CSCM12: software concept and efficiency Estimating the complexity of algorithms

Cécilia PRADIC

Swansea University, 06/20/2023

- **Chapter 3** "Characterizing Running Times" of *Introduction to Algorithms* (4th ed., 2011) by Cormen et. al
- **Chapter 2** "Principles of Algorithm Analysis"

of *Algorithms in Java* (3rd ed., 2004) by Sedgewick

No need to look at the "Basic Recurrences" section for now

An algorithmic problem

Input: An array *A* of size *n* and some (say, integer) *x* **Output:** An index *i* such that $A[i] = x$ or -1 if there is none

Solution #1

```
FindIndex(A, x)
r res \leftarrow -12 \mid n \leftarrow size of A
3 for i from 0 to n − 1 do
4 if A[i] = x then
5 \vert \vert res \leftarrowi
6 return res
```
Running the first solution

Let us try to run this step-by-step!

```
FindIndex(A, x)
```
- r *res* $\leftarrow -1$
- $2 \mid n \leftarrow$ size of *A*
- **3 for** *i* **from** 0 **to** *n −* 1 **do**
- **⁴ if** *A*[*i*] = *x* **then 5** \vert *| res* \leftarrow *i*
- **6 return** *res*
	- $A = \{2, 4, 7, 7, 10, 15\}, x = 7$

Running the first solution

Let us try to run this step-by-step!

```
FindIndex(A, x)
```
- **1** *res ← −* 1
- **2** *n ←* size of *A*
- **3 for** *i* **from** 0 **to** *n −* 1 **do**
- **4** \vert **if** $A[i] = x$ **then 5** \vert *| res* \leftarrow *i*

6 return *res*

- $A = [2, 4, 7, 7, 10, 15], x = 7$
- $A = [2, 4, 7, 7, 10, 15], x = 11$

Alternative solution 1

Solution #2

```
FindIndex2(A, x)
r res \leftarrow -12 n \leftarrow size of A
3 for i from n − 1 down to 0 do
4 if A[i] = x then
5 \vert \vert \vert res \leftarrow i6 return res
```
- Solves the same problem
- Different outputs on our first sample input
- (Roughly the same complexity)

Alternative solution 2

Solution #3

```
FindIndex3(
A
,
x
)
1 res ← −
1
2
     n
← size of
A
3
     i
←
0
4 while res = -1 and i < n do
5 if A[i] = x then
6 \vert res \leftarrowi
7 Increment
i
8 return res
```
- Sometimes more efficient
- But is it significant in practice?

A more precise algorithmic problem

Input: A **sorted** array *A* of size *n* and some (say, integer) *x* **Output:** An index *i* such that $A[i] = x$ or -1 if there is none

• The previous solutions work, but...

```
FindIndexDicho(A, x)
    start ← 0
   end \leftarrow size of A
   while start < end do
        mid \leftarrow \lceil \frac{end + start}{2} \rceilif A[mid] \leq x then
       start ← mid
        else
        end ← mid
   if A[start] = x then
     return start
    else
        return -1
```
Given an algorithmic problem:

- Is there an algorithm that solves it? If so is it:
	-
	- efficient?
	- optimal?

Given an algorithm:

- How efficient is it?
- Is there a more method of getting the same results?

• feasible? (usable in practice)

Rules of thumb for measuring efficiency

- *Typically*, (time) complexity mostly depends on the **size** of the input
- *→* we typically express the time complexity as a function "size *7→* time"

Note the *≤*: typically we want the **worst-case complexity** for inputs of a given size

- best-case: not very interesting
- average: can be interesting, typically harder to compute though :)
- Can be roughly be done step-by-step.
- Essentially, each piece of a program can be regarded as a mathematical function

- Essentially: basic arithmetic operations, assignments: cost *∼* 1, array allocation *∼* size of the array, loop *∼* sum of the complexities, …
- *→* roughly the number of steps in step-wise execution we've done

There is a notion of **space** complexity

- Essentially, assign a size to State and compute the maximal size that occurs in an execution
- Unless you are doing big data or embedded system, this is not typically a limiting factor

(RAM is cheap)

• In most scenarii, bounded by time complexity

Accurate complexity?

The "time complexity function" we defined might not be completely accurate In practice

- hardware/compiler-dependent behaviors
- not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

→ We had to make compromises

Accurate complexity?

The "time complexity function" we defined might not be completely accurate In practice

- hardware/compiler-dependent behaviors
- not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

→ We had to make compromises

However, gives reasonable bounds/estimate

- up to a **constant factor**
-

• for **large inputs** (and that's we care about!)

