
CS-205 lecture 9:

The IO monad

Cécilia Pradic

28/10/24

1



Autograder is live

Link to submit your coursework

https://csautograder.swansea.ac.uk/web/project/69

• Detailed submission instructions on canvas

• A bug was reported to me yesterday, should be fixed

• All tests re-ran after final submission

• 37 marks allocated automatically, the rest by handgrading

• The handgrader might compensate for harsh automated grading

2

https://csautograder.swansea.ac.uk/web/project/69


Last week: interactive programming

the function
input output

memory
screen

SSD

memory
screen

SSD

What we have seen

How to

• write types for programs with IO side-effects in types IO a

print :: Show a => a -> IO ()

getLine :: IO String

• combine them using bind >>= or the do notation

• a couple of examples

• compile haskell programs using ghc

3



Extended example: validating input

getYN :: String -> IO Bool

getYN prompt = putStr (prompt ++ "[y/N]:") >>

hFlush stdout >>

getLine >>= \s ->

if s `elem` answers then

return (s `elem` yanswers)

else

putStrLn "Wrong input!" >> getYN prompt

where yanswers = ["y","Y","yes","Yes"]

answers = yanswers ++ ["","n", "N","no","No"]

4



Extended example: validating input

getYN :: String -> IO Bool

getYN prompt = do {

putStr (prompt ++ "[y/N]:");

hFlush stdout;

s <- getLine;

if s `elem` answers then

return (s `elem` yanswers)

else

do {

putStrLn "Wrong input!";

getYN prompt

}

}

where yanswers = ["y","Y","yes","Yes"]

answers = yanswers ++ ["","n", "N","no","No"]

5



Some tps/considerations for the lab

• I have not gone over all the IO primitives

→ use the online documentation (hackage/hoogle)

• You might need some import statement to import functions like

hFlush or isDigit as in e.g.

import Data.Char (isDigit) -- imports only isDigit

import System.IO -- imports everything in the module

• hFlush stdout ≡ fflush(stdout)

flushes the stdout buffer → forces printing

6



Some further topics

Warning

The rest of the lecture will survey some topics you could look into if

you want to keep writing Haskell in the future/are curious

Before we move on, questions about Haskell/CW/etc?

Ofc you are free to ask at any later point :)

(more detailed explanation on the material below in lecture11.hs)

7



Further topic 1: monads



Extended do notation?

doList :: [(Int,Char)]

doList = do {

x <- [1..5];

y <- ['a','z'];

return (x,y)

}

8



Extended do notation?

divMaybe :: Int -> Int -> Maybe Int

divMaybe x 0 = Nothing

divMaybe x y = Just (x `div` y)

doMaybe :: Int -> Int -> Int -> Maybe Int

doMaybe x y z = do {

a <- divMaybe x y;

b <- divMaybe z a;

return (a + b)

}

9



Workhorse behind this: the Monad typeclass

(>>=) :: Monad m => m a -> (a -> m b) -> m b

return :: Monad m => a -> m a

• m :: * -> * is a variable, but not for a type

• Monads consist of a very generic, yet useful abstractions

• Typical instances: Monad IO, Monad [], Monad Maybe,

Monad (Cont r), Monad (State s)

• Monad (State s) = code “as if” we had mutable variables

Maybe the next example to look at if you are interested

10



The state monad

data State s a = Stateful (s -> a * s)

return :: a -> State s a

return x m = (x, m)

(>>=) :: State s a -> (a -> State s b) -> State s b

(Stateful c) >>= f = Stateful

\m -> let (x, m') = c m in

let Stateful g = f x in

g m'

escape :: State s a -> s -> a

escape (Stateful c) m = fst (c m)

• Usefuleness: one can go back to pure computations via escape

(function of type IO a -> a named unsafePerformIO)

11



A monad you have already seen: Maybe

divMaybe :: Int -> Int -> Maybe Int

divMaybe x 0 = Nothing

divMaybe x y = Just (x `div` y)

doMaybe :: Int -> Int -> Int -> Maybe Int

doMaybe x y z = do {

a <- divMaybe x y;

b <- divMaybe z a;

return (a + b)

}

12



The list monad

doList :: [(Int,Int)]

doList = do {

x <- [1..10];

y <- [1..10];

if even x /= even y then

return (x,y)

else []

}

• the list monad has further structure [], ...

• special syntax for this in Haskell: list comprehension

doList1 = [(x,y) | x <- [1..10], y <- [1..10], even x /= even y]

13


	Further topic 1: monads

