CSCM12: software concept and efficiency Estimating the complexity of algorithms

Cécilia Pradic

Swansea University, 06/20/2023

- Chapter 3 "Characterizing Running Times" of *Introduction to Algorithms* (4th ed., 2011) by Cormen et. al
- Chapter 2 "Principles of Algorithm Analysis"

of Algorithms in Java (3rd ed., 2004) by Sedgewick

No need to look at the "Basic Recurrences" section for now

An algorithmic problem

Input: An array *A* of size *n* and some (say, integer) *x* **Output:** An index *i* such that A[i] = x or -1 if there is none

Solution #1

```
FindIndex(A, x)

1 res \leftarrow -1

2 n \leftarrow \text{size of } A

3 for i from 0 to n - 1 do

4 \text{if } A[i] = x then

5 |res \leftarrow i

6 return res
```

Running the first solution

Let us try to run this step-by-step!

```
FindIndex(A, x)
```

1 $res \leftarrow -1$

4

5

- 2 $n \leftarrow \text{size of } A$
- 3 for *i* from 0 to n-1 do
 - if A[i] = x then

$$res \leftarrow i$$

6 return res

• A = [2, 4, 7, 7, 10, 15], x = 7

Running the first solution

Let us try to run this step-by-step!

```
FindIndex(A, x)
```

1 $res \leftarrow -1$

4

5

6

- 2 $n \leftarrow \text{size of } A$
- 3 for *i* from 0 to n-1 do
 - if A[i] = x then $| res \leftarrow i$
 - return res
 - A = [2, 4, 7, 7, 10, 15], x = 7
 - A = [2, 4, 7, 7, 10, 15], x = 11

Alternative solution 1

Solution #2

FindIndex2(A, x)1 $res \leftarrow -1$ 2 $n \leftarrow$ size of A3for i from n - 1 down to 0 do4i if A[i] = x then5| $res \leftarrow i$ 6return res

- Solves the same problem
- Different outputs on our first sample input
- (Roughly the same complexity)

Alternative solution 2

Solution #3

```
FindIndex3(A, x)
       res \leftarrow -1
1
      n \leftarrow \text{size of } A
2
       i \leftarrow 0
3
       while res = -1 and i < n do
4
           if A[i] = x then
5
                res \leftarrow i
6
            Increment i
7
       return res
8
```

- Sometimes more efficient
- But is it significant in practice?

A more precise algorithmic problem

Input: A **sorted** array *A* of size *n* and some (say, integer) *x* **Output:** An index *i* such that A[i] = x or -1 if there is none

• The previous solutions work, but...

```
FindIndexDicho(A, x)
    start \leftarrow 0
    end \leftarrow size of A
    while start < end do
         mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
         if A[mid] \le x then
          start \leftarrow mid
         else
          end \leftarrow mid
    if A[start] = x then
         return start
     else
         return -1
```

Given an algorithmic problem:

- Is there an algorithm that solves it? If so is it:
 - feasible?
 - efficient?
 - optimal?

Given an algorithm:

- How efficient is it?
- Is there a more method of getting the same results?

(usable in practice)

Rules of thumb for measuring efficiency

- *Typically*, (time) complexity mostly depends on the **size** of the input
- \rightarrow we typically express the time complexity as a function "size \mapsto time"

Note the \leq : typically we want the **worst-case complexity** for inputs of a given size

- best-case: not very interesting
- average: can be interesting, typically harder to compute though :)

- Can be roughly be done step-by-step.
- Essentially, each piece of a program can be regarded as a mathematical function

- Essentially: basic arithmetic operations, assignments: cost ~ 1, array allocation ~ size of the array, loop ~ sum of the complexities, ...
- $\rightarrow\,$ roughly the number of steps in step-wise execution we've done

There is a notion of **space** complexity

- Essentially, assign a size to State and compute the maximal size that occurs in an execution
- Unless you are doing big data or embedded system, this is not typically a limiting factor

(RAM is cheap)

• In most scenarii, bounded by time complexity

Accurate complexity?

The "time complexity function" we defined might not be completely accurate In practice

- hardware/compiler-dependent behaviors
- not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

 \rightarrow We had to make compromises

Accurate complexity?

