
CSCM12: software concept and efficiency
Estimating the complexity of algorithms

Cécilia PRADIC
Swansea University, 06/20/2023

1



Recommended reading after this lecture

• Chapter 3 “Characterizing Running Times”
of Introduction to Algorithms (4th ed., 2011) by Cormen et. al

• Chapter 2 “Principles of Algorithm Analysis”
of Algorithms in Java (3rd ed., 2004) by Sedgewick

No need to look at the “Basic Recurrences” section for now

2



One running example

An algorithmic problem

Input: An array A of size n and some (say, integer) x
Output: An index i such that A[i] = x or −1 if there is none

Solution #1

FindIndex(A, x)
1 res← −1
2 n← size of A
3 for i from 0 to n− 1 do
4 if A[i] = x then
5 res← i
6 return res

3



Running the first solution

Let us try to run this step-by-step!

FindIndex(A, x)
1 res← −1
2 n← size of A
3 for i from 0 to n− 1 do
4 if A[i] = x then
5 res← i
6 return res

• A = [2, 4, 7, 7, 10, 15], x = 7

• A = [2, 4, 7, 7, 10, 15], x = 11

4



Running the first solution

Let us try to run this step-by-step!

FindIndex(A, x)
1 res← −1
2 n← size of A
3 for i from 0 to n− 1 do
4 if A[i] = x then
5 res← i
6 return res

• A = [2, 4, 7, 7, 10, 15], x = 7
• A = [2, 4, 7, 7, 10, 15], x = 11

4



Alternative solution 1

Solution #2

FindIndex2(A, x)
1 res← −1
2 n← size of A
3 for i from n− 1 down to 0 do
4 if A[i] = x then
5 res← i
6 return res

• Solves the same problem
• Different outputs on our first sample input
• (Roughly the same complexity)

5



Alternative solution 2

Solution #3

FindIndex3(A, x)
1 res← −1
2 n← size of A
3 i← 0
4 while res = −1 and i < n do
5 if A[i] = x then
6 res← i
7 Increment i
8 return res

• Sometimes more efficient
• But is it significant in practice?

6



A more precise problem and another solution

A more precise algorithmic problem

Input: A sorted array A of size n and some (say, integer) x
Output: An index i such that A[i] = x or −1 if there is none

• The previous solutions work, but…

7



A more efficient solution for sorted inputs

FindIndexDicho(A, x)
start← 0
end← size of A
while start < end do

mid← d end+start
2 e

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

8



Consideration of efficiency

Given an algorithmic problem:

• Is there an algorithm that solves it? If so is it:
• feasible? (usable in practice)
• efficient?
• optimal?

Given an algorithm:

• How efficient is it?
• Is there a more method of getting the same results?

9



Rules of thumb for measuring efficiency

• Typically, (time) complexity mostly depends on the size of the input
→ we typically express the time complexity as a function “size 7→ time”

x � // time to compute A(x)

Input c //

≤

size
��

N

N k 7→ max{c(x) | size(x) = k}︸ ︷︷ ︸
complexity

99

Note the ≤: typically we want the worst-case complexity for inputs of a given size

• best-case: not very interesting
• average: can be interesting, typically harder to compute though :)

10



Computing time complexity

• Can be roughly be done step-by-step.
• Essentially, each piece of a program can be regarded as a mathematical

function
(initial) value of variables/memory︷ ︸︸ ︷

State −→ State× N︸︷︷︸
time taken to compute the step

• Essentially: basic arithmetic operations, assignments: cost ∼ 1, array
allocation ∼ size of the array, loop ∼ sum of the complexities, …

→ roughly the number of steps in step-wise execution we’ve done

11



The notion of space complexity

There is a notion of space complexity

• Essentially, assign a size to State and compute the maximal size that occurs in
an execution

• Unless you are doing big data or embedded system, this is not typically a
limiting factor

(RAM is cheap)

• In most scenarii, bounded by time complexity

12



Accurate complexity?

The “time complexity function” we defined might not be completely accurate
In practice

• hardware/compiler-dependent behaviors
• not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

→We had to make compromises

However, gives reasonable bounds/estimate

• up to a constant factor
• for large inputs (and that’s we care about!)

13



Accurate complexity?

The “time complexity function” we defined might not be completely accurate
In practice

• hardware/compiler-dependent behaviors
• not so reliable hardware optimisations

(predictive branching, prefetch, cache misses)

→We had to make compromises

However, gives reasonable bounds/estimate

• up to a constant factor
• for large inputs (and that’s we care about!)

