CSCM12 — Software concepts and efficiency February 3rd 2023
Tonicha Crook & Cécilia Pradic

Lab 0: getting started

e As mentioned in the first lecture, the class session is not marked per se, but
will net you easy bonus points for the coursework if you engage. Further, I
am not sure it will even be possible to assimilate the lecture materials further
down the line if you do not practice, so I would strongly recommend you do
them.

¢ You can work in groups of up to four; I would suggest you attempt to at most
pair up to solve the exercises and then discuss with the other pair of your
group once you both have a solution to compare maybe? Working alone is
fine too.

o For sign-off, if the exercise is code, you are expected to show one working copy
of the code. Otherwise, write down a worked solution (i.e., as you would in
an exam) to show us.

e The questions marked as Challenge are not required for signing off, but I
would encourage you to look at them if and only if you have time to spare.

The rough idea for this lab sheet is to brush up a bit your java skills, expose you
to pseudo-code, some toy problems in algorithmic complexity, and introduce some
notions that will be useful for the next lecture and the subsequent labs. I hope
that you won’t be bored and that you’ll have fun :) (this brand new lab sheet
was written fairly late at night, I hope it does not contain too many bugs; but it
is probably long. Do not worry if you cannot finish everything; try to call us for
sign-offs at the 90min marks if possible).

1. Warm-up Write pseudo-code for a function that takes as input an array of
integers and outputs the minimal value. Then, write the same thing in java.
You may assume that the array is non-empty.

Challenge: show that your code does the minimal number of comparisons
possible between elements of the arrays.

2. Addition in base 10 Let us consider the long sum addition algorithm that
we recalled on Monday, but written out to be executed by a computer (Al-
gorithm ﬁ], whose pseudo-code you may find on the next page).

Run this algorithm by hand on the inputs [7, 7] and [1, 5, 2] by hand, detailing
at each step of the for loop the values of X, Y, R and +.

Then, write the corresponding java code and test it on the same example
(hint: you can use x % 10 to compute the last digit of x).

Challenge: write the pseudo-code and the java code for long multiplication
in base 10.

3. Maths: revisiting limits Just a couple of exercises about limits of functions
when their parameters tend to infinity. If you struggle, feel free to ask for
help, either from us or your classmates; this is not about testing you, but
merely to ease you into some discussions we are going to have on Monday.



Input: Two arrays X = [zg,...,x,] and Y = [z9, ..., yr] and with all
i, y; < 9 for all ¢ representing two numbers in base 10
Output: An array representing the sum of the two numbers in base 10
SumBasel0(X,Y)
Resize X or Y so that they have the same size n > 0
Create an array of integers R of size n + 1 with Os in it
for ¢ from 0 ton — 1 do
R[i] < R[i] + X[i] + Y[i]
if R[i] > 10 then
RJi] < the last digit of R][i]
Rli+1]«+1
end
end
return R

Algorithm 1: Long addition in base 10

For a function f : R — R (and, mutatis mutandis, for a sequence f : N — R),
we say that

e the limit of f at 400 is some L € R if f can stay arbitrarily close to L
after some point. Formally, this is the case when for every small € > 0,
there exists a large enough B € N such the distance between f(z) and
L for x > B is inferior to €. In symbol soup:

Ve >0.3dB.Va > B. |f(z) — L| <e

e the limit of f at +00 is 400 if f can remain above an arbitrarily high
threshold after some point. Formally, it means that for any big NV, there
is a large enough B such that f remains above N from that point on.
In symbol soup:

VN.3B.Vx > B. f(x) > N

e the case of —oco being a limit is similar

In any case, when ¢ is the limit of a function f at +oo, we write f(z) i Ny

or lim f(x)=~¢.

T—r+00
A word of caution: not every function has a limit in general. For instance
the sequence n — (—1)" does not converge. However, in the context of this
module, we are only going to need functions that are ultimately increasing
(i.e. such that z <y = f(x) < f(y)) and these always have limits.

Furthermore, while the definitions above may seem a bit scary, we will ul-
timately only need to compute rather simple limits, for which rather simple
rules may be used. For the most part, we are going to consider quotients
of products and sums of polynomials, exponential functions like xz +— 2%
and logarithms. I will not attempt to give those rules here, but point to
e.g. https://en.wikipedia.org/wiki/List_of_limits for some formu-
las you can use, along with the standard way you can simplify polynomi-
als/exponentials/logarithms.