The "time complexity function" we defined might not be completely accurate In practice

- hardware/compiler-dependent behaviors
- not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

 \rightarrow We had to make compromises

However, gives reasonable bounds/estimate

- up to a **constant factor**
- for large inputs

(and that's we care about!)

• Say that *g* asymptotically dominates f if $f \le K \cdot g + K'$ for some K, K' > 0

(vocabulary: asymptotically = "at the limit")

• Say that *g* asymptotically dominates f if $f \le K \cdot g + K'$ for some K, K' > 0

(vocabulary: asymptotically = "at the limit")

$$\longrightarrow$$
 Try to compute $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$

• Say that *g* asymptotically dominates f if $f \le K \cdot g + K'$ for some K, K' > 0

(vocabulary: asymptotically = "at the limit")

$$\longrightarrow$$
 Try to compute $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$

• if that's finite and non-zero: *f* and *g* are commensurate

• Say that *g* asymptotically dominates f if $f \le K \cdot g + K'$ for some K, K' > 0

(vocabulary: asymptotically = "at the limit")

$$\longrightarrow$$
 Try to compute $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$

- if that's finite and non-zero: *f* and *g* are commensurate
- if that's $+\infty$: *f* dominates strictly *g* asymptotically

• Say that *g* asymptotically dominates f if $f \le K \cdot g + K'$ for some K, K' > 0

(vocabulary: asymptotically = "at the limit")

$$\longrightarrow$$
 Try to compute $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$

- if that's finite and non-zero: *f* and *g* are commensurate
- if that's $+\infty$: *f* dominates strictly *g* asymptotically
- if that's 0: *g* dominates *f* strictly asymptotically

Very important notations

•
$$f(n) = \mathcal{O}(g(n))$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$

Very important notations

•
$$f(n) = \mathcal{O}(g(n))$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$
• $f(n) = \Omega(g(n))$ means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$

Very important notations

•
$$f(n) = \mathcal{O}(g(n))$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$

•
$$f(n) = \Omega(g(n))$$
 means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$

•
$$f(n) = \Theta(g(n))$$
 means $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$

Very important notations

•
$$f(n) = \mathcal{O}(g(n))$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$

•
$$f(n) = \Omega(g(n))$$
 means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$

•
$$f(n) = \Theta(g(n))$$
 means $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$

•
$$f(n) = o(g(n))$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$

Very important notations

•
$$f(n) = \mathcal{O}(g(n))$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < +\infty$

• $f(n) = \Omega(g(n))$ means $0 < \lim_{n \to +\infty} \frac{f(n)}{g(n)}$

•
$$f(n) = \Theta(g(n))$$
 means $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$

•
$$f(n) = o(g(n))$$
 means $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$

Basic examples:

•
$$n = \mathcal{O}(n^2)$$

•
$$n^3 + n^2 + \log(n) = \Theta(5n^3)$$

- $\log(n)2^n + n^5 + 5 = \Theta(\log(n)2^n)$
- $\log(n) = o(\sqrt{n})$
- $42 + \frac{1}{n} = \mathcal{O}(1)$

Basic tips for computing with ${\mathcal O}$

- If $f(n) \le g(n)$ then $f(n) = \mathcal{O}(g(n))$
- f(n) = o(g(n)) implies f(n) = O(g(n))
- for any k > 0 and k', kf(n) = O(f(n))
- If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))
- $\log(n)^k = o(n)$, $n^k = o(2^n)$ for any constant $k \in \mathbb{R}^+$

 $k = \frac{1}{2}$ corresponds to $\sqrt{}$

- $n^k = o(n^{k'})$ for k < k'
- $f_1(n) = \mathcal{O}(g_1(n))$ and $f_2 = \mathcal{O}(g_2(n))$ imply $f_1(n)f_2(n) = \mathcal{O}(g_1(n)g_2(n))$
- If f(n) = o(g(n)), then f(n) + g(n) = O(f(n))

	S	Solution #1			
	FindIndex(A, x)				
1		$res \leftarrow -1$			
2		$n \leftarrow \text{size of } A$			
3		for <i>i</i> from 0 to $n - 1$ do			
4		if $A[i] = x$ then			
5		$res \leftarrow i$			
6		return res			

Worst-case complexity?

