
CSCM12 – Software concepts and efficiency March 3rd 2023
Tonicha Crook & Cécilia Pradic

Lab 4: doubly linked lists implementation
The goal of this lab is mostly to get you to play with a variant of linked lists, so
as to familiarize yourself with programming with recursive structures in Java. To
do so, we provide you with a template file ListExercises.java and a number of
placeholder functions for you to fill in there (and some dummy return statement
that you should get rid of ultimately - they are there so that the code compiles
even if it is unfinished).
I suggest that you test your code whenever you have finished writing a function so
that you spend a reasonable amount of time debugging. Also this time around I
would suggest you all try to write your own copy of the code, even if you help each
other otherwise - and archive it.
The questions below correspond to things to sequentially fill out in the tem-
plate, which contains further instructions in comments regarding their specification.
Question 1-3 are about the class DLList<T>, and question 4 is a more advanced
one for people who have time to spare.
Happy hacking!

1. Write implementations for the methods

public void push_back(T x);
public void push_front(T x);
public T pop_front();
public void concatenate(DLList<T> xs);

as specified in the template. You implementation should work in O(1).

2. Go back and uncomment the length attribute. Update your functions above
so that it remains consistent. Then implement the methods

public int size();
public T get(int idx);
public void insertAt(int idx, T x);

3. The goal of this question is to implement the merge sort algorithm over
doubly-linked lists, which can be done with a linear space complexity (essen-
tially there is never any need to duplicate the input if we are willing to throw
it away).
Implement the methods

public DLList<T> splitInHalf();
public void mergeIn(Comparator<T> cmp, DLList<T> other)
public void mergeSort(Comparator<T> cmp)

4. Read up on ListIterator<T> at https://docs.oracle.com/en/java/javase/
18/docs/api/java.base/java/util/ListIterator.html, and complete the
implementation of a class satisfying that specification at the bottom of the
file. That class should have a constructor that takes a DLList<T> and has all
operations running in constant time.

1

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/ListIterator.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/ListIterator.html