Try to compute the following limits:


https://en.wikipedia.org/wiki/List_of_limits
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. EIEOO [27"] 4+ |27"] (|z] is the biggest integer smaller than z while [z]
is the smallest integer bigger than x)
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n—-too log(n)+n

Challenge:

lim w, for ug = 1 and u,11 = (—2)*" + 3u,
n—-+00

lim =5
n—-+00 \/Ex

4. Finding a maximum and a minimum simultaneously For this exercise,
please use the template code provided in the file minAndMax. java on canvas
(or in the appendix of the sheet).

(a)

(b)

Write a naive java function that takes as input an array of numbers and
returns a pair of numbers where the first component is the minimum
element of the array and where the second component is the maximum.

How many time will you invoke the comparison operator if you input
an example of size n? (don’t hesitate to run the provided code to make
conjectures)

Now, consider an (alternative most probably) algorithm that works as
follows: first group elements of the array in pairs. Declare auxiliary
arrays Top and Bot of size 5 Compare all elements pairwise; for each
pair, put the maximal element in Top and the minimal one in Bot.
Then, compute naively the minimal element m in Bot and the maximal

element m’ in Top and return (m,m’).

i. Write this procedure in java; you will need to code the subprocedures
picking a maxmium and a minimum as auxiliary functions.

ii. How many times will you invoke the comparison operator if you
input an example of size 2n? Is it better than your previous algo-
rithm.

iii. Note that the above procedure works when n is even. Adapt your
algorithm so that it works when n may be odd. How many compar-
isons do you need then for inputs of size 2n + 17

Challenge (hard!): prove that the algorithm that was given as a final
solution is optimal in number of comparisons (i.e., that any algorithm doing
strictly less comparisons necessarily gives wrong outputs).

(Comment: I am not aware of practical applications for this problem, but
maybe there is; as we shall see later, when it comes to writing java, this is a
bit of a frivolous question. But I hope it’s somewhat fun at least!)



5. Challenge task for higher-order functions likers Implement the di-
chotomy search seen in the monday lecture in Java, i.e. the algorithm that
takes as input a function f : [0,1] — [0,1] with f(0) = 0 and f(1) = 1 as
well as some e, and returns a z such that |f(z) — 4| < e. For the type of
the input function f, you can use the DoubleUnaryOperator interface from
java.util.function.



Appendix

// Class of comparable elements; the idea %s that you should avoid manipulating
// elements of this class directly as integers, but only use the provided
// compare method; that way the total number of comparisons ran during the
// program will be tallied up in nComparisons, and we will be able to use that
// to compare the efficiency of wvarious algorithms.
/7
// (we will have a similar methodology to compare sorting algorithms later on)
class Comparable
{

static private int nComparisons = 0; // the total number of comparisons made

// in the program
final private int val;

Comparable(int x)

{
val = x;
}
static boolean compare(Comparable x, Comparable y)
{
nComparisons++;
return x.val <= y.val;
}

// Please do not use this function to bypass compare!
public String toString()
{

return Integer.toString(val);

}

static int nComparisons()
{
return nComparisons;
}
}

// A (family of) classes for objects that can hold pairs of elements,
// parameterized by two classes T and U which are the type of the first and
// second component respectively.
/7
// (if you want to look up the java concept for this motion of class
// parameterized by other classes, these are called generics)
class Pair<T,U>
{
final public T fst;
final public U snd;

Pair(T x, U y)



fst = x;
snd = y;

public class MinAndMax
{
// Input: an array in of Comparables of length >= 1
// Output: a pair of Comparables
static Pair<Comparable,Comparable> minAndMax (Comparable[] in)
{
// Put here your code; you can assume that the input array in
// has length >= 1
return null;

}

public static void main()

{
int[] exVals = {4,86,42,6,4,7,8,9};
Comparable[] ex = new Comparable[exVals.length];

for(int i = 0; i < exVals.length; ++i)
ex[i] = new Comparable(exVals[i]);

Pair<Comparable,Comparable> res = minAndMax(ex);

System.out.printf ("The minimum of %s is %s and the maximum %s.\n",
ex.toString(), res.fst.toString(), res.snd.toString());

System.out.printf("This was computed using %d comparisons.\n",
Comparable.nComparisons());