13



Functions at infinity up to a constant

Suppose that we have two complexity functions f, g : N>0 → R+

• Say that g asymptotically dominates f if f ≤ K · g+ K′ for some K,K′ > 0
(vocabulary: asymptotically = “at the limit”)

−→ Try to compute lim
n→+∞

f(n)
g(n)

• if that’s finite and non-zero: f and g are commensurate
• if that’s +∞: f dominates strictly g asymptotically
• if that’s 0: g dominates f strictly asymptotically

14



Functions at infinity up to a constant

Suppose that we have two complexity functions f, g : N>0 → R+

• Say that g asymptotically dominates f if f ≤ K · g+ K′ for some K,K′ > 0
(vocabulary: asymptotically = “at the limit”)

−→ Try to compute lim
n→+∞

f(n)
g(n)

• if that’s finite and non-zero: f and g are commensurate
• if that’s +∞: f dominates strictly g asymptotically
• if that’s 0: g dominates f strictly asymptotically

14



Functions at infinity up to a constant

Suppose that we have two complexity functions f, g : N>0 → R+

• Say that g asymptotically dominates f if f ≤ K · g+ K′ for some K,K′ > 0
(vocabulary: asymptotically = “at the limit”)

−→ Try to compute lim
n→+∞

f(n)
g(n)

• if that’s finite and non-zero: f and g are commensurate

• if that’s +∞: f dominates strictly g asymptotically
• if that’s 0: g dominates f strictly asymptotically

14



Functions at infinity up to a constant

Suppose that we have two complexity functions f, g : N>0 → R+

• Say that g asymptotically dominates f if f ≤ K · g+ K′ for some K,K′ > 0
(vocabulary: asymptotically = “at the limit”)

−→ Try to compute lim
n→+∞

f(n)
g(n)

• if that’s finite and non-zero: f and g are commensurate
• if that’s +∞: f dominates strictly g asymptotically

• if that’s 0: g dominates f strictly asymptotically

14



Functions at infinity up to a constant

Suppose that we have two complexity functions f, g : N>0 → R+

• Say that g asymptotically dominates f if f ≤ K · g+ K′ for some K,K′ > 0
(vocabulary: asymptotically = “at the limit”)

−→ Try to compute lim
n→+∞

f(n)
g(n)

• if that’s finite and non-zero: f and g are commensurate
• if that’s +∞: f dominates strictly g asymptotically
• if that’s 0: g dominates f strictly asymptotically

14



Big O notation and friends

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))
• f(n) = o(g(n)) means lim

n→+∞
f(n)
g(n) = 0

Basic examples:

• n = O(n2)

• n3 + n2 + log(n) = Θ(5n3)

• log(n)2n + n5 + 5 = Θ(log(n)2n)
• log(n) = o(

√
n)

• 42+ 1
n = O(1)

15



Big O notation and friends

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))
• f(n) = o(g(n)) means lim

n→+∞
f(n)
g(n) = 0

Basic examples:

• n = O(n2)

• n3 + n2 + log(n) = Θ(5n3)

• log(n)2n + n5 + 5 = Θ(log(n)2n)
• log(n) = o(

√
n)

• 42+ 1
n = O(1)

15



Big O notation and friends

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))

• f(n) = o(g(n)) means lim
n→+∞

f(n)
g(n) = 0

Basic examples:

• n = O(n2)

• n3 + n2 + log(n) = Θ(5n3)

• log(n)2n + n5 + 5 = Θ(log(n)2n)
• log(n) = o(

√
n)

• 42+ 1
n = O(1)

15



Big O notation and friends

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))
• f(n) = o(g(n)) means lim

n→+∞
f(n)
g(n) = 0

Basic examples:

• n = O(n2)

• n3 + n2 + log(n) = Θ(5n3)

• log(n)2n + n5 + 5 = Θ(log(n)2n)
• log(n) = o(

√
n)

• 42+ 1
n = O(1)

15



Big O notation and friends

Very important notations

• f(n) = O(g(n)) means lim
n→+∞

f(n)
g(n) < +∞ That’s the one you’ll see all the time

• f(n) = Ω(g(n)) means 0 < lim
n→+∞

f(n)
g(n)

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n) = Ω(g(n))
• f(n) = o(g(n)) means lim

n→+∞
f(n)
g(n) = 0

Basic examples:

• n = O(n2)

• n3 + n2 + log(n) = Θ(5n3)

• log(n)2n + n5 + 5 = Θ(log(n)2n)
• log(n) = o(

√
n)

• 42+ 1
n = O(1)

15



Basic tips for computing with O

• If f(n) ≤ g(n) then f(n) = O(g(n))
• f(n) = o(g(n)) impies f(n) = O(g(n))
• for any k > 0 and k′, kf(n) = O(f(n))
• If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))
• log(n)k = o(n), nk = o(2n) for any constant k ∈ R+

k = 1
2 corresponds to √

• nk = o(nk′) for k < k′

• f1(n) = O(g1(n)) and f2 = O(g2(n)) imply f1(n)f2(n) = O(g1(n)g2(n))
• If f(n) = o(g(n)), then f(n) + g(n) = O(f(n))

16



Back to our examples (1/4)

Solution #1

FindIndex(A, x)
1 res← −1
2 n← size of A
3 for i from 0 to n− 1 do
4 if A[i] = x then
5 res← i
6 return res

Worst-case complexity?