Solution #1			
FindIndex(A, x)			
	$res \leftarrow -1$		
	$n \leftarrow \text{size of } A$		
	for <i>i</i> from 0 to $n-1$ do		
	if $A[i] = x$ then		
	$res \leftarrow i$		
	return res		
	F		

Worst-case complexity? $\rightarrow O(n)$ (linear)

	Solution #1				
	FindIndex(A, x)				
1		$res \leftarrow -1$			
2		$n \leftarrow \text{size of } A$			
3		for <i>i</i> from 0 to $n - 1$ do			
4		if $A[i] = x$ then			
5		$res \leftarrow i$			
6		return res			

Worst-case complexity? $\rightarrow O(n)$ (linear)

worst-case	best-case	average case
$\Theta(n)$	$\Theta(n)$	$\Theta(n)$

- If/then/else \rightsquigarrow can be over-approximated by the max of each branch
- Loops: if the body runs in O(f(n)) and there are O(g(n)) iterations
 → O(f(n)g(n))

Solution #2

	301ution #2			
	FindIndex2(A, x)			
1		$res \leftarrow -1$		
2		$n \leftarrow \text{size of } A$		
3		for <i>i</i> from $n - 1$ down to 0 do		
4		if $A[i] = x$ then		
5		$res \leftarrow i$		
6		return res		

Worst-case complexity?

Solution #2

	Solution #2				
	FindIndex2(A, x)				
1		$res \leftarrow -1$			
2		$n \leftarrow \text{size of } A$			
3		for <i>i</i> from $n - 1$ down to 0			
4		if $A[i] = x$ then			
5		$res \leftarrow i$			
6		return res			

Worst-case complexity? $\rightarrow O(n)$

	1 2	· · /
worst-case	best-case	average case
$\Theta(n)$	$\Theta(n)$	$\Theta(n)$

do

(nothing so different)

Solution #3

	F	FindIndex3(A, x)				
1		$res \leftarrow -1$				
2		$n \leftarrow \text{size of } A$				
3		$i \leftarrow 0$				
1		while $res = -1$ and $i < n$ do				
5		if $A[i] = x$ then				
6		$res \leftarrow i$				
7		Increment <i>i</i>				
8		return res				

Worst-case complexity? $\rightarrow \mathcal{O}(n)$

(nothing too different)

Solution #3

But...

	F	FindIndex3(A, x)				
1		$res \leftarrow -1$				
2		$n \leftarrow \text{size of } A$				
3		$i \leftarrow 0$				
1		while $res = -1$ and $i < n$ do				
5		if $A[i] = x$ then				
6		$res \leftarrow i$				
7		Increment <i>i</i>				
8		return res				

Worst-case complexity? $\rightarrow O(n)$

(nothing too different)

worst-case	best-case	average case
$\Theta(n)$	$\Theta(1)$	$\Theta(n)$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
    start \leftarrow 0
    end \leftarrow size of A
    while start < end do
         mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
         if A[mid] \leq x then
          | start \leftarrow mid
         else
           \mid end \leftarrow mid
    if A[start] = x then
         return start
    else
         return -1
```

• Difficulty: number of iterations?

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
     start \leftarrow 0
     end \leftarrow size of A
     while start < end do
         mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
          if A[mid] \leq x then
          | start \leftarrow mid
          else
           \mid end \leftarrow mid
    if A[start] = x then
          return start
     else
          return -1
```

• Difficulty: number of iterations?

