CSCM12: software concept and efficiency
Estimating the complexity of algorithms

Cécilia Prabic
Swansea University, 06/20/2023

Recommended reading after this lecture

e Chapter 3 “Characterizing Running Times”

of Introduction to Algorithms (4th ed., 2011) by Cormen et. al
e Chapter 2 “Principles of Algorithm Analysis”

of Algorithms in Java (3rd ed., 2004) by Sedgewick

No need to look at the “Basic Recurrences” section for now

One running example

Input: An array A of size n and some (say, integer) x
Output: An index i such that A[i] = x or —1 if there is none

FindIndex(A, x)
res < —1
n < size of A
forifrom0ton —1do
if Afi] = x then
| res < i

goR W N =

6 return res

Running the first solution

Let us try to run this step-by-step!

FindIndex(A, x)

1 res «+— —1

2 n < size of A

3 forifromOton —1do
4 if Afi] = x then

5 ‘ res <1

6 return res

o A=1[2,4,7,7,10,15],x =7

Running the first solution

Let us try to run this step-by-step!

FindIndex(A, x)

1 res «+— —1

2 n < size of A

3 forifromOton —1do
4 if Afi] = x then

5 ‘ res <1

6 return res

o A=1[2,4,7,7,10,15],x =7
o A=[2,4,7,7,10,15], x = 11

Alternative solution 1

Solution #2

FindIndex2(A,x)

1 res < —1

2 n < size of A

3 for i from n — 1 down to 0 do
4 if Afi] = x then

5 ‘ res < i

6 return res

e Solves the same problem
e Different outputs on our first sample input

e (Roughly the same complexity)

Alternative solution 2

Solution #3

FindIndex3(A,x)

1 res +— —1

2 n < size of A

3 i+ 0

4 while res = —1andi < n do
5 if Ali] = x then

6 ‘ res < i

7 Increment i

8 return res

e Sometimes more efficient

e But is it significant in practice?

A more precise problem and another solution

Input: A sorted array A of size n and some (say, integer) x
Output: An index i such that A[i] = x or —1 if there is none

e The previous solutions work, but...

A more efficient solution for sorted inputs

FindIndexDicho(A, x)
start < 0
end « size of A
while start < end do
mid «— [end-iistan“l
if A[mid] < x then
| start «— mid

else
| end « mid

if A[start] = x then
| return start

else
| return -1

Consideration of efficiency

Given an algorithmic problem:

e [s there an algorithm that solves it? If so is it:

e feasible? (usable in practice)
o efficient?
e optimal?

Given an algorithm:

o How efficient is it?

e [s there a more method of getting the same results?

Rules of thumb for measuring efficiency

o Typically, (time) complexity mostly depends on the size of the input

— we typically express the time complexity as a function “size — time”

Xt time to compute A(x)
Input : N
size\L N

N k — max{c(x) | size(x) = k}

complexity
Note the <: typically we want the worst-case complexity for inputs of a given size

e best-case: not very interesting

e average: can be interesting, typically harder to compute though :)

10

Computing time complexity

e Can be roughly be done step-by-step.

e Essentially, each piece of a program can be regarded as a mathematical
function

(initial) value of variables/memory

~ =
State — State x N
~—~
time taken to compute the step
e Essentially: basic arithmetic operations, assignments: cost ~ 1, array
allocation ~ size of the array, loop ~ sum of the complexities, ...

— roughly the number of steps in step-wise execution we’ve done

11

The notion of space complexity

There is a notion of space complexity

o Essentially, assign a size to State and compute the maximal size that occurs in
an execution

e Unless you are doing big data or embedded system, this is not typically a
limiting factor
(RAM is cheap)

e In most scenarii, bounded by time complexity

12

Accurate complexity?

The “time complexity function” we defined might not be completely accurate
In practice

e hardware/compiler-dependent behaviors

e not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

— We had to make compromises

13

Accurate complexity?

The “time complexity function” we defined might not be completely accurate
In practice

e hardware/compiler-dependent behaviors

e not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)
— We had to make compromises

However, gives reasonable bounds/estimate

e up to a constant factor

e for large inputs (and that’s we care about!)

