CSCM12 — Software concepts and efficiency February 24th 2023
Tonicha Crook & Cécilia Pradic

Lab 3: divide-and-conquer, dynamic programming, greedy
algorithms and sorting

e Once you are done with the firs two question, it might be helpful to go back
to the last question of last week’s lab.

1. Assessing time complexity For each of the recurrence equations below,
give an asymptotic estimate(you may use the master theorem for most cases)

(a) T'(n) =2T(n/2) + 3n

(b) T(n) = 2T (n/2) + 2n'°e™ 1 log(n)
(¢) T(n) =2T(n/4) + /n

(d) T'(n) =2T(n/4) ++/n

(e) T(n) = 2T (n/4) + n?

(f) Challenge: T'(n) =T(n/3) +2

2. The change problem Recall the following algorithmic problem:

o Input: A sequence of integers ¢co =1 < ¢; < ... < ¢ representing coin
values and a number a

e Output: An repartition of coins rg,..., 7 such that giving giving back
r; coins of values ¢; for all i yields the desired amount a (i.e. >, ric; = a)

(a) Implement in java the greedy algorithm that we have seen in class: if we
try to give back amount a, pick the largest i such that ¢; < a; give back
one coin of value ¢; and proceed to produce the change of value a — ;.

(b) What is the complexity of that algorithm? Can you improve it?

(c) Call an answer to an answer optimal if it has the minimal amount of
coins (), ;) amongst all answers.
Check that if we use the coin system ¢y = 1,¢; = 4,co = 5, there is
an amount such that the greedy algorithm above does not return an
optimal answer on the corresponding instance.

(d) Challenge: prove that if 2¢; < ¢4 for all ¢ < k, then the greedy
algorithm returns the optimal answer.

(e) Using dynamic programming, write a solution that returns an optimal
solution for all possible coin systems. What is its complexity? (Hint:
you may use a ArrayList<ArrayList<Integer>> to compute all of the
optimal change allocation for all amonts < n)

3. Quicksort Consider the quicksort algorithm, whose code is recalled below
(taken from the file Sorts. java you have access to on canvas; PivotFun is
an interface allowing to pass a pivot-picking function as argument)

public static void quickSortInner(PivotFun getPivot,
int[] arr,
int min, int max)



// If there is at most one element, return immediately
if (max - min <= 1)
return;

// get the position of the pivot according to the pivot policy
// getPivot, and put that pivot in the middle of the array

int pivotPos = getPivot.apply(arr,min,max);

swap(arr, min, pivotPos);

// reshuffle the array so that we have only elements <= than the pivot
// before the new pivotPos and only >= elements after
pivotPos = pivotAround(arr, min, max);

int postPivot = pivotPos+1;

// recursively sort above and below the pivot
quickSortInner(getPivot, arr, min, pivot);
quickSortInner(getPivot, arr, postPivot, max);

public static int pivotAround(int[] arr, int pivotPos, int max)
{

final int pivot = arr[pivotPos];

for(int i = pivotPos + 1; i < max; i++)

{
if (arr[i] < pivot)
{
arr [pivotPos] = arrl[il;
pivotPos++;
arr[i] = arr[pivotPos];
arr[pivotPos] = pivot;
}
}
return pivotPos;

}

a) Argue that if getPivot(arr,min,max) always returns min, then the
g g Y
worst running time on an input of size n is ©(n?).

(b) Argue that if getPivot (arr,min,max) returns the median of the collec-
tion {arr[min],...,arr[max-1]1}, then the running time is ©(nlog(n))
(assuming that all of the numbers in the array are pairwise distinct)

(c) Challenge: Assume a distribution of inputs on arrays of all size which

is invariant under permutations. Show that quick sort runs on average
in time O(nlog(n))

d) Now assume that the input distribution is no longer invariant under
g
permutations. Do you see a way to get an average running time of
O(nlog(n)) using Random?

4. Median selection The goal of this question is to introduce notions for the



algorithm that picks the median of an array in linear time. Let’s assume for
simplicity that all elements of the input array are pairwise distinct

()
(b)

()

Write a naive algorithm to compute the median of an array. What is its
asymptotic complexity? (don’t try to optimize it)

Write a function
static int[][] chunk(int[] arr, int chunkSize)

that splits an array arr into chunks of size k and a remaining chunk of
size < k if there are leftovers. For instance, chunk({1,2,3,4,5,6,7}, 3)
should return {{1,2,3},{4,5,6},{7}}.

Now, for the sake of the discussion, let us fix an odd constant k. Consider
the following procedure SELECT(A, ) (assuming that A has size n)

o If A contains a single element, just return that element.

e Otherwise, first split the array A into chunks of size k.

e Then sort all of the chunks individually.

e Then form an array A’ of size [%W consisting of the median of each

chunk.
« Call SELECT (4, [4%]) and get the median m’ of A’
e Ifi < 3, build an array A< containing:
— All elements from chunks whose middle element is < m/.
— The first % elements of the other chunks
and return the result of SELECT(A<, 1)
o otherwise build an array A> containing
— All elements from chunks whose middle element is > m/'.
— The last % elements of the other chunks

and return SELECT(A>,i— |%]).

What is the asymptotic running time of the operations of this algorithm
if we omit the recursive calls?

To simplify matter, assume from now on that all elements of A are
pairwise distinct. Give an upper bound on the number of elements of
A. and A>. Deduce that a function 7' : N — N satisfying the following
asymptotically bounds the time complexity of the algorithm.

rt =1 ([2]) <7 ([3]) + o

Deduce that for £ = 5 we have a linear running time, but not n = 3 (hint:
over/under-approximate the equation and use the master theorem)

Challenge: Implement this in Java and interface it with the quicksort
implementation given on canvas.