→O(n) (linear)

worst-case best-case average case
Θ(n) Θ(n) Θ(n)

17



Back to our examples (1/4)

Solution #1

FindIndex(A, x)
1 res← −1
2 n← size of A
3 for i from 0 to n− 1 do
4 if A[i] = x then
5 res← i
6 return res

Worst-case complexity? →O(n) (linear)

worst-case best-case average case
Θ(n) Θ(n) Θ(n)

17



Back to our examples (1/4)

Solution #1

FindIndex(A, x)
1 res← −1
2 n← size of A
3 for i from 0 to n− 1 do
4 if A[i] = x then
5 res← i
6 return res

Worst-case complexity? →O(n) (linear)

worst-case best-case average case
Θ(n) Θ(n) Θ(n)

17



Useful heuristics

• If/then/else⇝ can be over-approximated by the max of each branch
• Loops: if the body runs in O(f(n)) and there are O(g(n)) iterations
→ O(f(n)g(n))

18



Back to our examples (2/4)

Solution #2

FindIndex2(A, x)
1 res← −1
2 n← size of A
3 for i from n− 1 down to 0 do
4 if A[i] = x then
5 res← i
6 return res

Worst-case complexity?

→O(n) (nothing so different)
worst-case best-case average case
Θ(n) Θ(n) Θ(n)

19



Back to our examples (2/4)

Solution #2

FindIndex2(A, x)
1 res← −1
2 n← size of A
3 for i from n− 1 down to 0 do
4 if A[i] = x then
5 res← i
6 return res

Worst-case complexity? →O(n) (nothing so different)
worst-case best-case average case
Θ(n) Θ(n) Θ(n)

19



Back to our examples (3/4)

Solution #3

FindIndex3(A, x)
1 res← −1
2 n← size of A
3 i← 0
4 while res = −1 and i < n do
5 if A[i] = x then
6 res← i
7 Increment i
8 return res

Worst-case complexity? →O(n) (nothing too different)

But… worst-case best-case average case
Θ(n) Θ(1) Θ(n)

20



Back to our examples (3/4)

Solution #3

FindIndex3(A, x)
1 res← −1
2 n← size of A
3 i← 0
4 while res = −1 and i < n do
5 if A[i] = x then
6 res← i
7 Increment i
8 return res

Worst-case complexity? →O(n) (nothing too different)

But… worst-case best-case average case
Θ(n) Θ(1) Θ(n)

20



Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)

start← 0
end← size of A
while start < end do

mid← d end+start
2 e

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?

• At step k, end− start ≤
⌊

n
2k
⌋

• Main loop ends when start = end
→ when n

2k < 1
→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

21



Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)

start← 0
end← size of A
while start < end do

mid← d end+start
2 e

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?
• At step k, end− start ≤

⌊
n
2k
⌋

• Main loop ends when start = end
→ when n

2k < 1
→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

21



Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)

start← 0
end← size of A
while start < end do

mid← d end+start
2 e

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?
• At step k, end− start ≤

⌊
n
2k
⌋

• Main loop ends when start = end

→ when n
2k < 1

→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

21



Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)

start← 0
end← size of A
while start < end do

mid← d end+start
2 e

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?
• At step k, end− start ≤

⌊
n
2k
⌋

• Main loop ends when start = end
→ when n

2k < 1

→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

21



Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)

start← 0
end← size of A
while start < end do

mid← d end+start
2 e

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?
• At step k, end− start ≤

⌊
n
2k
⌋

• Main loop ends when start = end
→ when n

2k < 1
→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n))

21



Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)

start← 0
end← size of A
while start < end do

mid← d end+start
2 e

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?
• At step k, end− start ≤

⌊
n
2k
⌋

• Main loop ends when start = end
→ when n

2k < 1
→ when n < 2k

→ when log2(n) < k

Complexity?