• At step *k*, end – start
$$\leq \left\lfloor \frac{n}{2^k} \right\rfloor$$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
     start \leftarrow 0
     end \leftarrow size of A
     while start < end do
          mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
          if A[mid] \leq x then
          | start \leftarrow mid
          else
           \mid end \leftarrow mid
    if A[start] = x then
          return start
```

```
i ictui
```

else

```
return -1
```

• Difficulty: number of iterations?

• At step
$$k$$
, end $-$ start $\leq \left| \frac{n}{2^k} \right|$

• Main loop ends when *start* = *end*

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
```

```
start \leftarrow 0

end \leftarrow size of A

while start < end do

\begin{vmatrix} mid \leftarrow \lceil \frac{end + start}{2} \rceil \\ if A[mid] \le x then

\mid start \leftarrow mid

else

\mid end \leftarrow mid
```

else

```
return -1
```

- Difficulty: number of iterations?
- At step k, end start $\leq \left| \frac{n}{2^k} \right|$
- Main loop ends when *start* = *end*
- \rightarrow when $\frac{n}{2^k} < 1$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
```

```
start \leftarrow 0
end \leftarrow size of A
while start < end do
     mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
     if A[mid] \leq x then
      start \leftarrow mid
     else
       \mid end \leftarrow mid
if A[start] = x then
```

return start

else

```
∣ return -1
```

- Difficulty: number of iterations?
- At step k, end start $\leq \left\lfloor \frac{n}{2^k} \right\rfloor$
- Main loop ends when *start* = *end*
- \rightarrow when $\frac{n}{2^k} < 1$
- \rightarrow when $n < 2^k$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
     start \leftarrow 0
     end \leftarrow size of A
     while start < end do
          mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
          if A[mid] \leq x then
          start \leftarrow mid
          else
           \mid end \leftarrow mid
     if A[start] = x then
          return start
```

else

return -1

Complexity?

- Difficulty: number of iterations?
- At step *k*, end start $\leq \left\lfloor \frac{n}{2^k} \right\rfloor$
- Main loop ends when *start* = *end*
- \rightarrow when $\frac{n}{2^k} < 1$
- \rightarrow when $n < 2^k$
- \rightarrow when $\log_2(n) < k$

(Recall that this one only works for *sorted* inputs)

```
FindIndexDicho(A, x)
```

```
start \leftarrow 0
end \leftarrow size of A
while start < end do
     mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
     if A[mid] \leq x then
      start \leftarrow mid
     else
      \mid end \leftarrow mid
if A[start] = x then
     return start
```

```
else
```

```
I return −1
```

```
Complexity? \rightarrow \Theta(\log(n))
```

- Difficulty: number of iterations?
- At step *k*, end start $\leq \left| \frac{n}{2^k} \right|$
- Main loop ends when *start* = *end*
- \rightarrow when $\frac{n}{2^k} < 1$
- \rightarrow when $n < 2^k$
- \rightarrow when $\log_2(n) < k$

```
SumTensor(A)

\begin{array}{c|c}
n \leftarrow \text{size of } A \\
r \leftarrow 0 \\
\text{for } i \text{ from } n - 1 \text{ down to } 0 \text{ do} \\
& \text{for } j \text{ from } 0 \text{ to } n - 1 \text{ do} \\
& | r \leftarrow A[i] \times A[j] \\
& \text{return } r
\end{array}
```

Complexity?

```
SumTensor(A)

\begin{array}{c|c}
n \leftarrow \text{size of } A \\
r \leftarrow 0 \\
\text{for } i \text{ from } n - 1 \text{ down to } 0 \text{ do} \\
& \text{for } j \text{ from } 0 \text{ to } n - 1 \text{ do} \\
& | r \leftarrow A[i] \times A[j] \\
& \text{return } r
\end{array}
```

Complexity? $\rightarrow \Theta(n^2)$ (quadratic)

```
SumLowerTensor(A)

n \leftarrow \text{size of } A

r \leftarrow 0

for i from n - 1 down to 0 do

| for j from 0 to i do

| r \leftarrow A[i] \times A[j]

return r
```

Complexity?

```
SumLowerTensor(A)

n \leftarrow \text{size of } A

r \leftarrow 0

for i from n - 1 down to 0 do

| for j from 0 to i do

| r \leftarrow A[i] \times A[j]

return r
```

Complexity? $\rightarrow \mathcal{O}(n^2)$

```
SumLowerTensor(A)

n \leftarrow \text{size of } A

r \leftarrow 0

for i from n - 1 down to 0 do

| for j from 0 to i do

| r \leftarrow A[i] \times A[j]

return r
```

