
CS-205: Welcome (to functional programming)

Cécilia Pradic & Monika Seisenberger

Swansea University
30/09/24

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 1 / 23



Who?

Cécilia Pradic (she/her)

▶ Lecturer

▶ Theory group

▶ Research: proof/automata theory,
. . .

▶ c.pradic@swansea.ac.uk

▶ Office: CoFo 410

Monika Seisenberger (she/her)

▶ Associate Professor, deputy HoD

▶ Theory group (head of the)

▶ Research: formal methods, XAI,. . .

▶ m.seisenberger@swansea.ac.uk

▶ Office: CoFo 405

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 2 / 23

c.pradic@swansea.ac.uk
m.seisenberger@swansea.ac.uk


What?

Functional programming

▶ Haskell

▶ Lectures by Cécilia

▶ Weeks 1-5

Logic programming

▶ Prolog

▶ Lectures by Monika

▶ Weeks 6-10

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 3 / 23



Why?

▶ Get some more programming experience

▶ Explore new programming features and styles
▶ higher-order functions, algebraic datatypes, recursion, . . .

▶ Get experience learning new languages

This is a programming module

Practice!

▶ A bit of live-coding during the lectures
(light on theory, although you can get me to babble)

▶ Having completed the lab: baseline
(interesting exercises: write algorithms seen in CS-270?)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 4 / 23



Why?

▶ Get some more programming experience

▶ Explore new programming features and styles
▶ higher-order functions, algebraic datatypes, recursion, . . .

▶ Get experience learning new languages

This is a programming module

Practice!

▶ A bit of live-coding during the lectures

(light on theory, although you can get me to babble)

▶ Having completed the lab: baseline
(interesting exercises: write algorithms seen in CS-270?)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 4 / 23



Why?

▶ Get some more programming experience

▶ Explore new programming features and styles
▶ higher-order functions, algebraic datatypes, recursion, . . .

▶ Get experience learning new languages

This is a programming module

Practice!

▶ A bit of live-coding during the lectures
(light on theory, although you can get me to babble)

▶ Having completed the lab: baseline

(interesting exercises: write algorithms seen in CS-270?)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 4 / 23



Why?

▶ Get some more programming experience

▶ Explore new programming features and styles
▶ higher-order functions, algebraic datatypes, recursion, . . .

▶ Get experience learning new languages

This is a programming module

Practice!

▶ A bit of live-coding during the lectures
(light on theory, although you can get me to babble)

▶ Having completed the lab: baseline
(interesting exercises: write algorithms seen in CS-270?)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 4 / 23



How?

Lab

O-Z
CoFo 203

Lab

H-N
CoFo 104

Lab

A-G
CoFo 1041100

0900
Monday Tuesday Friday

1300

1600

Cécilia’s

office hours
CoFo 410

Lecture
GH043

Lecture
GH043

Monika’s o.h.
CoFo 405

Monika’s o.h.
CoFo 405

▶ 2 × 1h lecture weekly

▶ 2h of labs

▶ which lab session do I go to?
→ first letter of (whatever

canvas thinks is) your surname

▶ ∃ computers but do feel free to
bring your own

▶ up-to-date info on canvas

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 5 / 23



Lab rules

▶ Don’t cheat/share solutions

▶ Not homework, doable within two hours (except maybe challenge tasks)

▶ Sign-off at the end of session/beginning of the next

▶ Half-marks afterwards unless an EC/exemption
(you can request for up to 2 labs being exempted if ill)

(slack to deal with illness/unavailability of TAs)

▶ Drop me an email if you need to change session
(and preferrably arrange to swap with someone)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 6 / 23



Support

▶ your lab slot

▶ office hours: after the lab for me (if I am not in, probably I am still in the lab)

(caveat: I will be on leave from the end of November)

▶ Computer science advisory sessions

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 7 / 23



Support

▶ your lab slot

▶ office hours: after the lab for me

(if I am not in, probably I am still in the lab)

(caveat: I will be on leave from the end of November)

▶ Computer science advisory sessions

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 7 / 23



Support

▶ your lab slot

▶ office hours: after the lab for me (if I am not in, probably I am still in the lab)

(caveat: I will be on leave from the end of November)

▶ Computer science advisory sessions

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 7 / 23



Support

▶ your lab slot

▶ office hours: after the lab for me (if I am not in, probably I am still in the lab)

