
CSCM12 – Software concepts and efficiency March 24th 2023
Tonicha Crook, Cécilia Pradic & Hans Ren

Lab 6: binary trees

For the lab this week, your task will be to complete the file BTreeExercises.java.
Use the main function to test your functions and show your exampes if you want
to sign off.

1. Some examples

(a) In the main function, two examples example1 and example2 are defined.
Draw the corresponding structures. Do these structures have sharing?
Cycles?

(b) Write some code that represent the following tree in a variable example3:

2 7

5

3

(c) Run the main function and try to understand the output of toString.
Try to define a variable example4 such that example4.ofString() is
"(2 (4)) 5 (2)".

(d) Define a further example5 with a cycle. For testing, don’t try to call
toString; but it should be the case that example5.hasCycle() is true,
so you can test that.

2. Basic methods In this question we look at starting to flesh out the class
BTree

(a) Write the body of the method

public int depth()

that returns the depth/height of the tree, i.e. the longest path from the
root of the tree to a leaf.

(b) Write the body of the method

public boolean equals(BTree<T> otherTree)

that checks wether the calling object represents the same tree as otherTree
(it should not be the same as ==; think of what you know about String)

(c) Write the body of the method

public ArrayList<T> prefixTraversal()

1



that converts a list to an array using a prefix traversal.

(d) Write the body of the method

static public <T> BTree<T> of(ArrayList<T> arr)

that converts an array to a tree using the scheme presented in the lec-
ture/the scheme in the last lab sheet presented in the last lab sheet
to represents full binary trees using arrays (a null value in the array
indicates the absence of any subtree).

3. Binary search trees Now we are going to look at methods of the class BST.
Objects of this class have a single tree attribute, which should always be a
binary search tree and all operations should preserve that invariant: for every
node, the label should be greater than all labels on the left subtree of the
node and lesser than the labels in the right subtree if they exist

(a) Write the body of the method

public void insert(int k)

that inserts a new number in the binary search tree.

(b) Write the body of the method

public void delete(int k)

that deletes a number from the binary search tree.

4. Challenge: more advanced functions Let us look at some more functions
of the class BTree

(a) Write the body of the method

public <U> BTree<U> map(Function<T, U> f)

that returns the tree obtained by relabelling uniformly all the nodes of
the calling tree using f (recall you can use f.apply(bla) to apply f).

(b) Write the body of the method

static public BTree<Integer> of(String st)

that should convert a String to a tree; this should be the inverse of the
function toString that is provided

(c) Write the body of the method

public void unshareSubtrees()

that removes sharing from a structure with no cycles, but keeps the same
underlying unfolding (so the output of the provided toString method
should remain the same)

(d) Change the code of the toString function so that it prints out useful
informations in case there are cycles. You could for instance write the
result as some sort of system of recursive equations, as

(x) 5 ((2) 4 (x)) where

{
x = ((5) x) 7 y
y = y 4 (x 5 y)

2