• Say that *g* asymptotically dominates f if $f \leq K \cdot g + K'$ for some $K, K' > 0$

(vocabulary: asymptotically = "at the limit")

• Say that *g* asymptotically dominates f if $f \leq K \cdot g + K'$ for some $K, K' > 0$

(vocabulary: asymptotically = "at the limit")

$$
\longrightarrow
$$
 Try to compute $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$

• Say that *g* asymptotically dominates f if $f \leq K \cdot g + K'$ for some $K, K' > 0$

(vocabulary: asymptotically = "at the limit")

$$
\longrightarrow
$$
 Try to compute $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$

• if that's finite and non-zero: *f* and *g* are commensurate

• Say that *g* asymptotically dominates f if $f \leq K \cdot g + K'$ for some $K, K' > 0$

(vocabulary: asymptotically = "at the limit")

$$
\longrightarrow
$$
 Try to compute $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$

- if that's finite and non-zero: *f* and *g* are commensurate
- if that's +*∞*: *f* dominates strictly *g* asymptotically

• Say that *g* asymptotically dominates f if $f \leq K \cdot g + K'$ for some $K, K' > 0$

(vocabulary: asymptotically = "at the limit")

$$
\longrightarrow
$$
 Try to compute $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$

- if that's finite and non-zero: *f* and *g* are commensurate
- if that's +*∞*: *f* dominates strictly *g* asymptotically
- if that's 0: *g* dominates *f* strictly asymptotically

Very important notations

•
$$
f(n) = O(g(n))
$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$

Very important notations

\n- \n
$$
f(n) = \mathcal{O}(g(n))
$$
 means\n
$$
\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty
$$
\n
\n- \n
$$
f(n) = \Omega(g(n))
$$
 means\n
$$
0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}
$$
\n
\n

Very important notations

•
$$
f(n) = O(g(n))
$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$

•
$$
f(n) = \Omega(g(n))
$$
 means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$

•
$$
f(n) = \Theta(g(n))
$$
 means $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$

Very important notations

•
$$
f(n) = \mathcal{O}(g(n))
$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$

•
$$
f(n) = \Omega(g(n))
$$
 means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$

•
$$
f(n) = \Theta(g(n))
$$
 means $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$

•
$$
f(n) = o(g(n))
$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$

Very important notations

\n- \n
$$
f(n) = \mathcal{O}(g(n))
$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$ That's the one you'll see all the time\n
\n- \n $f(n) = \Omega(g(n))$ means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$ \n
\n- \n $f(n) = \Theta(g(n))$ means $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$ \n
\n- \n $f(n) = o(g(n))$ means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$ \n
\n

Basic examples:

$$
\bullet \ \ n = \mathcal{O}(n^2)
$$

•
$$
n^3 + n^2 + \log(n) = \Theta(5n^3)
$$

- $\log(n)2^n + n^5 + 5 = \Theta(\log(n)2^n)$
- $\log(n) = o(\sqrt{n})$
- $42 + \frac{1}{n} = \mathcal{O}(1)$

Basic tips for computing with *O*

- If $f(n) < g(n)$ then $f(n) = \mathcal{O}(g(n))$
- $f(n) = o(g(n))$ impies $f(n) = O(g(n))$
- for any $k > 0$ and k' , $kf(n) = \mathcal{O}(f(n))$
- If $f(n) = \mathcal{O}(g(n))$ and $g(n) = \mathcal{O}(h(n))$ then $f(n) = \mathcal{O}(h(n))$
- $\log(n)^k = o(n)$, $n^k = o(2^n)$ for any constant $k \in \mathbb{R}^+$

 $k = \frac{1}{2}$ corresponds to $\sqrt{2}$

- $n^k = o(n^{k'})$ for $k < k'$
- $f_1(n) = \mathcal{O}(g_1(n))$ and $f_2 = \mathcal{O}(g_2(n))$ imply $f_1(n)f_2(n) = \mathcal{O}(g_1(n)g_2(n))$
- If $f(n) = o(g(n))$, then $f(n) + g(n) = O(f(n))$

Solution #1 FindIndex(*A , x*) **1** *res ← −* 1

- **2** *n ←* size of *A*
- **3 for** *i* **from** 0 **to** *n −* 1 **do**
- **4** \vert **if** $A[i] = x$ **then**

$$
5 \mid | \mid \text{res} \leftarrow i
$$

6 return *res*

Worst-case complexity?

Solution #1

Worst-case complexity? $\rightarrow \mathcal{O}(n)$ (linear)

Solution #1

```
FindIndex(A, x)
1 res ← −1
2 n \leftarrow size of A
3 for i from 0 to n − 1 do
4 if A[i] = x then
5 res \leftarrow i6 return res
```
Worst-case complexity? $\rightarrow \mathcal{O}(n)$ (linear)

- If/then/else \rightsquigarrow can be over-approximated by the max of each branch
- Loops: if the body runs in $\mathcal{O}(f(n))$ and there are $\mathcal{O}(g(n))$ iterations $\rightarrow \mathcal{O}(f(n)g(n))$

Solution #2

Worst-case complexity?