(caveat: I will be on leave from the end of November)

▶ Computer science advisory sessions

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 7 / 23



Support

▶ your lab slot

▶ office hours: after the lab for me (if I am not in, probably I am still in the lab)

(caveat: I will be on leave from the end of November)

▶ Computer science advisory sessions

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 7 / 23



Assessment

15% Labs

▶ 85%: sign-off of non-challenge lab tasks

▶ 15%: further engagement with the module
(e.g. signing-off the challenge lab tasks, excellent coursework, . . . )

15% coursework

▶ Provisional deadline/release dates: October 30th/November 21st

▶ Probably individual, on autograder

70% Pen-and-paper exam in January

▶ Significant coding portion

▶ Some questions about the implementation of Haskell/Prolog

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 8 / 23



Assessment

15% Labs

▶ 85%: sign-off of non-challenge lab tasks

▶ 15%: further engagement with the module
(e.g. signing-off the challenge lab tasks, excellent coursework, . . . )

15% coursework

▶ Provisional deadline/release dates: October 30th/November 21st

▶ Probably individual, on autograder

70% Pen-and-paper exam in January

▶ Significant coding portion

▶ Some questions about the implementation of Haskell/Prolog

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 8 / 23



Assessment

15% Labs

▶ 85%: sign-off of non-challenge lab tasks

▶ 15%: further engagement with the module
(e.g. signing-off the challenge lab tasks, excellent coursework, . . . )

15% coursework

▶ Provisional deadline/release dates: October 30th/November 21st

▶ Probably individual, on autograder

70% Pen-and-paper exam in January

▶ Significant coding portion

▶ Some questions about the implementation of Haskell/Prolog

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 8 / 23



Learning resources for Haskell

https://wiki.haskell.org/Learning_Haskell

▶ Textbook for the module: Programming in Haskell by Graham Hutton

▶ Thanks to him for letting us use and modify his slides!

▶ https://www.cs.nott.ac.uk/~pszgmh

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 9 / 23

https://wiki.haskell.org/Learning_Haskell
https://www.cs.nott.ac.uk/~pszgmh


That’s all for the admin!

Pressing questions of general
interest?

Next: finally some Haskell/functional programming

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 10 / 23



Let us get to know Haskell

Strong recommendation

Install Haskell on your own machine!

▶ Instruction on canvas

▶ You will have IDE support! (and all other obvious benefits!)

▶ Happy to try to lend a hand with that in labs

▶ The lab machines do not have the nice IDE support. Sorry!!!

▶ GHC and the interpreter are installed there (so you can still do the labs), but
none of the other tooling

To follow along right now (if you have it already installed)

Launch ghci

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 11 / 23



Let us get to know Haskell

Strong recommendation

Install Haskell on your own machine!

▶ Instruction on canvas

▶ You will have IDE support! (and all other obvious benefits!)

▶ Happy to try to lend a hand with that in labs

▶ The lab machines do not have the nice IDE support. Sorry!!!

▶ GHC and the interpreter are installed there (so you can still do the labs), but
none of the other tooling

To follow along right now (if you have it already installed)

Launch ghci

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 11 / 23



Let us get to know Haskell

Strong recommendation

Install Haskell on your own machine!

▶ Instruction on canvas

▶ You will have IDE support! (and all other obvious benefits!)

▶ Happy to try to lend a hand with that in labs

▶ The lab machines do not have the nice IDE support. Sorry!!!

▶ GHC and the interpreter are installed there (so you can still do the labs), but
none of the other tooling

To follow along right now (if you have it already installed)

Launch ghci

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 11 / 23



Demo time!

▶ computing numerical values 2/3, div 3 2

▶ computing some lists of numbers [1,5,7] ++ [1..4]

▶ more complex function composition
▶ drop 2 [1..5] ++ reverse [4,13]
▶ fromIntegral (10 / 3)

▶ checking and inferring types (77 :: Int)^77

(Spooky. Try not to be distressed)

(But worth saying, everything is secretly statically typed)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 12 / 23



Demo time!

▶ computing numerical values 2/3, div 3 2

▶ computing some lists of numbers [1,5,7] ++ [1..4]

▶ more complex function composition
▶ drop 2 [1..5] ++ reverse [4,13]
▶ fromIntegral (10 / 3)

▶ checking and inferring types (77 :: Int)^77

(Spooky. Try not to be distressed)

(But worth saying, everything is secretly statically typed)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 12 / 23



Demo time!