13

Functions at infinity up to a constant

Suppose that we have two complexity functions f, ¢ : Nyg — R™

e Say that g asymptotically dominates fif f < K- g + K’ for some K, K’ > 0
(vocabulary: asymptotically = “at the limit”)

14

Functions at infinity up to a constant

Suppose that we have two complexity functions f, ¢ : Nyg — R™

e Say that g asymptotically dominates fif f < K- g + K’ for some K, K’ > 0
(vocabulary: asymptotically = “at the limit”)

— Try to compute lim fm)
n—+oo g(1n)

14

Functions at infinity up to a constant

Suppose that we have two complexity functions f, ¢ : Nyg — R™

e Say that g asymptotically dominates fif f < K- g + K’ for some K, K’ > 0
(vocabulary: asymptotically = “at the limit”)

— Try to compute lim fm)
n—+oo g(1n)

e if that’s finite and non-zero: f and g are commensurate

14

Functions at infinity up to a constant

Suppose that we have two complexity functions f, ¢ : Nyg — R™

e Say that g asymptotically dominates fif f < K- g + K’ for some K, K’ > 0
(vocabulary: asymptotically = “at the limit”)

n
— Try to compute lim fm)
n—+oo g(1n)
e if that’s finite and non-zero: f and g are commensurate

o if that’s 4+-00: f dominates strictly g asymptotically

14

Functions at infinity up to a constant

Suppose that we have two complexity functions f, ¢ : Nyg — R™

e Say that g asymptotically dominates fif f < K- g + K’ for some K, K’ > 0
(vocabulary: asymptotically = “at the limit”)

n
— Try to compute lim fm)
n—+oo g(1n)
e if that’s finite and non-zero: f and g are commensurate

o if that’s 4+-00: f dominates strictly g asymptotically
e if that’s 0: g dominates f strictly asymptotically

14

e f(n) = O(g(n)) means ngr_ir_loo (jg% < 400 That’s the one you'll see all the time

15

e f(n) = O(g(n)) means hm i ((n)) < 400 That’s the one you'll see all the time
o f(n) =Q(g(n)) means 0 < 11m %

15

Big O notation and friends

e f(n) = O(g(n)) means hmoo i ((n)) < +oo That’s the one you’ll see all the time

o f(n) = Q(g(n)) means 0 < nhrfoo é%

¢ f(n) = ©(g(n)) means f(n) = O(g(n)) and f(n) = Q(g(n))

15

Big O notation and friends

° f (71) =@ (g (71)) means ngr_’r_loo g((—:?) < +00 That’s the one you'll see all the time
o fln) = Q(g(n)) means 0 < HEI:Ii-loo é%

- fin) = ©(g() means fin) = O(g(m) and f() = g(m)

o f(n) =o0(g(n)) means lim) _

n——+oo g(n)

15

Big O notation and friends

Very important notations

f(n) = O(g(n)) means ”EI—‘POO Jgf((frll))
fln) = Q(g(n)) means 0 < lim
fln) = ©(8(

f(n) = o(g(n)) means_lim %))

Basic examples:

n = 0(n?)

n® + n? + log(n) = ©(5n%)
log(n)2" +n® + 5 = O(log(n)2")
log(n) = o(/)

2+1=001)

< +00

.

n

g(n)

=0

That'’s the one you'll see all the time

n)) means f(n) = O(g(n)) and f(n) = Q(g(n))

15

Basic tips for computing with O

o Iff(n) < g(n) then f(n) = O(g(n)

o f(n) = o(g(n)) impies f(n) =
e forany k > 0 and ¥/, kf(n) =

o Iff(n) = O(g(n)) and g(n) =

o log(n)* = o(n), n*

o 1k =o(n") fork < ¥

* fi(n) = O(g1(n)) and f» =

O(g2
e If f(n) = o(g(n)), then f(n) + g(n) =

)
= 0(g(n))

O(f(n))
O(h(n)) then f(n) =

= 0(2") for any constant k € R

O(f(n))

(n)) imply f1(n)f2(n) =

O(h(n))

O(g1

k = } corresponds to v

(1)g2(n))

16

FindIndex(A, x)
res < —1
n < size of A
forifromOton —1do
if Afi] = x then
| res < i

g kR W N =

return res

=)}

Worst-case complexity?