→ Θ(log(n))

21



Back to our examples (4/4)

(Recall that this one only works for sorted inputs)
FindIndexDicho(A, x)

start← 0
end← size of A
while start < end do

mid← d end+start
2 e

if A[mid] ≤ x then
start← mid

else
end← mid

if A[start] = x then
return start

else
return -1

• Difficulty: number of iterations?
• At step k, end− start ≤

⌊
n
2k
⌋

• Main loop ends when start = end
→ when n

2k < 1
→ when n < 2k

→ when log2(n) < k

Complexity? → Θ(log(n)) 21



Some simple examples (1/3)

SumTensor(A)
n← size of A
r← 0
for i from n− 1 down to 0 do

for j from 0 to n− 1 do
r← A[i]× A[j]

return r

Complexity?

→ Θ(n2) (quadratic)

22



Some simple examples (1/3)

SumTensor(A)
n← size of A
r← 0
for i from n− 1 down to 0 do

for j from 0 to n− 1 do
r← A[i]× A[j]

return r

Complexity? → Θ(n2) (quadratic)

22



Some simple examples (2/3)

SumLowerTensor(A)
n← size of A
r← 0
for i from n− 1 down to 0 do

for j from 0 to i do
r← A[i]× A[j]

return r

Complexity?

→O(n2) in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

23



Some simple examples (2/3)

SumLowerTensor(A)
n← size of A
r← 0
for i from n− 1 down to 0 do

for j from 0 to i do
r← A[i]× A[j]

return r

Complexity? →O(n2)

in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

23



Some simple examples (2/3)

SumLowerTensor(A)
n← size of A
r← 0
for i from n− 1 down to 0 do

for j from 0 to i do
r← A[i]× A[j]

return r

Complexity? →O(n2) in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

23



Some simple examples (2/3)

SumLowerTensor(A)
n← size of A
r← 0
for i from n− 1 down to 0 do

for j from 0 to i do
r← A[i]× A[j]

return r

Complexity? →O(n2) in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

23



Some simple examples (2/3)

SumLowerTensor(A)
n← size of A
r← 0
for i from n− 1 down to 0 do

for j from 0 to i do
r← A[i]× A[j]

return r

Complexity? →O(n2) in fact Θ(n2)

Lower bound:
n∑

i=0
i = n(n+1)

2 = Θ(n2)

(more generally,
n∑

i=0
ik = Θ(nk), so that kind of approximation is often safe)

23



Some simple examples (3/3)

Recall that SumTensor is O(n2)

Something weird(A)
n← size of A
r← 0
for i from n− 1 down to 0 do

r← A[i%2]× SumTensor(A)
return r

Complexity?

→O(n3)

24



Some simple examples (3/3)

Recall that SumTensor is O(n2)

Something weird(A)
n← size of A
r← 0
for i from n− 1 down to 0 do

r← A[i%2]× SumTensor(A)
return r

Complexity? →O(n3)

24



Complexity of an algorithmic problem

• Recall that an algorithmic problem 6= algorithm.
• Common shorthands for the intrinsic hardness of a problem P:

• P is in O(f(n))→ there is a O(f(n)) algorithm solving P
• P is in Θ(f(n))→ there is an optimal solution to P in Θ(f(n))
• P is in Ω(f(n))→ any algorithm solving P has complexity Ω(f(n))

25



(out of scope) complexity theory

Are some problem intrinsically hard→ yes!

• Complexity theorists study that!
• Problems solvable in O(nk) = solvable in polynomial time, class P
• Problems whose solution can be checked in polynomial time NP

Typically

• Polynomial time problems are tractable
• Problems that are NP-hard do not have known subexponential solution
→ to prove that some problem is intricically hard, prove it is necessarily as hard

as all NP problems
Big open problem
Is P 6= NP?

(there are classes that are strictly harder than NP, such as EXPTIME)
26



Next challenge to compute complexities

FindIndexDicho2(A, x, start, end)
if end ≤ start then

if A[start] = x then
return start

else
return -1

mid← d end+start
2 e

if A[mid] ≤ x then
FindIndexDicho2(A, x,mid, end)

else
FindIndexDicho2(A, x, start,mid)

C(0) = O(1)

C(n+ 1) = C
(⌊n+1

2
⌋)

+O(1)

→ C(n) = O(log(n))

27



Next challenge to compute complexities

FindIndexDicho2(A, x, start, end)
if end ≤ start then

if A[start] = x then
return start

else
return -1

mid← d end+start
2 e

if A[mid] ≤ x then
FindIndexDicho2(A, x,mid, end)

else
FindIndexDicho2(A, x, start,mid)

C(0) = O(1)

C(n+ 1) = C
(⌊n+1

2
⌋)

+O(1)

→ C(n) = O(log(n))

27



Conclusion

Thanks for listening!

Please look at the resources on canvas as well

Strike & logistics

Questions?

28


