
CS-205 Declarative Programming October 31st 2022
Cécilia Pradic, Monika Seisenberger

Lab 5: algebraic datatypes

Dear all,

• You can do your lab by editing a single file.

• If you want to sign off, please recall to load your files in ghci to check for
errors before calling a demonstator over. Additionally, it is also a good idea
to test the functions you defined in ghci on a variety of examples to double-
check they have the behaviour you are expecting.

The goal is to get familiar with custom datatype definitions as we have seen in the
last two lectures. But this also means we will revisit material on recursion and
higher-order functions among other things!

Happy hacking!

Task 5.1. A simple datatype

(i) Define a custom datatype enumerating the four cardinal directions. Your
definition should make the following function definition valid:

turnAround :: Direction -> Direction

turnAround North = South

turnAround South = North

turnAround West = East

turnAround East = West

(ii) Define a function turnLeft :: Direction -> Direction that takes a di-
rection to the one which is leftwards. Analogously, define the inverse function
turnRight.

Task 5.2. Using the Maybe datatype Recall the Maybe type constructor that
we have seen in the lectures. It is defined as follows in Haskell’s Prelude (do not
copy-paste the following snippet in your file, it is normal that doing so
would cause you issues later on):

data Maybe a = Just a | Nothing

Maybe is often useful if one wants to define functions that may return an error. For
instance, if we would like to have an error-free version of head, one could write

safehead :: [a] -> Maybe a

safehead [] = Nothing

safehead (x : _) = Just x

Taking inspiration from this example, write the following:
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Figure 1: Some informal pictures of ex1 :: Btree Int and ex2 :: Btree Int

(i) a function safetailMaybe :: [a] -> Maybe [a] that returns Nothing on
the empty list and returns the correct value wrapped by Just if the list is
non-empty

(ii) a function

takeMaybe :: Int -> [a] -> Maybe [a]

that returns Nothing in case that the first input is strictly greater than the
length of the second, and otherwise use Just to give a result similar to take.

Task 5.3. A recursive tree datatype We will now consider a recursive datatype
for labelled binary trees that you should copy-paste in your file:

data Btree a = Leaf a | Unary (Btree a) a | Binary (Btree a) a (Btree a)

Per that definition, a value of type Btree a is either:

• a leaf node containing a value of type a

• or a unary internal node containing a subtree of type Btree a and a value of
type a

• or a binary node containing two subtrees of type Btree a and a value of type
a

Here are a couple of concrete examples of values of type Btree Int:

ex1 = Unary (Unary (Unary (Binary (Leaf 0) 1 (Leaf 2)) 3) 4) 5

ex2 = Binary (Binary (Leaf 0) 1 (Leaf 2)) 3 (Binary (Leaf 4) 5 (Leaf 6))

which are also pictued in Figure 1 for your convenience.

We encourage you to test your functions on these examples to check if they work!

(i) Define a function

depth :: Btree a -> Int
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computing the depth of the tree, that is, the maximal distance between a leaf
and the root (so, by convention, the depth of a tree consisting of a single leaf
is 0). For instance, we have depth ex1 == 4 and depth ex2 == 2.

(ii) Recall the map function over lists, that uniformely applies a function f to the
elements of an input list. Write an analogous function

mapBtree :: (a -> b) -> Btree a -> Btree b

such that mapBtree f t is the same tree as t, except for the labels which
should be obtained by applying f to the labels of t.

To test the function, you might like to define the auxiliary function

btreeToList :: Btree a -> [a]

btreeToList (Leaf x) = [x]

btreeToList (Unary l x) = btreeToList l ++ [x]

btreeToList (Binary l x r) = btreeToList l ++ x : btreeToList r

and check that map f (btreeToList t) == btreeToList (mapBtree f t)

for any values of f and t you can come up with.

Task 5.4. Challenge tasks

(i) Write a function

bindMaybe : Maybe a -> (a -> Maybe b) -> Maybe b

which allows to “chain” computations with Maybe: when calling bindMaybe x

f, if the first argument x is Nothing, the output should be Nothing, otherwise
x is of shape Just y and the output should be f y.

(ii) Revisit question 2-(ii) and write takeMaybe without reusing the function take

from Haskell’s Prelude (you may want to reuse bindMaybe for this).

(iii) A value t of Btree (Int, a) is called a search tree if the root of every
subtreee of t is either a leaf or

• a unary node Unary l (x, v) and all values contained in l have first
components less or equal than x

• or a binary node Binary l (x,v) r and all values contained in l have
first components less or equal than x, and those contained in r have first
components greater or equal than x.

Such trees are useful, because it is possible to retrieve elements by key in time
O(depth(t)). This can be logarithmic in the size of the tree if it happens to
be balanced.

Write a function

lookupInSearchTree :: Int -> Btree (Int, a) -> Maybe a

that looks up an element in the tree. That is, lookupInSearchTree k t

should return Nothing if there is no label with first component k in t, other-
wise Just y where y is some value such that (k,y) occurs in the tree.
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For instance, lookupInSearchTree 5 ex5 should evaluate to Just "c" while
lookupInSearchTree 100 ex5 should evaluate to Nothing.

Then, write a function

insertInSearchTree :: Int -> a -> Btree (Int,a) -> Btree (Int,a)

such that insertInSearchTree x v t results in a search tree containing all
the values of t plus one copy of (x,v) (you do not have to enforce that the
output tree be balanced).

(iv) A tree is called perfect1 if the distance between the root and any leaf is always
the same and all internal nodes are binary. Neither ex1 nor ex2 are perfect.
A tree is called complete if the distance between the root and any leaf is
always the same up to 1, all of the deepest leaves are located to the left of the
others, and there is at most one internal node with unary node that should
be located on the second-to-last level. ex2 is complete, but ex1 is not.

Define functions

complete :: Btree a -> Bool

perfect :: Btree a -> Bool

that decide whether an input tree is complete/perfect. Please attempt to code
a version of perfect that is efficient, i.e., than only needs to examine every
node of the input tree exactly once.

1The definition we give are consistent with https://en.wikipedia.org/w/index.php?title=

Binary_tree&oldid=1050054313, so you can check there for further examples.
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