Complexity? $\rightarrow \mathcal{O}(n^2)$ in fact $\Theta(n^2)$

```
SumLowerTensor(A)

\begin{array}{c|c}
n \leftarrow \text{size of } A \\
r \leftarrow 0 \\
\text{for } i \text{ from } n - 1 \text{ down to } 0 \text{ do} \\
& & | \text{ for } j \text{ from } 0 \text{ to } i \text{ do} \\
& & | r \leftarrow A[i] \times A[j] \\
\text{return } r
\end{array}
```

Complexity? $\rightarrow O(n^2)$ in fact $\Theta(n^2)$ Lower bound: $\sum_{i=0}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$

```
SumLowerTensor(A)

n \leftarrow \text{size of } A

r \leftarrow 0

for i from n - 1 down to 0 do

| for j from 0 to i do

| r \leftarrow A[i] \times A[j]

return r
```

Complexity? $\rightarrow O(n^2)$ in fact $\Theta(n^2)$ Lower bound: $\sum_{i=0}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$ (more generally, $\sum_{i=0}^{n} i^k = \Theta(n^k)$, so that kind of approximation is often safe)

```
Recall that SumTensor is \mathcal{O}(n^2)
```

```
Something weird(A)

n \leftarrow \text{size of } A

r \leftarrow 0

for i from n - 1 down to 0 do

| r \leftarrow A[i\%2] \times \text{SumTensor}(A)

return r
```

Complexity?

```
Recall that SumTensor is \mathcal{O}(n^2)
```

```
Something weird(A)

n \leftarrow \text{size of } A

r \leftarrow 0

for i from n - 1 down to 0 do

| r \leftarrow A[i\%2] \times \text{SumTensor}(A)

return r
```

Complexity? $\rightarrow \mathcal{O}(n^3)$

- Recall that an algorithmic problem \neq algorithm.
- Common shorthands for the intrinsic hardness of a problem **P**:
 - **P** is in $\mathcal{O}(f(n)) \to$ there is a $\mathcal{O}(f(n))$ algorithm solving **P**
 - **P** is in $\Theta(f(n)) \rightarrow$ there is an optimal solution to **P** in $\Theta(f(n))$
 - **P** is in $\Omega(f(n)) \rightarrow$ any algorithm solving **P** has complexity $\Omega(f(n))$

(out of scope) complexity theory

Are some problem intrinsically hard \rightarrow yes!

- Complexity theorists study that!
- Problems solvable in $\mathcal{O}(n^k)$ = solvable in polynomial time, class P
- Problems whose solution can be checked in polynomial time NP

Typically

- Polynomial time problems are tractable
- Problems that are NP-hard do not have known subexponential solution
- $\rightarrow\,$ to prove that some problem is intricically hard, prove it is necessarily as hard as *all* NP problems

Big open problem Is $P \neq NP$?

(there are classes that are strictly harder than NP, such as EXPTIME)

Next challenge to compute complexities

```
FindIndexDicho2(A, x, start, end)
    if end < start then
         if A[start] = x then
           return start
         else
              return -1
    mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
    if A[mid] \leq x then
         FindIndexDicho2(A, x, mid, end)
    else
         FindIndexDicho2(A, x, start, mid)
C(0) = \mathcal{O}(1)
C(n+1) = C\left(\left|\frac{n+1}{2}\right|\right) + \mathcal{O}(1)
```

Next challenge to compute complexities

```
FindIndexDicho2(A, x, start, end)
     if end < start then
         if A[start] = x then
           return start
          else
               return -1
    mid \leftarrow \left\lceil \frac{end+start}{2} \right\rceil
     if A[mid] \leq x then
          FindIndexDicho2(A, x, mid, end)
     else
          FindIndexDicho2(A, x, start, mid)
C(0) = \mathcal{O}(1)
C(n+1) = C\left(\left|\frac{n+1}{2}\right|\right) + \mathcal{O}(1)
\rightarrow C(n) = \mathcal{O}(\log(n))
```

Thanks for listening!

Please look at the resources on canvas as well

Strike & logistics

Questions?