▶ computing numerical values 2/3, div 3 2

▶ computing some lists of numbers [1,5,7] ++ [1..4]

▶ more complex function composition

▶ drop 2 [1..5] ++ reverse [4,13]
▶ fromIntegral (10 / 3)

▶ checking and inferring types (77 :: Int)^77

(Spooky. Try not to be distressed)

(But worth saying, everything is secretly statically typed)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 12 / 23



Demo time!

▶ computing numerical values 2/3, div 3 2

▶ computing some lists of numbers [1,5,7] ++ [1..4]

▶ more complex function composition
▶ drop 2 [1..5] ++ reverse [4,13]

▶ fromIntegral (10 / 3)

▶ checking and inferring types (77 :: Int)^77

(Spooky. Try not to be distressed)

(But worth saying, everything is secretly statically typed)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 12 / 23



Demo time!

▶ computing numerical values 2/3, div 3 2

▶ computing some lists of numbers [1,5,7] ++ [1..4]

▶ more complex function composition
▶ drop 2 [1..5] ++ reverse [4,13]
▶ fromIntegral (10 / 3)

▶ checking and inferring types (77 :: Int)^77

(Spooky. Try not to be distressed)

(But worth saying, everything is secretly statically typed)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 12 / 23



Demo time!

▶ computing numerical values 2/3, div 3 2

▶ computing some lists of numbers [1,5,7] ++ [1..4]

▶ more complex function composition
▶ drop 2 [1..5] ++ reverse [4,13]
▶ fromIntegral (10 / 3)

▶ checking and inferring types (77 :: Int)^77

(Spooky. Try not to be distressed)

(But worth saying, everything is secretly statically typed)

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 12 / 23



Still demo time!

Our first function definition!

sumOfInverses :: Float -> Float -> Float -- type declaration

sumOfInverses x y = 1 / x + 1 / y -- function declaration

Let me explain, show how to load it and play with it

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 13 / 23



The same function in Java

public static float sumOfInverses(float x, float y)

{

return 1/x + 1/y;

}

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 14 / 23



Now, for an advanced example

aFunction [] = []

aFunction (x : xs) = aFunction pre ++ x : aFunction post

where pre = filter (> x) xs

post = filter (<= x) xs

Can you guess what is the value of aFunction [2,5,4,3,7]?

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 15 / 23



First lab: to get started!

▶ You will familiarize yourselves with the interpreter

▶ You will write a few functions yourselves

▶ You will familiarize yourselves with basic list and arithmetic functions

To look up documentation

https://hoogle.haskell.org

▶ not required for the first lab

▶ I will walk you through this on Friday

End of demo! Questions?

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 16 / 23

https://hoogle.haskell.org


First lab: to get started!

▶ You will familiarize yourselves with the interpreter

▶ You will write a few functions yourselves

▶ You will familiarize yourselves with basic list and arithmetic functions

To look up documentation

https://hoogle.haskell.org

▶ not required for the first lab

▶ I will walk you through this on Friday

End of demo! Questions?

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 16 / 23

https://hoogle.haskell.org


First lab: to get started!

▶ You will familiarize yourselves with the interpreter

▶ You will write a few functions yourselves

▶ You will familiarize yourselves with basic list and arithmetic functions

To look up documentation

https://hoogle.haskell.org

▶ not required for the first lab

▶ I will walk you through this on Friday

End of demo! Questions?

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 16 / 23

https://hoogle.haskell.org


So what’s a functional programming language (PL)?

Vibes1 surrounding certain PL features such as

▶ algebraic datatypes

▶ parametric polymorphism

▶ anonymous higher-order functions

▶ implicit memory management

▶ static type inference

▶ type classes

Vibes!!! (imo)

▶ you can find examples/counter-examples among functional PLs

▶ you can find some of these among “dysfunctional” PLs

▶ complicated socio-technical history

▶ but Haskell has all of these features

1see e.g. https://cs.brown.edu/people/sk/Publications/Papers/Published/sk-teach-pl-post-
linnaean/paper.pdf

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 17 / 23

Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.
Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.


So what’s a functional programming language (PL)?

