
CS-205 Declarative Programming October 17th 2023
Cécilia Pradic, Monika Seisenberger

Lab 3: pattern-matching and recursion

Dear all,

• You can do your lab by editing a single file.

• If you want to sign off, please recall to load your files in ghci to check for
errors before calling a demonstator over. Additionally, it is also a good idea
to test the functions you defined in ghci on a variety of examples to double-
check they have the behaviour you are expecting.

• This week the Haskell runtime on the lab machines work! But no nice VSCode
support is set up on the lab machines (and it probably won’t be done this
term).

Happy hacking!

Task 3.1: (conditionals) For this task, you can use conditionals or guarded equations,
whichever you prefer.

(a) Write a function
orderPair :: Ord a => (a, a) -> (a, a)
that takes as input a pair and outputs another pair containing the same
elements, but ordered. For instance orderPair (0,1) should evaluate
to (0,1) while orderPair (15,7) should compute (7,15)

(b) Get acquainted with the function
elem :: Eq a => a -> [a] -> Bool

from Haskell’s base library; it allows to check if an element is in a list
or not. Using this, implement a function

addToSet :: Eq a => a -> [a] -> [a]
such that addToSet x xs represents the list xs extended with x if x was
not an element of xs, or simply xs otherwise1.

Task 3.2: (pattern-matching) Please use pattern-matching and no conditionals for
this task.

(a) Write a function
majority :: Bool -> Bool -> Bool -> Bool

such that majority a b c is True if and only if at least two out of three
of the arguments a, b and c are True.

(b) Write a function
removeFstZero :: String -> String

1The intent here is that this operation ensures that if we start appying it to a list that has no
duplicates, the resulting list has no duplicates as well; this would be a good helper function to
encode a naive datastructure for unordered collections.

1



which removes the first character of its input if it happens to be a '0'.
(Recall that String is the same as [Char] in Haskell)

Task 3.3 (recursion) All of the solutions of this task should involve a recursive func-
tion definition.

(a) Write a function
pow :: Double -> Int -> Double
corresponding to the usual power operator (x, y) 7→ xy using recursion
(and without using the built-in (^) operator).

(b) Define a function
deleteAll :: Eq a => a -> [a] -> [a]
such that deleteAll x xs is the list xs where all occurences of x have
been deleted. For instance, we should have deleteAll 5 [1,5,2,3,5,2]
== [1,2,3,2].

(c) Write a function
sumPrefixesPlusConst :: Int -> [Int] -> [Int]
such that sumPrefixesPlusConst k xs contains the sums of all the
prefixes2 of xs with k added on top. To be more precise, the output list
sumPrefixesPlusConst k xs should have the same length as xs, and
if xs corresponds to the list [x1, x2, ..., xn, ...], the nth element element
of the output should be k + x1 + x2 + . . . + xn. For instance, we will
have sumPrefixesPlusConst 2 [1,10,2] == [3,13,15].
Then use it to define the function
sumPrefixes :: [Int] -> [Int]
that maps xs to the sums of all its prefixes.
(Note that defining sumPrefixes directly by recursion would be chal-
lenging! This is one of the cases where defining an auxiliary function is
useful.)

2A prefix of a list xs is sublist containing the same elements in order, and such that if an
element of index i of xs is included, so are all the elements of lesser index j < i.

2



Task 3.4 Challenge task: In this exercise, we will see how to use recursion to code
the mergesort algorithm, one of the most efficient way of sorting lists. You
should try to do this exercise without using any of the functions of the base
library except (<=) in your code.

(a) Write a function
split :: [a] -> ([a],[a])
which takes as input a list and splits it into two equal parts. Try to make
it so your program needs to traverse the input list only once (applying
length counts as traversing the list). Hint: if that is useful, you can
use a sort of pattern-matching syntax to decompose a tuple you obtain
through a recursive call as in the following bit of code (which does not
do much that is interesting)
iteratedswap :: Int -> (a,a) -> (a,a)
iteratedswap 0 p = p
iteratedswap n p | n < 0 = iteratedswap (-n) p

| otherwise = (y,x)
where (x,y) = iteratedswap (n-1) p

(b) Write a function
merge :: Ord a => [a] -> [a] -> [a]
which takes as input two sorted lists and outputs a merging of the two
lists which remains sorted (in particular, you can check that your func-
tion is correct on examples by checking that merge (sort xs) (sort
ys) = sort (xs ++ ys) for arbitrary xs and ys).

(c) Using the two functions above, write a function
mergeSort :: Ord a => [a] -> [a]
which takes as input a list and returns the same list sorted.

3


