
CSCM12 – Software concepts and efficiency February 17th 2023
Tonicha Crook & Cécilia Pradic

Lab 2: recursive functions
• No need to complete lab 0 before you do lab 2; there is no dependency between

the two.

• For sign-off, if the exercise is code, you are expected to show one working copy
of the code. Otherwise, write down a worked solution (i.e., as you would in
an exam) to show us.

• The questions marked as Challenge are not required for signing off, but I
would encourage you to look at them if and only if you have time to spare.

1. Assessing time complexity For each of the java function below, assess its
asymptotic time complexity in the worst case scenario with a O:

(a) static void func1(int[] a, int[] r)
{

int n = a.length;
for(int i = 0; i < n; i++)

for(int j = 0; j < n; j++)
r[(i+1)*(j+1)-1] = a[i] * a[j];

}
(b) static void func2(int[] a, int[] r)

{
int n = a.length;
for(int i = 0; i < Math.sqrt(n); i++)

r[i] = a[i*i];
}

(c) static double naivePow(double a, int n)
{

if(n == 0)
return 1;

else if(n < 0)
return 1/naivePow(a,-n);

else
return a * naivePow(a, n - 1);

}
(d) static double evalPoly(double[] p, double v)

{
int n = p.length;
double r = 0;
for(int i = 0; i < n; ++i)
r += p[i] * naivePow(v, i);

return r;
}

(e) static int horner(ArrayList<Integer> p, int v)
{

1



if(p.size() <= 0)
return 0;

else
{

final int p0 = p.remove(p.size());
// you can assume that p.remove(p.size()) is O(1)
return p0 + v * horner(p, v);

}
}

(f) What do the last two function compute? (hint: think of p as representing
x 7→

∑n−1
i=0 pix

i)
(g) Challenge Prove that the Os you have are actually Θs.

2. Fun with fractals Fractals are geometric shapes that are often nice to de-
scribe using recursion. For this question, we will be drawing some fractals
using the graphics library from java. First, download the file Fractals.java
from canvas. It comes pre-filled with a bit of boilerplate code for displaying
stuff and a Turtle class1.
The basic idea is that we may pretend that we are drawing thanks to a turtle
walking on the screen. The turtle is always located somewhere, represented by
the x and y attribute, and facing some direction represented by orientation,
which stores the angle with the x-axis (in radians). The method turnLeft
can be used to change orientation, and walk to make the turtle move forward
in the current direction by a certain distance, printing a line in the process.
The method fly is the same as walk, but it will not induce any drawing.
In the boilerplate code, I expect you to modify the paint method of MyCanvas
and to add methods to Turtle2. You should not need to modify attributes
directly in those new methods.

(a) First run the code and explain the walkEquilateralTriangle method.
(b) Implement a turnRight method similar to turnLeft, but which makes

the turtle turn to the right. Also implement a method turnAround.
(c) Implement a method for Turtle with signature

static void randomWalk(double dist, int nbSteps)
which implements the following random walk: at each step, the turtle
rotates randomly3 in one of the four cardinal directions and move over
dist pixels. Try out your function on reasonably large values. For
nbSteps = 50, does you turtle ever loop?

(d) The Koch curve is perhaps the most popular example of a first fractal.
It can be defined as the limit of the sequence of curves which can be
defined recursively as follows:

• at order 0, just draw a segment
1This is inspired from the Logo language https://en.wikipedia.org/wiki/Logo_

(programming_language).
2Unless there are some quick fixes to be made in the made function owing to screen size or

something of that nature, but I expect things should work as-is.
3If you do not remember how to draw a random number, please look at the provided code, it

has some hints

2

https://en.wikipedia.org/wiki/Logo_(programming_language)
https://en.wikipedia.org/wiki/Logo_(programming_language)


• at order (n+ 1), consider the following shape

where the middle part is an equilateral triangle minus its base. Take
that and replace every segment by the Koch curve at order n.

The first few iterations can be represented as follows:

This can easily be done using the turtle by rephrasing the above process
recursively

i. First, write a method
static void walkKoch1(double dist)
that prints out the curve at order 1; each atomic segment should
have size dist

3 , so that the overall straight line distance covered by
the turtle should be dist (hint: recall that all the inner angles of
an equilateral triangle are π

3

ii. Now write the general function
static void walkKoch(double dist, order n)
that prints out the Koch curve at an arbitrary order. For the recur-
sive case, I suggest to start from the code from walkKoch1, which
can presumably be adapted by replacing calls of the walk method
by suitable recursive calls.

iii. Finally write a function
static void walkKochFlake(double dist, order n)
that outputs the following

(e) Challenge draw some other fractals; one nice one would be the dragon
curve which may be obtained using a mutual recursion:

3



• At order 0, just draw a segment.
• At order n+ 1, draw a dragon curve at order n, turn π

2 to the left,
and draw a flipped dragon curve at order n.

The flipped dragon curve of order n is drawn by:
• Drawing a segment at order 0

• At order n+1, first drawing a non-flipped dragon curve of order n,
turning π

2 to the right and then drawing a flipped dragon curve of
order n.

You may find inspiration from wikipedia, or you can have fun by varying
the angles, the distance and adding a modicum of randomness! Feel free
to look at the documentation of Graphics to do fancier stuff too.

3. Our first sorting algorithm Let us try to introduce our first algorithm to
sort arrays. This one is known as bubble sort. You can use either recursion
or loops (or mix them) to solve this exercise.

(a) Write a function
static void bubbleDownStep(int[] arr, int i)
that takes as input an array a and an index i of that array, and that
swaps the elements of index i and i+ 1 if a(i) > a(i+ 1). This function
should run in constant time (O(1)).

(b) Deduce a function
static void bubbleDown(int[] arr, int i)
that takes as input an array a and an index i of that array, and assuming
that arr is sorted up to index i, applies bubbleDownStep a number of
times so that arr is sorted up to index i+ 1. This function should run
in linear time (O(n)).

(c) Deduce a function
static void bubbleSort(int[] arr)
which sorts the array arr. What is its asymptotic complexity?

4