Vibes1 surrounding certain PL features such as

▶ algebraic datatypes

▶ parametric polymorphism

▶ anonymous higher-order functions

▶ implicit memory management

▶ static type inference

▶ type classes

Vibes!!! (imo)

▶ you can find examples/counter-examples among functional PLs

▶ you can find some of these among “dysfunctional” PLs

▶ complicated socio-technical history

▶ but Haskell has all of these features

1see e.g. https://cs.brown.edu/people/sk/Publications/Papers/Published/sk-teach-pl-post-
linnaean/paper.pdf

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 17 / 23

Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.
Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.


So what’s a functional programming language (PL)?

Vibes1 surrounding certain PL features such as

▶ algebraic datatypes

▶ parametric polymorphism

▶ anonymous higher-order functions

▶ implicit memory management

▶ static type inference

▶ type classes

Vibes!!! (imo)

▶ you can find examples/counter-examples among functional PLs

▶ you can find some of these among “dysfunctional” PLs

▶ complicated socio-technical history

▶ but Haskell has all of these features

1see e.g. https://cs.brown.edu/people/sk/Publications/Papers/Published/sk-teach-pl-post-
linnaean/paper.pdf

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 17 / 23

Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.
Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.


So what’s a functional programming language (PL)?

Vibes1 surrounding certain PL features such as

▶ algebraic datatypes

▶ parametric polymorphism

▶ anonymous higher-order functions

▶ implicit memory management

▶ static type inference

▶ type classes

Vibes!!! (imo)

▶ you can find examples/counter-examples among functional PLs

▶ you can find some of these among “dysfunctional” PLs

▶ complicated socio-technical history

▶ but Haskell has all of these features

1see e.g. https://cs.brown.edu/people/sk/Publications/Papers/Published/sk-teach-pl-post-
linnaean/paper.pdf

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 17 / 23

Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.
Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.


So what’s a functional programming language (PL)?

Vibes1 surrounding certain PL features such as

▶ algebraic datatypes

▶ parametric polymorphism

▶ anonymous higher-order functions

▶ implicit memory management

▶ static type inference

▶ type classes

Vibes!!! (imo)

▶ you can find examples/counter-examples among functional PLs

▶ you can find some of these among “dysfunctional” PLs

▶ complicated socio-technical history

▶ but Haskell has all of these features

1see e.g. https://cs.brown.edu/people/sk/Publications/Papers/Published/sk-teach-pl-post-
linnaean/paper.pdf

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 17 / 23

Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.
Krishnamurthi, S., 2008. Teaching programming languages in a post-linnaean age. ACM Sigplan Notices, 43(11), pp.81-83.


Haskell: a different point of view on functions

Peculiarity of Haskell

No way to do side-effects

. . .

the function

memory
screen

SSD

input output

side-effects

Examples of side-effects:

▶ Reading/writing a file

▶ Printing to the screen

▶ Changing a value in memory

⇒ no mutable variables, no loops!
Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 18 / 23



Example of a side effect in Java

static public void sumSuffixes(int[] arr)

{

for(int i = arr.length-2; i >= 0; --i)

arr[i] += arr[i+1];

}

▶ A single return value

▶ Operation: alter the global memory (depending on arguments)

▶ An auxiliary mutable variable i

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 19 / 23



Functions in Haskell

the functioninput output

▶ Closer to mathematical functions

▶ Constrain the programming style in interesting ways
(easier to reason about code)

▶ No loss of expressiveness: recursion instead of loops

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 20 / 23



But using side-effects is possible!

It is even necessary sometimes (people do want to write files)

The Haskell way: treat “real world states” as data to pass around

the function
input output

memory
screen

SSD

memory
screen

SSD

▶ ∃ very nice abstractions to deal with that

▶ so all is well

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 21 / 23



Some modern functional PLs

Legacy from three big academic traditions

ML Haskell LISP dialects

▶ Different set of features/design philosphies

▶ Big inspiration for new features in more mainstream languages

▶ Influenced greatly the design of
▶ Rust
▶ depedently typed languages/proofs assistants

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 22 / 23



Some examples of big Haskell projects

Some that were somehow relevant to me

▶ Pandoc - “a universal document converter”

▶ xmonad - a tiling windows manager (similar to the one I am using right now)

▶ hakyll - a static blog generator

More at https://wiki.haskell.org/Applications_and_libraries

Cécilia Pradic & Monika Seisenberger CS-205: Welcome (to functional programming) 23 / 23

https://wiki.haskell.org/Applications_and_libraries

