
CSCM12 – Software concepts and efficiency March 31st 2023
Tonicha Crook, Hassan Eshkiki, Cécilia Pradic & Hans Ren

Lab 7: graphs

For the lab this week, your task will be to complete the file GarphsExercises.java.
Use the main function to test your functions and show your exampes if you want
to sign off.

1. The two graph representations For this exercise, we shall consider unla-
belled directed graphs whose vertices are identified with integers. Recall that
there are two graph representations that are interesting:

• Using arrays of adjacency lists

• Using an adjacency matrix

For the latter, we will simply use elements of type int[][]. For the former,
we define a class Graph. It contains two attributes:

• adjSucc, whose ith cell should contain all the vertices j such that (i, j)
is an edge of the graph

• adjPred, whose ith cell should contain all the vertices j such that (j, i)
is an edge of the graph.

(a) Define an adjacency matrix that correspond to the following graph

0 3

4
1 2

(b) Write the code for the constructor

public Graph(boolean[][] adjM)

that converts from the adjacency matrix representation to an adjacency
list representation.

(c) (Optional) Double-check that your function works using the method to
print out graphs provided to you. For instance, if you call g.toDotFile("ex")
in your main, you should obtain a file ex.dot in your folder. Then if

1



FloydWarshall(M)

D ← a copy of M
n← dimension of M
for k from 0 to n− 1 do

for i from 0 to n− 1 do
for j from 0 to n− 1 do

D[i][j]← min(D[i][j], D[i][k] +D[k][j])
end

end

end
return D

Figure 1: The Floyd-Warshall algorithm.

you have graphviz1 installed, issuing dot -Tpng ex.dot > ex.png in
the terminel should generate a graphical representation in ex.png.

(d) Write the code for the method

public boolean[][] toMatrix()

that converts a Graph to its adjacency matrix representation

2. Computing distances in weighted graphs Given the adjacency matrix
of a weighted graph, where the cell (i, j) contains a positive integer or ∞
(that morally corresponds to having no edges), the Floyd-Warshall algorithm
depicted in Figure 1 outputs another matrix that gives all distances. The
key insight that allows to check that it does its job correctly is that, after
the outer loop has been iterated k times, then the cell D[i][j] contains the
minimal length of a path that goes from i to j and may use intermediate
vertices in the set {0, . . . , k − 1}.

(a) What is the time complexity of the Floyd-Warshall algorithm (in func-
tion of the number of vertices in the input graph)?

(b) Implement the function

static public int[][] allDistances(int[][] graph)

in the class GraphsExercises using the Floyd-Warshall algorithm. Since
there is no ∞ values in int in java, you may use for instance −1 to rep-
resent that instead.

(c) Challenge Implement a function

static public LinkedList<Integer>[][] allShortestPaths(int[][] graph)

that, instead f just giving the distances, outputs in each cell (i, j) a path
of minimal length that goes from i to j.

1https://graphviz.org/; hopefully it is installed by default on the linux machines

2

https://graphviz.org/


3. Graph traversals

(a) Implement the method

public LinkedList<Integer> toListDFS(int i)

of Graph that performs a depth-first search and enumerate all the ver-
tices encountered in order. You may use either recursion or an impera-
tive implementation using a stack, up to you.

(b) Implement the method

public int[] allDistancesFrom(int source)

that outputs an array A such that A[target] contains the distance from
source to target in the graph, assuming that the distance between two
vertices is 1 if there is an edge, and ∞ otherwise (as in the previous
question, use a dummy value like -1 if there is no path at all). Hint:
use a variation of a BFS - if that helps, a method performing a BFS is
provided to you. Looking up the documentation of LinkedList, and in
particular the pollLast method, might be useful.

(c) Challenge: Adapt the previous method to obtain minimal paths.

(d) Challenge: Write a class BFSIterator extending Iterator<Integer>

and contains a constructor

public BFSIterator(Graph g, int start)

that allows to enumerate all the vertices of the graph in a breadth-first
manner.

3