Solution #2

Worst-case complexity? $\rightarrow \mathcal{O}(n)$ (nothing so different)

worst-case		best-case average case
$\Theta(n)$	$\Theta(n)$	$\Theta(n)$

Solution #3

```
FindIndex3(A, x)
r res \leftarrow -12 n \leftarrow size of A
3 \mid i \leftarrow 04 while res = −1 and i < n do
5 if A[i] = x then
6 res \leftarrowi
7 Increment i
8 return res
```
Worst-case complexity? $\rightarrow \mathcal{O}(n)$ (nothing too different)

Solution #3

```
FindIndex3(A, x)
r res \leftarrow -12 n \leftarrow size of A
3 \mid i \leftarrow 04 while res = −1 and i < n do
5 if A[i] = x then
6 res \leftarrowi
7 Increment i
8 return res
```
Worst-case complexity? $\rightarrow \mathcal{O}(n)$ (nothing too different)

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0end ← size of A
   while start < end do
        mid \leftarrow \lceil \frac{end + start}{2} \rceilif A[mid] \leq x then
        start ← mid
        else
         end ← mid
   if A[start] = x then
     return start
    else
        return -1
```
• Difficulty: number of iterations?

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0end \leftarrow size of A
    while start < end do
         mid \leftarrow \lceil \frac{end + start}{2} \rceilif A[mid] \leq x then
         start ← mid
        else
         end ← mid
    if A[start] = x then
     return start
    else
        return -1
```
• Difficulty: number of iterations?

• At step *k*, *end* – *start*
$$
\leq \left\lfloor \frac{n}{2^k} \right\rfloor
$$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0end \leftarrow size of A
    while start < end do
         mid \leftarrow \lceil \frac{end + start}{2} \rceilif A[mid] \leq x then
         start ← mid
        else
         end ← mid
    if A[start] = x then
     return start
    else
        return -1
```
• Difficulty: number of iterations?

• At step *k*, *end* – *start*
$$
\leq \left\lfloor \frac{n}{2^k} \right\rfloor
$$

• Main loop ends when *start* = *end*

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0end \leftarrow size of A
    while start < end do
         mid \leftarrow \lceil \frac{end + start}{2} \rceilif A[mid] \leq x then
        start ← mid
        else
         end ← mid
    if A[start] = x then
     return start
    else
        return -1
```
- Difficulty: number of iterations?
- At step *k*, *end − start ≤* j *n* $\frac{n}{2^k}$
- Main loop ends when *start* = *end*
- \rightarrow when $\frac{n}{2^k} < 1$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0end \leftarrow size of A
    while start < end do
         mid \leftarrow \lceil \frac{end + start}{2} \rceilif A[mid] \leq x then
        start ← mid
        else
         end ← mid
    if A[start] = x then
     return start
    else
```
return *-1*

- Difficulty: number of iterations?
- At step *k*, *end − start ≤* j *n* $\frac{n}{2^k}$
- Main loop ends when *start* = *end*
- \rightarrow when $\frac{n}{2^k} < 1$
- \rightarrow when $n < 2^k$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0end \leftarrow size of A
    while start < end do
         mid \leftarrow \lceil \frac{end + start}{2} \rceilif A[mid] \leq x then
         start ← mid
        else
         end ← mid
    if A[start] = x then
     return start
    else
```
return *-1*

Complexity?

- Difficulty: number of iterations?
- At step *k*, *end − start ≤* j *n* $\frac{n}{2^k}$
- Main loop ends when *start* = *end*
- \rightarrow when $\frac{n}{2^k} < 1$
- \rightarrow when $n < 2^k$
- \rightarrow when $\log_2(n) < k$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0end \leftarrow size of A
    while start < end do
         mid \leftarrow \lceil \frac{end + start}{2} \rceilif A[mid] \leq x then
         start ← mid
        else
         end ← mid
    if A[start] = x then
     return start
    else
```

```
return -1
```

```
Complexity? \rightarrow \Theta(\log(n)) 21
```
- Difficulty: number of iterations?
- At step *k*, *end − start ≤* j *n* $\frac{n}{2^k}$
- Main loop ends when *start* = *end*
- \rightarrow when $\frac{n}{2^k} < 1$
- \rightarrow when $n < 2^k$
- \rightarrow when $\log_2(n) < k$

```
SumTensor(A)
   n \leftarrow size of A
   r ← 0
    for i from n − 1 down to 0 do
        for j from 0 to n − 1 do
            r \leftarrow A[i] \times A[j]return r
```
Complexity?

```
SumTensor(A)
    n ← size of A
    r ← 0
    for i from n − 1 down to 0 do
        for j from 0 to n − 1 do
            r \leftarrow A[i] \times A[j]return r
```
Complexity? $\rightarrow \Theta(n^2)$ (quadratic)

```
SumLowerTensor(A)
    n ← size of A
    r ← 0
    for i from n − 1 down to 0 do
        for j from 0 to i do
            r \leftarrow A[i] \times A[j]return r
```
Complexity?

