
CS-205 Declarative Programming October 24th 2023
Cécilia Pradic, Monika Seisenberger

Lab 4: higher-order functions and list comprehension

Dear all,

• You can do your lab by editing a single file.

• If you want to sign off, please recall to load your files in ghci to check for
errors before calling a demonstator over. Additionally, it is also a good idea
to test the functions you defined in ghci on a variety of examples to double-
check they have the behaviour you are expecting.

• You can freely use higher-order functions defined in the standard library that
we have seen, recursion and list comprehension for all tasks. For your sake
we would encourage you to investigate several possibilities for each questions
(there are a multitude of good solutions, some being shorter than others).

• This week is the last opportunity to sign off lab 3 with full marks.

Happy hacking!

Task 4.1: (a) Write a function
filterOut :: (a -> Bool) -> [a] -> [a]
taking as input a function p and a list xs, and outputs a list con-
taining the same elements as xs except those that satisfy p (so, in-
tuitively, this would be the complement of filter). For instance,
filterOut even [1,2,3] should evaluate to [1,3]

(b) Write a function
mapTS :: (a -> b) -> [a] -> [(a,b)]
that takes as input a function and a list of elements xs, and returns the
list of pairs whose first component are taken from xs and the second is
obtained by appling f to it. For instance, mapTS even [1,2,3] should
evaluate to [(1,False),(2,True),(3,False)].

Task 4.2: Write a function

allPairs :: [a] -> [b] -> [(a,b)]

that takes as input two lists xs and ys and outputs a list containing all
possible pairings of elements of xs and ys. For instance, we could have that
allPairs [1,2] ['a','b','c'] evaluates to

[(1,'a'),(1,'b'),(1,'c'),(2,'a'),(2,'b'),(2,'c')]

Task 4.3 A number is perfect if it is equal to the sum of its strict divisors (so every
divisor except the number itself). For insance, 6 is perfect because it is
divisible by 1, 2, 3 and itself, and we have 6 = 1 + 2 + 3. Write a function

perfects :: Int -> [Int]

1



such that perfects n evaluates to the list of all perfect number lesser or
equal than n. For instance, perfects 100 should evaluate to [6,28]. What
is the value of perfects 1000?

Task 4.4 Challenge task:

(a) Write a function
allSublistsK :: Int -> [a] -> [[a]]
that enumerate all of the possible sublists of size k of a given list. For
instance, allSublistsK 2 [1,2,3] could evaluate to

[[2,3],[1,3],[1,2]]

(b) Write a function
transpose :: a -> [[a]] -> [[a]]

such that, for every index i and j, if xs !! i !! j is defined, then the
value of (transpose x xs) !! j !! i is defined and equal to xs !! i !! j.
For instance, transpose 0 [[1,2,3],[],[4,5]] could evaluate to

[[1,0,4],[2,0,5],[3,0,0]]
(c) Consider the representation of polynomials by lists of numbers such that

the following function implements evaluation at a point:
type Poly a = [a]

evaluateHorner :: Num a => Poly a -> a -> a
evaluateHorner [] _ = 0
evaluateHorner (c : cs) x = c + x * evaluateHorner cs x
Under this representation write functions
addPoly :: Num a => Poly a -> Poly a -> Poly a
multPoly :: Num a => Poly a -> Poly a -> Poly a

that performs the addition and multiplication of polynomials. Check on
a number of examples that you have for every values of p, q and x
evaluateHorner (addPoly p q) x == evaluateHorner p x + evaluateHorner q x
evaluateHorner (multPoly p q) x == evaluateHorner p x * evaluateHorner q x

(d) Using the previous question, attempt to define a Num instance for Poly a
by replacing the comments in the following by actual code
instance Num a => Num (Poly a) where
p + q = -- your code goes here
...

You should look at the documentation of Num and the example file
types.pl for further information on what you should be doing. Don’t
fret too much about abs/signum, it is a place where there is not neces-
sarily an obvious choice to be made as far as I am aware.

2


