

We have seen a few high-level ideas to develop efficient algorithms:

- try to generalize intuitive already available solutions you'd naturally execute on some examples
- think **recursively**: reduce solving an instance of size *n* to an instance of size *n − k*
- **divide and conquer**: reduce solving an instance of size *n* to solving instances of size $\frac{n}{k}$
- **dynamic programming**: cache common subcomputation across recursive calls

Maybe one more today: **greedy algorithms**

Input: Coin values c_0, \ldots, c_n and an amount *x* **Output:** A number of coins of each type a_0, \ldots, a_k such that $\sum_i a_i c_i = x$

- For these kind of optimization problems, dynamic programming typically gives optimal solutions in the most reasonable times
- But in many situations, a simple greedy algorithm might give optimal solutions!
- For these kind of optimization problems, dynamic programming typically gives optimal solutions in the most reasonable times
- But in many situations, a simple greedy algorithm might give optimal solutions!

Optimized change problem

Input: Coin values c_0, \ldots, c_n and an amount *x*

Output: A number of coins of each type a_0, \ldots, a_k such that $\sum_i a_i c_i = x$ and

 $\sum_i a_i$ minimal amongs all possible solutions

- For these kind of optimization problems, dynamic programming typically gives optimal solutions in the most reasonable times
- But in many situations, a simple greedy algorithm might give optimal solutions!

Optimized change problem

Input: Coin values c_0, \ldots, c_n and an amount *x* **Output:** A number of coins of each type a_0, \ldots, a_k such that $\sum_i a_i c_i = x$ and $\sum_i a_i$ minimal amongs all possible solutions

Greedy algo: optimal if $2c_i < c_i + 1$ for all $i < n!$

Sorting algorithms

The sorting problem

Input: An array of integers of size *n* **Output:** A sorted array containing the same elements

The sorting problem

Input: An array of integers of size *n* **Output:** A sorted array containing the same elements

- For now, only arrays
- Later, fancier datastructures but essentially same asymptotic time
- **Motivation:** very classical problem and solutions, good case studies

The sorting problem

Input: An array of integers of size *n* **Output:** A sorted array containing the same elements

- For now, only arrays
- Later, fancier datastructures but essentially same asymptotic time
- **Motivation:** very classical problem and solutions, good case studies

Last lab: bubble sort presented recursively! $\mathcal{O}(n^2)$

Input: A sorted array of integers *A* of size *n* and element *x* **Output:** A sorted array containing the same elements as *A* plus *x*

Input: A sorted array of integers *A* of size *n* and element *x* **Output:** A sorted array containing the same elements as *A* plus *x*

Can you write that?

Input: A sorted array of integers *A* of size *n* and element *x* **Output:** A sorted array containing the same elements as *A* plus *x*

Can you write that? What complexity?

Input: A sorted array of integers *A* of size *n* and element *x* **Output:** A sorted array containing the same elements as *A* plus *x*

Can you write that? What complexity? *O*(*n*)

Input: A sorted array of integers *A* of size *n* and element *x* **Output:** A sorted array containing the same elements as *A* plus *x*

Can you write that? What complexity? $O(n)$

Can you deduce a sorting algorithm?

Input: A sorted array of integers *A* of size *n* and element *x* **Output:** A sorted array containing the same elements as *A* plus *x*

Can you write that? What complexity? $O(n)$

Can you deduce a sorting algorithm? What complexity?

Input: A sorted array of integers *A* of size *n* and element *x* **Output:** A sorted array containing the same elements as *A* plus *x*

Can you write that? What complexity? $O(n)$

Can you deduce a sorting algorithm? What complexity? $\mathcal{O}(n^2)$

Can you think of a divide-and-conquer approach?

Can you think of a divide-and-conquer approach?

Idea

- Split the array into two equal pieces
- Sort the two pieces recursively
- *Merge* the two pieces back together

Input: Two sorted arrays of integers *A* and *B*

Output: A sorted array containing the same elements as *A* plus *B*

Input: Two sorted arrays of integers *A* and *B*

Output: A sorted array containing the same elements as *A* plus *B*

Complexity?

Input: Two sorted arrays of integers *A* and *B* **Output:** A sorted array containing the same elements as *A* plus *B*

Complexity? *O*(*n*)

- Splitting the arrays: $O(n)$ naively, $O(1)$ with some mild alteration to the inputs (use arrays + sorted ranges as inputs rather than arrays and work *in-place*)
- Merging things together: $\mathcal{O}(n)$

Complexity?

- Splitting the arrays: $\mathcal{O}(n)$ naively, $\mathcal{O}(1)$ with some mild alteration to the inputs (use arrays + sorted ranges as inputs rather than arrays and work *in-place*)
- Merging things together: $\mathcal{O}(n)$

Complexity? *→* Master theorem *→*

- Splitting the arrays: $\mathcal{O}(n)$ naively, $\mathcal{O}(1)$ with some mild alteration to the inputs (use arrays + sorted ranges as inputs rather than arrays and work *in-place*)
- Merging things together: $\mathcal{O}(n)$

Complexity? \rightarrow Master theorem \rightarrow $\mathcal{O}(n \log(n))$

Idea: instead of making the splitting trivial, make the merging trivial

- Pick an element, the *pivot*
- Write two subarrays of elements: those smaller than the pivot, and those larger
- Sort recursively and concatenate the results
- **Worst case:** $\mathcal{O}(n^2)$ for a bad choice of pivot
- **Best case:** $\mathcal{O}(n \log(n))$ for a good choice (the median) (or if lucky)

(A median can be picked in linear time actually)

(but a lot of implementations don't bother)

(it's a *fancy* divide-and-conquer algo)

• **Average case:** $\mathcal{O}(n \log(n))$

Actually $O(n \log(n))$ is optimal

But is it? (sorting by counting)

Advanced considerations: sorting in-place, stable sorts, parallelism

• The background reading here \rightsquigarrow go more in-depth with the material

(you don't *need* to read all of that immediately)

Algorithms in Java (3rd ed., 2004) by Sedgewick

Relevant chapters: 6,7,8 and 10

Explain and study sorting algorithms in details

Introduction to Algorithms (4th ed., 2011) by Cormen et. al

Relevant chapters: 4,7,8,14,15

More focus on paradigms

- Practice! Both coming up with algorithms and implementation
- You've had roughly a quick overview of the main points an undergrad first algorithmics module would cover
- The first CW will be over this material.
- Next up: datastuctures!
	- Algorithms for and with datastructures!
- Practice! Both coming up with algorithms and implementation
- You've had roughly a quick overview of the main points an undergrad first algorithmics module would cover
- The first CW will be over this material.
- Next up: datastuctures!
	- Algorithms for and with datastructures!

OK, time for questions?