```
SumLowerTensor(A)
    n ← size of A
    r ← 0
    for i from n − 1 down to 0 do
        for j from 0 to i do
            r \leftarrow A[i] \times A[j]return r
```
Complexity? $\rightarrow \mathcal{O}(n^2)$

```
SumLowerTensor(A)
    n ← size of A
    r ← 0
    for i from n − 1 down to 0 do
        for j from 0 to i do
            r \leftarrow A[i] \times A[j]return r
```
Complexity? $\rightarrow \mathcal{O}(n^2)$ in fact $\Theta(n^2)$

```
SumLowerTensor(A)
    n ← size of A
    r ← 0
    for i from n − 1 down to 0 do
        for j from 0 to i do
            r \leftarrow A[i] \times A[j]return r
```
Complexity? $\rightarrow \mathcal{O}(n^2)$ in fact $\Theta(n^2)$ Lower bound: $\sum_{n=1}^{n}$ *i*=0 $i = \frac{n(n+1)}{2} = \Theta(n^2)$

```
SumLowerTensor(A)
    n ← size of A
    r ← 0
    for i from n − 1 down to 0 do
        for j from 0 to i do
            r \leftarrow A[i] \times A[j]return r
```

```
Complexity? \rightarrow \mathcal{O}(n^2) in fact \Theta(n^2)Lower bound: \sum_{n=1}^{n}i=0
                          i = \frac{n(n+1)}{2} = \Theta(n^2)(more generally, \sum_{n=1}^ni=0
                             i^k = \Theta(n^k), so that kind of approximation is often safe)
```

```
Recall that SumTensor is \mathcal{O}(n^2)
```

```
Something weird(A)
   n ← size of A
   r ← 0
   for i from n − 1 down to 0 do
       r ← A[i%2] × SumTensor(A)
   return r
```
Complexity?

```
Recall that SumTensor is \mathcal{O}(n^2)
```

```
Something weird(A)
   n ← size of A
   r ← 0
   for i from n − 1 down to 0 do
       r ← A[i%2] × SumTensor(A)
   return r
```
Complexity? $\rightarrow \mathcal{O}(n^3)$

- Recall that an algorithmic problem \neq algorithm.
- Common shorthands for the intrinsic hardness of a problem **P**:
	- **P** is in $\mathcal{O}(f(n)) \to$ there is a $\mathcal{O}(f(n))$ algorithm solving **P**
	- **P** is in $\Theta(f(n)) \to$ there is an optimal solution to **P** in $\Theta(f(n))$
	- **P** is in $\Omega(f(n)) \to$ any algorithm solving **P** has complexity $\Omega(f(n))$

(out of scope) complexity theory

Are some problem intrinsically hard *→* yes!

- Complexity theorists study that!
- Problems solvable in $O(n^k)$ = solvable in polynomial time, class P
- Problems whose solution can be checked in polynomial time NP

Typically

- Polynomial time problems are tractable
- Problems that are NP-hard do not have known subexponential solution
- *→* to prove that some problem is intricically hard, prove it is necessarily as hard as *all* NP problems

Big open problem

Is $P \neq NP?$

(there are classes that are strictly harder than NP, such as EXPTIME)

Next challenge to compute complexities

```
FindIndexDicho2(
A
,
x
,start
,end
)
     if end
≤ start then
          if A[start] = x then
                return start
         else
           return -1
     \textit{mid} \gets \lceil \frac{\textit{end} + \textit{start}}{2}\frac{1}{2}<sup>esturt</sup>
     if A[mid] \leq x then
          FindIndexDicho2(A, x, mid, end)
    else
          FindIndexDicho2(A, x, start, mid)
C(0) = O(1)C(n+1) = C\left(\frac{n+1}{2}\right)\left[\frac{+1}{2}\right]) + \mathcal{O}(1)
```
Next challenge to compute complexities

```
FindIndexDicho2(
A
,
x
,start
,end
)
     if end
≤ start then
          if A[start] = x then
                return start
          else
           return -1
     \textit{mid} \gets \lceil \frac{\textit{end} + \textit{start}}{2}\frac{1}{2}<sup>esturt</sup>
     if A[mid] \leq x then
          FindIndexDicho2(A, x, mid, end)
    else
          FindIndexDicho2(A, x, start, mid)
C(0) = O(1)C(n+1) = C\left(\frac{n+1}{2}\right)\left[\frac{+1}{2}\right]) + \mathcal{O}(1)\rightarrow C(n) = \mathcal{O}(\log(n))
```
Thanks for listening!

Please look at the resources on canvas as well

Strike & logistics

Questions?