17

Back to our examples (1/4)

= W N =

Solution #1

FindIndex(A, x)
res < —1
n < size of A
forifromOton — 1 do
if Afi] = x then
‘ res < i

return res

Worst-case complexity? — O(n) (linear)

17

Back to our examples (1/4)

= W N =

Solution #1

FindIndex(A, x)
res +— —1
n <+ size of A

if Afi] = x then
‘ res < i

return res

forifromOton —1do

Worst-case complexity? — O(n) (linear)

‘ worst-case | best-case

average case

| O(n) o(n)

O(n)

17

Useful heuristics

e If/then/else ~ can be over-approximated by the max of each branch

e Loops: if the body runs in O(f(n)) and there are O(g(n)) iterations
— O(f(n)g(n))

18

Back to our examples (2/4)

gl R W N =

Solution #2

FindIndex2(A, x)

res < —1

n < size of A

for i from n — 1 down to 0 do

if Ali] = x then
‘ res < i
return res

Worst-case complexity?

19

Back to our examples (2/4)

S S I S

Solution #2

FindIndex2(A, x)

res <+ —1

n < size of A

if Ali] = x then
‘ res < i
return res

for i from n — 1 down to 0 do

Worst-case complexity? — O(n)

worst-case

best-case

average case

O(n)

O(n)

O(n)

(nothing so different)

19

Back to our examples (3/4)

N oo R W N =

Solution #3

FindIndex3(A,x)

res < —1

n < size of A

i~ 0

while res = —1 and i < n do
if Afi] = x then

‘ res < i
Increment i

return res

Worst-case complexity? — O(n)

(nothing too different)

20

Back to our examples (3/4)

N oo R W N =

Solution #3

FindIndex3(A,x)

res +— —1
n <+ size of A

i<~ 0
while res = —1andi < n do
if Afi] = x then
‘ res < i

Increment i

return res

Worst-case complexity? — O(n)

But...

worst-case

best-case

average case ‘

O(n)

o)

o(n) |

(nothing too different)

20

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)
start < 0
end + size of A
while start < end do e Difficulty: number of iterations?
] d
mid < [start]
if A[mid] < x then
| start < mid

else
| end < mid

if A[start] = x then
| return start

else
| return -1

21

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)
start < 0
end < size of A

while start < end do e Difficulty: number of iterations?
] d
mzd P [en Jastart“
if A[mid] < x then
| start < mid

o Atstep k, end — start < {%J

else
| end < mid

if A[start] = x then
| return start

else
| return -1

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)
start < 0
end < size of A
while start < end do
mid < [dstart]
if A[mid] < x then
| start < mid

else
| end < mid

if A[start] = x then
| return start

else
| return -1

e Difficulty: number of iterations?

o Atstep k, end — start < {%J

e Main loop ends when start = end

21

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)

start < 0
end + size of A
while start < end do e Difficulty: number of iterations?
. end-start
mid — [FE] o Atstep k, end — start < {%J
if A[mid] < x then)
[—r e Main loop ends when start = end
else — when % <1
| end < mid

if A[start] = x then
| return start

else
| return -1

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)

start < 0
end + size of A
while start < end do e Difficulty: number of iterations?
. end-start
mid — [FE] o Atstep k, end — start < {%J
if A[mid] < x then)
[—r e Main loop ends when start = end
else — when % <1
| end < mid

— whenn < 2k

if A[start] = x then
| return start

else
| return -1

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)
start < 0
end < size of A
while start < end do
mid < [dstart]
if A[mid] < x then
| start < mid

else
| end < mid

if A[start] = x then
| return start

else
| return -1

Complexity?

e Difficulty: number of iterations?
o Atstep k, end — start < {%J
e Main loop ends when start = end
— when 3 <1
— whenn < 2k

— when log,(n) < k

21

Back to our examples (4/4)

(Recall that this one only works for sorted inputs)

FindIndexDicho(A, x)

start < 0

end <+ size of A

while start < end do e Difficulty: number of iterations?
mid «— [endzstart“

o Atstepk, end — start < | L
if A[mid] < x then y LI(J

[—r e Main loop ends when start = end
else — when % <1
| end < mid _y when n < 2
if A[start] = x then — when log,(n) <k
| return start
else
| return -1

Complexity? — O(log(n))

Some simple examples (1/3)

SumTensor(A)

n < size of A

r< 0

fori from n — 1 down to 0 do

forjfromOton —1do
| 7« Ali] x A[f]
return r

Complexity?

22

Some simple examples (1/3)

SumTensor(A)

n < size of A

r< 0

fori from n — 1 down to 0 do

forjfromOton —1do
| 7« Ali] x A[f]
return r

Complexity? — ©(n?) (quadratic)

22

Some simple examples (2/3)

SumLowerTensor(A)

n < size of A

r<«0

forifromn — 1 down to 0 do

forj from 0 to i do
| 7 Ali] x A[f]
returnr

Complexity?

23

Some simple examples (2/3)

SumLowerTensor(A)

n < size of A

r<«0

forifromn — 1 down to 0 do

forj from 0 to i do
| 7 Ali] x A[f]
returnr

Complexity? — O(n?)

23

Some simple examples (2/3)

SumLowerTensor(A)

n < size of A

r<«0

forifromn — 1 down to 0 do

forj from 0 to i do
| 7 Ali] x A[f]
returnr

Complexity? — O(n?) in fact ©(n?)

23

Some simple examples (2/3)

SumLowerTensor(A)

n < size of A

r<«0

forifromn — 1 down to 0 do

forj from 0 to i do
| 7 Ali] x A[f]
returnr

Complexity? — O(n?) in fact ©(n?)

n
Lower bound: Y i = ”(”;1) = 0(n?)
i=0

23

Some simple examples (2/3)

SumLowerTensor(A)

n < size of A

r<0

forifromn — 1 down to 0 do

forj from 0 to i do
| 7 Ali] x A[f]
returnr

Complexity? — O(n?) in fact ©(n?)

n
Lower bound: Y i = ”(”;1) = 0(n?)
i=0

n
(more generally, 3" i = ©(n*), so that kind of approximation is often safe)
i=0

23

Some simple examples (3/3)

Recall that SumTensor is O(n?)

Something weird(A)
n < size of A
r< 0

fori from n — 1 down to 0 do
| r <« Ali%2] x SumTensor(A)

return r

Complexity?

24

Some simple examples (3/3)

Recall that SumTensor is O(n?)

Something weird(A)
n < size of A
r< 0

fori from n — 1 down to 0 do
| r <« Ali%2] x SumTensor(A)

return r

Complexity? — O(n?)

24

Complexity of an algorithmic problem

e Recall that an algorithmic problem # algorithm.
e Common shorthands for the intrinsic hardness of a problem P:
e Pisin O(f(n)) — thereis a O(f(n)) algorithm solving P

e Pisin O(f(n)) — there is an optimal solution to P in ©(f(n))
e Pisin Q(f(n)) — any algorithm solving P has complexity Q(f(n))

25

(out of scope) complexity theory

Are some problem intrinsically hard — yes!

e Complexity theorists study that!
e Problems solvable in O(1*) = solvable in polynomial time, class P
e Problems whose solution can be checked in polynomial time NP

Typically

e Polynomial time problems are tractable
e Problems that are NP-hard do not have known subexponential solution
— to prove that some problem is intricically hard, prove it is necessarily as hard
as all NP problems

Big open problem
Is P # NP?

(there are classes that are strictly harder than NP, such as EXPTIME)

26

Next challenge to compute complexities

FindIndexDicho2(A, x, start, end)
if end < start then

if A[start] = x then
| return start

else

| return -1
; end+start
mid « [endstart]

if A[mid] < x then
| FindIndexDicho2(A, x, mid, end)

else
| FindIndexDicho2(A, x, start, mid)

C(0) = O(1)
Cn+1)=C(|®]) +0(1)

Next challenge to compute complexities

FindIndexDicho2(A, x, start, end)
if end < start then

if A[start] = x then
| return start

else

| return -1
; end+start
mid « [endstart]

if A[mid] < x then
| FindIndexDicho2(A, x, mid, end)

else
| FindIndexDicho2(A, x, start, mid)

C(0) = O(1)
Cn+1)=C(|®]) +0(1)
— C(n) = O(log(n))

27

Thanks for listening!
Please look at the resources on canvas as well
Strike & logistics

Questions?

28

